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The present accelerated expansion of the Universe has enriched the list of possible scenarios for its fate,
singular or not. In this paper a unifying framework for analyzing such behaviors is proposed, based on
generalized power and asymptotic expansions of the barotropic index w, or equivalently of the deceleration
parameter q, in terms of the time coordinate. Besides well-known singular and nonsingular future
behaviors, other types of strong singularities appear around the phantom divide in flat models, with features
similar to those of big rip or big bang/crunch, which we have dubbed “grand rip” and “grand bang/crunch,”
respectively, since energy density and pressure diverge faster than t−2 in coordinate time. In addition to this,
the scale factor does not admit convergent generalized power series around these singularities with a finite
number of terms with negative powers.

DOI: 10.1103/PhysRevD.90.064014 PACS numbers: 04.20.Dw, 98.80.Jk

I. INTRODUCTION

Our Universe is expanding in an accelerating fashion,
as has been tested with many sources of observational data
[1–5], and this fact has led to several attempted explan-
ations, either by postulating the existence of a new
component of the energy of the Universe, dubbed dark
energy [6–8], or by suggesting modifications of the theory
of gravitation which would be consistent with observations
at the cosmological scale [9–12].
This has led to previously unregarded scenarios for the

future behavior of the Universe, since dark energy violates
some of the conditions that were taken for granted for
standard matter, such as the energy conditions [13].
When all energy conditions were taken into account, the

future evolution of our Universe was restricted to collapse
in a big crunch if the energy content were over a critical
value or expansion forever if it were below such value.
Violation of energy conditions has increased the number

of possible singular fates from just big crunch to a list of
new scenarios. One of the attempts to classify them [14]
resorts to the behavior of the scale factor aðtÞ, the Hubble
ratio HðtÞ and the energy and pressure of the content of the
Universe at a value of time. This classification has been
refined and enlarged in [15,16] and [17]. The latter one also
includes other types of future behaviors such as little rip
and pseudorip.

(i) Type 0: Big crunch: Vanishing scale factor; blow up
of Hubble ratio, energy density and pressure.

(ii) Type I: Big rip [18]: Blow up of scale factor, density
and pressure. This was the first nonclassical scenario
that was considered. Just the timelike geodesics are
incomplete at thebig rip [19], but not the lightlikeones.

(iii) Type II: Sudden singularities [20]: Finite scale
factor, Hubble ratio, and density; blow up of
pressure. They enclose big brake [21] and big boost
[22] as a subcase. These singularities do not violate
the weak and strong energy conditions. They are
weak singularities [23] and in this sense the Uni-
verse can be extended after the singular event.

(iv) Type III: Big freeze [24] or finite scale factor
singularities: finite scale factor; blow up of Hubble
ratio, density and pressure. These can be either weak
or strong singularities depending on the criterion [19].

(v) Type IV [25]: Finite scale factor, Hubble ratio, energy
density and pressure; blow up of higher derivatives.
These are also weak singularities. They are named
[17] “generalized sudden singularities” if the baro-
tropic index w remains finite, and big separation if it
becomes infinite with vanishing pressure and energy
density.

(vi) Type V: w singularities [26]: Finite scale factor,
vanishing density and pressure. Just the barotropic
index w blows up. These singularities are weak [27].

Some of these singularities can be solved in loop
quantum cosmology [28].
To this list we could add another exotic type of singu-

larities, which do not take place at a finite coordinate time:
(i) Type ∞: Directional singularities: These singular-

ities are located at infinite coordinate time, but some
observers meet them in finite normal time. Curvature
scalars vanish there [29], though they are strong
singularities.

Besides singularities, there are other types of future
behavior, which are not singular, but mimic some of their
features, though at an infinite time. They all have in com-
mon that for them the barotropic index is close to w ¼ −1
and so they can be viewed as deviations from the Λ-cold
dark matter model:
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(i) Little rip: [30] At infinite time the Hubble ratio
diverges. It shares the features of big rip, but at an
infinite time.

(ii) Pseudorip: [31] Monotonic increase of the Hubble
ratio, though finite, even at infinite time.

(iii) Little sibling of the big rip: [32] The same features of
little rip (the Hubble ratio blows up at infinite time),
but with finite derivative of the Hubble ratio.

