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The theoretical foundations of the phenomenon known as superradiance still continue to attract
considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect
nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact
that superradiance in a quantum field theory context is not the same as superradiance (superfluorescence) in
some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward
normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and
probabilities. We shall argue that the key point underlying the effect is flux conservation (and, in the
presence of dissipation, a controlled amount of flux nonconservation), and that attempting to phrase things
in terms of reflection and transmission probabilities only works in the absence of superradiance. To help
clarify the situation we present a simple exactly solvable toy model exhibiting both superradiance and
damping.
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I. INTRODUCTION

The phenomenon of quantum field theory (QFT)-
induced superradiance has a long and quite tortuous history.
Key high points are the articles by Zeldovich [1] and
Manogue [2], and the more recent work by Richartz et al.
[3,4]. There are close connections with the so-called “Klein
paradox” for relativistic fermions [2,5–7], and also some
significant differences. Specific applications to black hole
physics include the issues explored in Refs. [3,4,8–17]. In
our own research, when dealing with black hole greybody
factors, we have had to deal with superradiance for Kerr,
Kerr-Newman, and Myers-Perry black holes, see [18,19]
and a related conference article [20].
Despite all efforts, the superradiance effect nevertheless

still continues to generate significant confusion. Part of the
confusion is purely linguistic—arising from the fact that
superradiance in a traditional QFT context is not the same
as superradiance (superfluorescence; Dicke superradiance)
in traditional condensed matter contexts [21]. Part of the
confusion arises from the use of utterly traditional and
standard but sometimes awkward normalization conven-
tions [2,22]. Part of the confusion is due to sometimes

neglecting the necessary distinction between fluxes and
probabilities.
Extending and modifying the analysis of Richartz et al.

[3], we shall argue that the key point underlying the effect is
flux conservation (and, in the presence of dissipation, a
controlled amount of flux nonconservation). We shall see
that attempting to phrase things in terms of reflection and
transmission probabilities only works in the absence of
superradiance.
To illustrate and clarify the situation we shall present a

particularly simple and exactly solvable toy model, one
which explicitly exhibits both superradiance and damping.
While our own interest in these issues was strongly
influenced by research into black hole physics, it should
be emphasized that the underlying issues and related
phenomena are much more general.

II. SUPERRADIANCE: BACKGROUND

One key observation is to note that superradiance
never occurs when one is dealing with the Schrödinger
equation, and at a minimum requires something like the
Klein-Gordon equation [18,19]. For instance, in any
axially symmetric stationary background, once one applies
separation of variables ψðx; tÞ ¼ ψðr; θÞe−iωte−imφ to a
neutral scalar field [23,24], the Klein-Gordon equation
becomes
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Δ2ψðr; θÞ ¼ ½Vðr; θÞ − ðω −mϖðr; θÞÞ2�ψðr; θÞ: ð1Þ

It is the trailing term in the effective potential, the
ðω −mϖÞ2 term, that is responsible for the qualitatively
new phenomenon of superradiance, which never occurs in
ordinary nonrelativistic quantum mechanics.
The reason for this is that the Schrödinger equation is

first order in time derivatives, so the effective potential for
Schrödinger-like barrier-penetration problems is generi-
cally of the simple form

UðrÞ ¼ VðrÞ − ω: ð2Þ

In contrast, for problems based on the Klein-Gordon
equation (second order in time derivatives) the qualitative
structure of the effective potential is

UðrÞ ¼ VðrÞ − ðω −mϖÞ2: ð3Þ

Similar phenomena occur for charged particles where
one has a ðω − qΦÞ2 contribution to the effective potential.
We shall soon see that it is when the quantity ω −mϖ (or
more generally, the quantity ω −mϖ − qΦ) changes sign
that the possibility of superradiance arises. (See for instance
the general discussion by Richartz et al. [3,4].) For our
purposes in Refs. [18,19] superradiance is related to the
rotation of the black hole [25,26], but if the scalar field
additionally carries electric charge there is a separate route
to superradiance [2,27–29].
While the Dirac equation, being first order in both space

and time, might seem to completely sidestep this phe-
nomenon, it is a standard result that iterating the Dirac
differential operator twice produces a Klein-Gordon-like
differential equation. In terms of the Dirac matrices we
have

D2 ¼ 2ð∇ − iqAÞ2 þ qFab½γa; γb�: ð4Þ

So, once one factors out the spinorial components, and
concentrates attention on the second-order differential
equation for the amplitude of the Dirac field, even the
Klein paradox for charged relativistic fermions can be put
into a closely related (though distinct) framework [2]. It is
the trailing ðω −mϖ − qΦÞ2 term in the effective potential,
and more specifically the change in sign of ω −mϖ − qΦ,
that is now the harbinger of the so-called “Klein paradox.”
(Which, of course, is not really a paradox [2,5–7].)