It would be interesting to unify all previous future
behaviors, singular or not, in one single framework or
classification. Our proposal is to look at generalized power
and asymptotic expansions in coordinate time of the
barotropic index w (or the deceleration parameter q). We
shall see that all future behaviors arise naturally in this
framework. As a byproduct, new types of strong singular-
ities come up in the vicinity of the phantom divide w ¼ −1,
sharing features of big crunch or big rip singularities,
depending on a sign, and so we have dubbed them grand
crunch and grand rip, respectively, since energy density and
pressure diverge faster than t−2 in coordinate time. They
have been overlooked in previous frameworks since for
them the scale factor does not admit convergent generalized
power expansions around the singularity with a finite
number of terms with negative powers, though the baro-
tropic index, the energy density and the pressure do. We
shall focus on them.
The paper is organizes as follows. In Sec. II we solve the

Friedman equations for a FLRW cosmological model in
terms of the barotropic index w. This is shown useful to
postulate several kinds of behavior for w, such as power
expansions at at finite time event or asymptotic expansions
at infinity, which we deal with in Sec. III, and translate
them to the scale factor, the energy density and pressure of
the Universe. Features of the new types of singularities as
well as their geodesic incompleteness and strength are
analyzed, respectively, in Secs. IV and V. We end with
Sec. VI, Conclusions.

II. SINGULARITIES, BAROTROPIC INDEX w, AND
DECELERATION PARAMETER q

We consider spatially flat homogeneous and isotropic
spacetimes with a metric tensor of the form

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ; ð1Þ

where aðtÞ is the scale factor of the Universe in cosmo-
logical time t. Einstein equations for such spacetimes
reduce to the usual Friedman equations,

ρ ¼ 3_a2

a2
; p ¼ −

2ä
a

−
_a2

a2
; ð2Þ

in terms of the energy density ρðtÞ and pressure pðtÞ of the
content of the Universe. The dot stands for derivation with

respect to the time coordinate. We are using geometrized
units for which c ¼ 1 ¼ 8πG.
Defining the time-dependent barotropic index of the

Universe wðtÞ as the ratio between pressure and energy
density allows us to write it in terms of the scale factor and
its derivatives,

w ¼ p
ρ
¼ −

1

3
−
2

3

aä
_a2

:

This formula is valid just for flat models. If curvature is
taken into account, additional terms are necessary.
Tha barotropic index w is closely related to the decel-

eration parameter q,

q ¼ −
aä
_a2

¼ 1þ 3w
2

;

again for flat models. Otherwise the relation between both
parameters becomes more complicated, involving also the
Hubble parameter H ¼ _a=a. This allows direct translation
of our results for the barotropic index to the deceleration
parameter.
We may see this equation the other way round as the

differential equation governing the evolution of the scale
factor for a given barotropic index wðtÞ. In fact, we may
appease its nonlinearity by introducing the time function
x ¼ ln a,

ẍ
_x2

¼ −
3

2
ðwþ 1Þ ¼ −ðqþ 1Þ;

which suggests defining

hðtÞ≔ 3

2
ðwðtÞ þ 1Þ ¼ −qðtÞ − 1

as a correction around the pure cosmological constant case,

wðtÞ ¼ −1þ 2

3
hðtÞ; qðtÞ ¼ −1 − hðtÞ:

This change of variables helps us lower the order of the
differential equation,

h ¼ −
ẍ
_x2

¼
�
1

_x

�
·
⇒ _x ¼

�Z
hdtþ K1

�
−1
;

which can be solved as a quadrature in terms of two free
constants K1, K2,

aðtÞ ¼ exp

�Z �Z
hðtÞdtþ K1

�
−1
dtþ K2

�
:

The constant K2 is part of a global constant factor
aðt0Þ ¼ expðK2Þ,

L. FERNÁNDEZ-JAMBRINA PHYSICAL REVIEW D 90, 064014 (2014)

064014-2



aðtÞ ¼ aðt0Þ exp
�Z

t

t0

�Z
hðtÞdtþ K1

�
−1
dt

�
; ð3Þ

which is fixed by the choice of scale factor equal to one
nowadays. Models with such exponential behavior can be
found in [15].
For fixing K1 we are to resort to one of the Friedman

equations (2), since we have made use of just the ratio
between pressure and energy density,