III. SUPERRADIANCE: FLUXES

We shall argue that in the long run it is best to phrase
things in terms of relative fluxes rather than probabilities.
For a unit incoming flux, consider the equation

Freflected þ Ftransmitted ¼ 1 − Fdissipated: ð5Þ

As long as there is some flux conservation law, as for the
Klein-Gordon equation, we can always say this, with these
signs. [Dissipation can be dealt with by giving the potential
Vðr; θÞ an imaginary contribution, see the discussion
below.] In some cases this general result simplifies, and
we can reduce this statement about fluxes to a statement
about probabilities.
For example:
(1) If there is no dissipation (Fdissipated ¼ 0), and if the

transmitted flux is non-negative (Ftransmitted ≥ 0),
then we can simply set R ← Freflected and
T ← Ftransmitted, and reinterpret these (relative)
fluxes as probabilities with

Rþ T ¼ 1: ð6Þ

(2) If there is some dissipation (Fdissipated > 0), and if the
transmitted flux is non-negative (Ftransmitted ≥ 0),
then we can set R ← Freflected and T ← Ftransmitted
and PD ← Fdissipated, and then reinterpret these
(relative) fluxes as probabilities with PD now being
the probability of decay:

Rþ T þ PD ¼ 1: ð7Þ

(3) In contrast, if Ftransmitted < 0, then we cannot phrase
things in terms of probabilities that add up to 1. We
have to work in terms of fluxes. In particular in this
superradiant regime we have

Ftransmitted ¼ −jtj2 ≤ 0: ð8Þ

Note the sign. It is the possibility of negative transmitted
flux that lies at the heart of superradiance; in this situation:

Freflected ¼ 1 − Ftransmitted − Fdissipated

¼ 1þ jFtransmittedj − Fdissipated: ð9Þ

The reflected flux can then easily become over unity.

IV. SUPERRADIANCE: TOY MODEL

To see how this all works in detail, it is best to choose a
highly idealized but exactly solvable model. Working in
1þ 1 dimensions, consider the partial differential equation

½−ð∂t − iϖðxÞÞ2 þ c2∂2
x − VðxÞ�ψðt; xÞ ¼ 0: ð10Þ

For simplicity we are working with a massless particle (e.g.
photon), as this cuts to the heart of the matter. Adding
particle rest masses is not particularly difficult (see e.g.
Manogue [2]), but adds technical complications that are not
central to the issues we wish to discuss.
Taking ψðt; xÞ ¼ e−iωtψðxÞ this is now equivalent to

considering the ordinary differential equation (ODE)
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c2∂2
xψðxÞ ¼ ½VðxÞ − ðω −ϖðxÞÞ2�ψðxÞ: ð11Þ

Setting ϖðxÞ → 0 then yields a “Schrödinger-like”
equation, with no possibility of superradiance, whereas
ϖðxÞ ≠ 0 is essential for superradiance.
Let us now brutally simplify the problem (in the interests

of making it analytically solvable), by setting VðxÞ → 0
and taking

ϖðxÞ ¼ ΩsignðxÞ: ð12Þ

This toy model is a tractable stand-in for generic situations
where ϖðxÞ satisfies boundary conditions ϖð�∞Þ ¼ �Ω.
We also take units where c → 1. Then we are interested in

∂2
xψðxÞ ¼ −ðω −ΩsignðxÞÞ2ψðxÞ: ð13Þ

We shall soon see that for jωj > jΩj we obtain ordinary
scattering, with no superradiance; whereas for jωj < jΩjwe
obtain superradiance, plus spontaneous emission.
Now for x ≠ 0 this ODE has solutions of the form

ψðt; xÞ ¼ e−iðωt−k�xÞ; k2� ¼ ðω ∓ ΩÞ2: ð14Þ

But which root should we take? As is standard, let us
consider the group velocity

vg ¼
∂ω
∂k� ¼ 1

∂k�=∂ω ¼ 1

ðω ∓ ΩÞ=k�
¼ k�

ω ∓ Ω
: ð15Þ

So for the mode with positive group velocity we must have
signðk�Þ ¼ signðω ∓ ΩÞ, whence

k� ¼ signðω ∓ ΩÞjω ∓ Ωj ¼ ω ∓ Ω; vg ¼ þ1:

ð16Þ

This is valid for all ω, positive or negative. Furthermore

kþk− ¼ ω2 −Ω2; signðkþk−Þ ¼ signðω2 − Ω2Þ:
ð17Þ

Note in contrast that for the phase velocity

v�p ¼ ω

ω ∓ Ω
: ð18Þ

This easily flips sign in some regions, in fact:

signðv�p Þ ¼ signðωÞsignðω ∓ ΩÞ: ð19Þ

Now consider something incoming from the left, and for
the time being don’t worry about the normalization.
Matching across the origin we have

eik−x þ re−ik−x ↔ teikþx: ð20Þ

From continuity of the wave function and its derivative we
have

1þ r ¼ t; k−ð1 − rÞ ¼ kþt: ð21Þ
Therefore

k−ð1 − rÞ ¼ kþð1þ rÞ; ð22Þ
implying

r ¼ −
kþ − k−
kþ þ k−

¼ −
ðω − ΩÞ − ðωþ ΩÞ
ðω −ΩÞ þ ðωþ ΩÞ ¼ þΩ

ω
: ð23Þ

This is valid for allω, and normalization independent (since
the reflected mode automatically has the same normaliza-
tion as the incoming mode). The reflected flux (more
precisely, the ratio of reflected to incident flux) is thus