ρðtÞ ¼ 3_xðtÞ2 ¼ 3

�Z
t

t0

hðtÞdtþ K1

�
−2
;

pðtÞ ¼ −2ẍðtÞ − 3_xðtÞ2 ¼ 3ðhðtÞ − 1Þ
ðR t

t0
hðtÞdtþ K1Þ2

;

allowing us to determine K1 ¼
ffiffiffi
3

p
ρðt0Þ−1=2, unless ρ

becomes infinite at t ¼ t0, in which case K1 ¼ 0.
We focus on the latter case since our interest is the

possibility of formation of singularities. In order to simplify
the notation, a time translation is performed to locate the
singular event at t ¼ 0. The global factor due to K2 is also
omitted.
From the expression for the scale factor,

aðtÞ ¼ exp

�Z
dtR
hðtÞdt

�
;

we learn that there are several qualitative behaviors depend-
ing on the rate of growth of hðtÞ. If we assume that this
function can be expanded in powers of time around t ¼ 0,

hðtÞ ¼ h0tη0 þ h1tη1 þ � � � ; η0 < η1 < � � � ;

we get expressions for the scale factor, the energy density,
and the pressure at lowest order in t,

xðtÞ ¼

8>><
>>:

− η0þ1
η0h0

t−η0 þ � � � if − 1 ≠ η0 ≠ 0

1
h0

R
dt
ln jtj þ � � � if η0 ¼ −1

ln jtj
h0

þ � � � if η0 ¼ 0:

For simplicity, we have considered t > 0. Since our
equations are symmetric under time reversal, the same
expressions are valid exchanging t by −t in order to
consider times before t ¼ 0.
Once we know the scale factor, we can derive expres-

sions at lowest order for the energy density,

ρðtÞ ¼

8>>><
>>>:

3ðη0þ1
h0

Þ2t−2ðη0þ1Þ þ � � � if − 1 ≠ η0 ≠ 0

3
h2
0

1
ln2jtj þ � � � if η0 ¼ −1

3t−2

h2
0

þ � � � if η0 ¼ 0;

and the pressure,

pðtÞ ¼

8>>>>>><
>>>>>>:

3ðη0þ1Þ2
h0

t−η0−2 þ � � � if − 1 ≠ η0 < 0

3
h0

1
tln2jtj þ � � � if η0 ¼ −1

3ðh0−1Þ
h2
0

t−2 þ � � � if η0 ¼ 0

−3ðη0þ1
h0

Þ2t−2ðη0þ1Þ þ � � � if η0 > 0;

and we come across several possibilities:
(i) For η0 < −2, both ρ and p vanish at t ¼ 0whereas w

diverges. These are generalized sudden or type IV
singularities. They also comprise the kind of singu-
larities discussed in [26] and [27], which include
w-singularities, for which all derivatives of the
energy density and pressure are regular, but with
just diverging barotropic index.

(ii) For η0 ¼ −2, ρ vanishes at t ¼ 0 as t2, but p remains
finite, whereas w diverges. They are a special case of
generalized sudden singularities.

(iii) For η0 ∈ ð−2;−1�, ρ vanishes at t ¼ 0, butp diverges.
These are sudden or type II singularities [20].

(iv) For η0 ∈ ð−1; 0Þ, ρ, p and w diverge at t ¼ 0. These
are type III, big freeze of finite scale factor singu-
larities.

(v) For η0 ¼ 0, both ρ and p diverge at t ¼ 0 as t−2 and
w≃ −1þ 2h0=3 is finite, corresponding to models
of the form aðtÞ≃ t1=h0 . These produce classical big
bang/big crunch singularities if h0 is positive and big
rip or type I singularities if h0 is negative.

(vi) For η0 > 0, ρ and p diverge at t ¼ 0 as t−2ðη0þ1Þ and
w tends to the value −1. The possibility of singu-
larity has not been considered before in the previous
frameworks. The reason for this is that it cannot be
embedded in the classifications in [19] and [33],
since the scale factor (exponential of rational func-
tions) does not accept convergent power expansions,
generalized or not, with a finite number of terms
with negative powers, though xðtÞ does. We name
them “grand rip” or “grand bang/crunch,” depending
on the behavior of the scale factor at the singularity.
We analyze these in detail in Sec. IV.

These results are summarized in Table I, where we have
related the first exponent in the generalized power expan-
sion of hðtÞ at the singularity to the values of the scale

TABLE I. Expansions of q and w at ts vs possible singularities.

η0 as ρs ps ws Sing.

ð−∞;−2Þ finite 0 0 ∞ IV or V
−2 finite 0 finite ∞ IV
ð−2;−1� finite 0 ∞ ∞ II
ð−1; 0Þ finite ∞ ∞ ∞ III
0 0=∞ ∞ ∞ finite big crunch/rip
ð0;∞Þ 0=∞ ∞ ∞ −1 grand crunch/rip
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factor, the energy density, the pressure and the barotropic
index and to the type of singularity.

III. BEHAVIOR AT INFINITE TIME

In addition to this analysis of singularities at a finite
coordinate time t, we can take into account what happens at
t ¼ ∞. It is not pointless, since it has been shown [29] that
there are geodesics in FLRW spacetimes which reach t ¼
∞ in a finite proper time. As we have already pointed out,
the analysis for t ¼ −∞ is entirely similar.
For this analysis we consider now asymptotic expres-

sions for hðtÞ for large t. We take then t0 ¼ ∞ in (3).
Asymptotic expressions for the scale factor, the energy
density and pressure take the form

aðtÞ ¼ exp

�
−
Z �Z

∞

t
hðtÞdtþ K1

�
−1
dt

�
;

ρðtÞ ¼ 3

�Z
∞

t
hðtÞdtþ K1

�
−2
;

pðtÞ ¼ 3ðhðtÞ − 1Þ
ðRt∞hðtÞdtþ K1Þ2

and if the constant K1 ¼ 0, ρ and p diverge at infinity.
Of course, these expressions are valid only if the integralZ

∞

t
hðtÞdt ð4Þ

is finite. With this we guarantee that K1 ¼
ffiffiffi
3

p
ρð∞Þ−1=2,

which is useful for keeping control of the asymptotic
behavior of the energy density. Otherwise, we would have
to resort to expressions (3) for large t.
For having a finite integral (4) we need hðtÞ → 0 for

large t, though it is not a sufficient condition. For instance,
hðtÞ ¼ 1=t tends to zero, but its integral diverges for large t.
Combining finiteness of (4) and asymptotic behavior of
hðtÞ leads in principle to several cases:
(1) Finite

R∞
t hðtÞdt: This happens when hðtÞ decreases

faster than 1=t. We consider first this case.
Since hðtÞ tends to zero for large values of time,

the asymptotic value of the barotropic index w is −1:
(a) If hðtÞ > 0 for large values of t, the scale factor

decreases to zero at infinity as a negative
exponential. It would be a sort of “little crunch.”
The asymptotic value w∞ ¼ −1 of the barotropic
index is reached from above in this case. Since
aðtÞ is an integrable function at infinity, this case
is included in the set of directional singularities
described in [29], which are strong singularities,
but only accessible for some observers.

(b) If hðtÞ < 0 for large values of t, the scale factor
blows up at infinity exponentiallly. It is the little
rip [30] or, for some choices of hðtÞ, the little

sibling [32]. The asymptotic value w∞ ¼ −1 of
the barotropic index is reached from below.

If we let K1 ≠ 0, the scale factor, the energy density and the
pressure would be finite at infinity. The case K1 < 0 would
correspond to a pseudorip [31].
(2) Infinite

R
∞
t hðtÞdt: The expression for the scale factor

(3), as well as the ones for the energy density and the
pressure are valid with K1 ≠ 0. In this case both the
energy density and the pressure tend to zero for large
t. The sign of hðtÞ, as in the previous case, determines
if the scale factor diverges or tends to zero. The
asymptotic value of the barotropic index w∞ is −1 if
hðtÞ tends also to zero. This leads to several subcases:
(a) 1=t ≲ jhðtÞj → 0 for large t: The asymptotic

value of the scale factor is w∞ ¼ −1.
If hðtÞ is negative for large t, the scale factor

decreases exponentially as an integrable func-
tion. This means that noncomoving observers
and lightlike geodesics [29] take finite normal
time to reach time to reach t ¼ ∞, which is a
strong “directional singularity.”
If hðtÞ is positive for large t, the scale factor

increases exponentially and so this case is similar
to the “little rip,” but with asymptotically vanish-
ing energy density and pressure and approaching
the asymptotic value w∞ ¼ −1 from above.

(b) hðtÞ ∼ K const. for large t: The asymptotic value
of the scale factor is w∞ ¼ −1þ K and the scale
factor behaves as a power of time, aðtÞ ∼ t1=K,
which is an integrable function for large t if
K ∈ ð−1; 0Þ, corresponding to a strong direc-
tional singularity at t ¼ ∞. Otherwise, the scale
factor diverges for K > 0 or tends to zero for
K ≤ −1, but without singularity.

(c) jhðtÞj → ∞ for large t: The barotropic index
diverges and the scale factor is nonintegrable.
There is no singularity in this case.
If hðtÞ is positive for large t, the scale factor

grows to a finite asymptotic constant value ifR
dt=

R
hðtÞdt converges. Otherwise, the scale

factor diverges to infinity.
If hðtÞ is negative for large t, the scale factor

decreases to a finite asymptotic constant value ifR
dt=

R
hðtÞdt converges. Otherwise, the scale

factor tends to zero.
These results are summarized in Table II, where the

asymptotic behavior of hðtÞ for large t is related to the
asymptotic values of the scale factor, the energy density,
the pressure and the barotropic index and to the type of
singularity or future behavior.

IV. GRAND RIP AND GRAND BANG/CRUNCH
SINGULARITIES

Let us take a look at the new family of singularities for
η0 > 0. First of all, we notice that pressure and energy
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density diverge as a power of coordinate time which is
different from −2, which would be the case of big bang/
crunch and big rip, but it can be as close to such value as
desired if the exponent η0 is small enough.
Second, whereas big bang/crunch and big rip have a

different value of the barotropic index wð0Þ depending on
the equation of state, these singularities have the value
wð0Þ ¼ −1 regardless of the exponent η0. Considering only
the barotropic index, these singularities arise as small
perturbations in coordinate time, wðtÞ ¼ −1þ 2h0tη0=3,
η0 > 0, around the de Sitter value. This does not mean of
course that such perturbations are necessarily singular,
since we have explicitly removed the constant K1 in order
to look for singular behavior.
The sign of the coefficient h0 determines the type of

singularity. Since

aðtÞ≃ e−sgnðh0Þα=tη0 ; α ¼ η0 þ 1

η0jh0j
> 0; t > 0;

we observe two kinds of behavior:
(i) h0 > 0: In this case the exponential in (3) decreases

for t > 0 and the scale factor a tends to zero on
approaching t ¼ 0 (Figure 1 left). This would be a
sort of exponential big bang singularity, or big
crunch if we exchange t for −t. Since h0 is positive,
the barotropic index w remains always under the
phantom divide close to t ¼ 0. That is, the value

w ¼ −1 is approached from below. In order to
pinpoint the differences and similarities with
classical big bang and big crunch singularities, we
may call them grand bang and grand crunch singu-
larities.

(ii) h0 < 0: On the contrary, the exponential increases
for t > 0, and the scale factor a diverges to infinity
on approaching t ¼ 0 (Figure 1 right). We would
have then a sort of exponential big rip at t ¼ 0,
which we can locate in the future by exchanging t for
−t. In this case the barotropic index w is always over
the phantom divide and hence the value w ¼ −1 is
approached from above. As in the previous case, we
may name them grand rip singularities.

We may check the behavior of causal geodesics at
these singularities [13]. We consider parametrized curves
on a FLRW spacetime, γðτÞ ¼ ðtðτÞ; rðτÞ; θðτÞ;ϕðτÞÞ, and
impose a normalization condition on the velocity uðτÞ ¼
γ0ðτÞ, depending on its causal type

Timelike∶ −1
Lightlike∶ 0

Spacelike∶ þ1

9=
; ¼ ε ¼ ∥γ0ðτÞ∥2 ¼ −t02ðτÞ

þ a2ðtðτÞÞðr02ðτÞ þ r2ðτÞðθ02ðτÞ
þ sin2θðτÞϕ02ðτÞÞ; ð5Þ

where the prime denotes derivation with respect to the
parameter τ.
Geodesic curves have zero acceleration, ∇uu≡ 0,

where ∇ is the covariant derivative associated to the
metric (1). However, in this simple case, there is no need
to write down the whole system of second order differ-
ential equations [19]. Taking into account the symmetry of
FLRW spacetimes, it suffices for our analysis to consider
curves on the equatorial hypersurface θ ¼ π=2 with
constant angle ϕ. Homogeneity of the spacetime implies
that the linear momentum of geodesics is a conserved
quantity,

TABLE II. Asymptotic behavior of q and w at t ¼ ∞ vs possible behaviors.

h Signum (h) K1 a∞ ρ∞ p∞ w∞ Behavior

Finite
R∞ hdt þ 0 0 ∞ ∞ −1 ∞

− 0 ∞ ∞ ∞ −1 little rip/sibling
� positive 0 finite finite −1 nonsingular
� negative ∞ finite finite −1 pseudorip

t−1 ≲ hðtÞ → 0 þ any ∞ 0 0 −1 little rip with 0 ρ and p
− any 0 0 0 −1 ∞

K þ any ∞ 0 0 −1þ K nonsingular
− ð−1; 0Þ 0 0 0 −1þ K ∞
− ð−∞;−1� 0 0 0 −1þ K nonsingular

jhðtÞj → ∞, infinite
R
∞ dt=

R
hðtÞdt þ any ∞ 0 0 ∞ nonsingular

jhðtÞj → ∞, infinite
R
∞ dt=

R
hðtÞdt − any 0 0 0 ∞ nonsingular

jhðtÞj → ∞, finite
R
∞ dt=

R
hðtÞdt � any finite 0 0 ∞ nonsingular

t

a

t

a

FIG. 1. Singularities at t ¼ 0 for η0 ¼ 1.
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P ¼ u · ∂r ¼ a2ðtÞr0:
This equation together with the normalization condition

(5) allow us to write the set of differential equations for
geodesic motion as a first order system

r0 ¼ P
a2ðtÞ ; t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−εþ P2

a2ðtÞ

s
;

for the normal parameter τ.
The key equation is the second one, since the first

equation can be integrated once tðτÞ is known.
We analyze know whether causal geodesics are complete

[13], that is, if the parameter τ can be extended from −∞
to ∞.
It this happens, it would take an infinite normal time to

reach the singularity, which would not be accessible along
causal geodesics. This would mean that the worldlines of
nonaccelerated observers traveling along them would not
end up there.
The analysis of causal geodesics in FLRW spacetimes

reduces to just three families of curves:
(i) Lightlike geodesics: ε ¼ 0. These are readily solved,

t0 ¼ P
aðtÞ ⇒ τ ¼ 1

P

Z
t

0

aðtÞdt;

if the scale factor is integrable.
In our case, aðtÞ≃ e−sgnðh0Þα=tη0 , the integral is

convergent for positive h0. This means that lightlike
geodesics meet the singularity at t ¼ 0 in a finite
normal time τ. These geodesics are therefore incom-
plete.
On the contrary, for negative h0, the integral is

divergent and it takes an infinite normal time τ to
reach t ¼ 0. Hence in this case lightlike geodesics
avoid reaching the singularity and are complete in that
direction. This is similar to what it happens for big rip
singularities [19].

(ii) Comoving timelike geodesics: ε ¼ −1, P ¼ 0. In
this case we can take τ ¼ t and in both cases these
geodesics meet the singularity. They are incomplete.

(iii) Radial timelike geodesics: ε ¼ −1, P ≠ 0. For
h0 > 0, we have aðtÞ ≪ 1 and hence

t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

a2ðtÞ

s
≃ P

aðtÞ ;

and so this case is similar to the lightlike one. They
are incomplete.
For h0 < 0, we have aðtÞ ≫ 1 and t0 ≃ 1 and we

arrive at the same conclusions as in the comoving
case. They are also incomplete.

Summarizing, all causal geodesics arrive at t ¼ 0 in
finite normal time and are thereby incomplete except for

lightlike geodesics at the grand rip, which are complete and
do not experience the singularity.

V. STRENGTH OF GRAND RIP AND GRAND
CRUNCH SINGULARITIES

Finally, we can check if the strength of the new
singularities at t ¼ 0 is enough for tidal forces to distort
extended bodies [34]. There are several criteria to deter-
mine this. All of them model the finite object at each point
of a causal geodesic by a volume spanned by three
independent Jacobi fields in the hyperspace which has as
normal vector the velocity of the curve. Tipler’s criterion
[35] considers that a singularity is strong if such volume
tends to zero on approaching the singularity along the
geodesic, whereas Królak’s criterion [36] just demands that
the derivative of the volumen with respect to the normal
parameter must be negative. Hence, there are singularities
which are strong according to Królak’s criterion, but weak
according to Tipler’s, for instance, type III or big freeze
singularities [19]. Another criterion can be found in [37].
Dealing with Jacobi fields is burdensome, since it

involves solving the Jacobi equation along geodesics.
However, characterizations for lightlike geodesics and
necessary and sufficient conditions for timelike geodesics
for fulfillment of both criteria have been established [38] in
terms of integrals of the Ricci and Riemann curvatures of
the metric of the spacetime along these curves:

(i) Lightlike geodesics: According to Tipler’s criterion
a singularity is strong along a lightlike geodesic if
and only if Z

τ

0

dτ0
Z

τ0

0

dτ00Rijuiuj

blows up when the normal parameter τ approaches
the value corresponding to the singularity.
According to Królak’s criterion the singularity is

strong if and only if the integral,Z
τ

0

dτ0Rijuiuj;

blows up when τ approaches the singularity.
In our case, u¼ðt0;r0;θ0;ϕ0Þ¼ ðP=a;P=a2;0;0Þ,

integrals of

Rijuiujdτ ¼ 2P2

�
a02

a4
−
a00

a3

�
adt
P

≃ 2Psgnðh0Þαη0ðη0 þ 1Þ
tη0þ2

esgnðh0Þα=tη0dt

blow up at t ¼ 0 for all h0 > 0 and hence these
singularities are strong according to both criteria. For
h0 < 0 we already know that these geodesics do not
even reach the singularity.
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(ii) Timelike geodesics: For these curves [38] does not
provide a characterization, but different necessary
and sufficient conditions.
Following Tipler’s criterion a singularity is strong

along a timelike geodesic ifZ
τ

0

dτ0
Z

τ0

0

dτ00Rijuiuj

blows up on approaching the singularity.
Following Królak’s criterion, the singularity is

strong if the integralZ
τ

0

dτ0Rijuiuj

blows up on approaching the singularity.
There are also necessary conditions, but we are not

making use of them for our purposes.
For comoving geodesics, u ¼ ð1; 0; 0; 0Þ, integrals

of

Rijuiujdτ ¼ −
3a00

a
dt≃ −

3α2η20
t2η0þ2

dt;

blow up for all η0 > 0 and therefore singularities at
t ¼ 0 are strong.
For radial geodesics, u ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2=a2

p
;�P=a2;

0; 0Þ, the analysis is similar,

Rijuiujdτ ¼
− 3a00

a þ 2P2ða02a4 − a00
a3Þffiffiffiffiffiffiffiffiffiffiffiffi

1þ P2

a2

q

dt≃
(
− 3a00

P þ 2Pða02a3 − a00
a2Þ if a → 0

− 3a00
a þ 2P2ða02a4 − a00

a3Þ if a → ∞:

For h0 > 0, a, a00 tend to zero at t ¼ 0, but the P
term has been shown to be exponentially divergent.

For h0 < 0, the integrals of the a00=a term have
been shown to be divergent, though the P term tends
to zero.
Hence, in both cases radial geodesics meet a strong

singularity at t ¼ 0.
Summarizing, singularities are strong for all geo-

desics except for lightlike geodesics in the h0 < 0
case, which are not even incomplete.

VI. CONCLUDING REMARKS

We have shown that generalized power and asymptotic
expansions of the barotropic index w and the deceleration
parameter q in time coordinate are useful to classify most
singular and nonsingular future behaviors of the Universe. In
addition to well-known scenarios, another type of possible
singular behavior is found for small corrections of w ¼ −1
and q ¼ −1 at a finite time. These singularities share many
features of big rip or big bang/crunch singularities, depend-
ing on the sign of the perturbation, and so we have dubbed
them, respectively, grand rip and grand bang/crunch singu-
larities. They can appear just when the barotropic index and
the deceleration parameter take the value of minus one. Both
energy density and pressure diverge at the singularity as a
negative power of coordinate time, which can be as close as
desired to minus two. The scale factor does not admit power
expansions around the singular value t ¼ 0 with a finite
number of terms with negative powers, not even in the case
of vanishing að0Þ. They are strong singularities, except for
lightlike geodesics, which avoid the grand rip singularity.
Considering the asymptotic expansions at t ¼ ∞, in

addition to little rip and pseudorip behaviors, the only
singularities that are found are directional singularities,
which are experienced just by noncomoving observers and
lightlike geodesics. As a novelty, they are also found
for w∞ ¼ −1.
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