Freflected ¼ jrj2 ¼ Ω2

ω2
: ð24Þ

However, if we want to fully understand transmitted flux,
we need to normalize properly.
Now consider something incoming from the left, and

normalize relativistically:

eik−xffiffiffiffiffiffiffiffiffiffi
2jk−j

p : ð25Þ

The
ffiffiffi
2

p
is standard for the relativistic Klein-Gordon

equation, to make the flux simple. One must remember
to include both ψ�ð−i∂xÞψ and its hermitian conjugate
when calculating the flux. (For odd historical reasons, for
the nonrelativistic Schrödinger equation people do not put
the

ffiffiffi
2

p
in the normalization of the modes, they instead put

an explicit 1
2
in the definition of the current.) With this

normalization we now have (note that this new amplitude
“t” will be different from the previous one)

eik−xffiffiffiffiffiffiffiffiffiffi
2jk−j

p þ r
e−ik−xffiffiffiffiffiffiffiffiffiffi
2jk−j

p ↔ t
eikþxffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p : ð26Þ

From continuity of wave function and derivative we have

1þ rffiffiffiffiffiffiffiffiffiffi
2jk−j

p ¼ tffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p ;
k−ffiffiffiffiffiffiffiffiffiffi
2jk−j

p ð1− rÞ¼ kþffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p t: ð27Þ

So we still have

k−ð1 − rÞ ¼ kþð1þ rÞ; ð28Þ
implying

r ¼ −
kþ − k−
kþ þ k−

¼ −
ðω − ΩÞ − ðωþ ΩÞ
ðω −ΩÞ þ ðωþ ΩÞ ¼ þΩ

ω
: ð29Þ
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Consequently, as before,

Freflected ¼ jrj2 ¼ Ω2

ω2
: ð30Þ

But now, for the transmission amplitude we have

t ¼
ffiffiffiffiffiffiffiffi
jkþj
jk−j

s �
1þΩ

ω

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jω −Ωj
jωþ Ωj

s �
ωþ Ω
ω

�
: ð31Þ

— If jωj > jΩj (the usual situation), then we see

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω −Ω
ωþ Ω

r �
ωþΩ
ω

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − Ω2

p

ω
¼ signðωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Ω2

ω2

s
;

ð32Þ

and so

jtj2 ¼ 1 −
Ω2

ω2
≥ 0; Freflected þ jtj2 ¼ 1: ð33Þ

So in the usual situation we can meaningfully write

Ftransmitted ¼ jtj2 ≥ 0: ð34Þ

— However, if jωj < jΩj (the superradiant case), then

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ðω − ΩÞ
ðωþΩÞ

s �
ωþ Ω
ω

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − ω2

p

ω

¼ signðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

ω2
− 1

s
; ð35Þ

and so in this situation

jtj2 ¼ Ω2

ω2
− 1; Freflected − jtj2 ¼ 1: ð36Þ

Note the sign flip in the flux conservation law. In the
superradiant situation we must write

Ftransmitted ¼ −jtj2 ≤ 0: ð37Þ

To get a deeper understanding of where the minus sign
came from, note that the flux for a “properly normalized”
state is

ðfluxÞ ¼
�

eik�xffiffiffiffiffiffiffiffiffiffiffi
2jk�j

p ���
−i∂x

�
eik�xffiffiffiffiffiffiffiffiffiffiffi
2jk�j

p ��
þ ðconjugateÞ:

ð38Þ

But then

ðfluxÞ ¼ k�
jk�j

¼ signðk�Þ ¼ signðω ∓ ΩÞ: ð39Þ

So the flux may not be in the direction one naively expects.
We can summarize the situation by saying that in both cases

Ftransmitted ¼ signðkþk−Þjtj2 ¼ 1 −
Ω2

ω2
: ð40Þ

This formula is now equally valid for both normal and
superradiant regimes, and for particles incoming from
either the left or the right, and easily leads one to verify
that in this situation (that is, with no dissipation)

Freflected þ Ftransmitted ¼ 1: ð41Þ
We could also write this more explicitly as

jrj2 þ signðkþk−Þjtj2 ¼ 1: ð42Þ
This is manifestly not conservation of probability; but is the
perhaps more interesting statement that we have conserva-
tion of flux. In particular, we see that superradiance can be
adequately understood using first quantization.
Warning: Because of the way some authors (specifically

Manogue [2], and Richartz et al. [3,4], and even textbook
presentations such as Messiah [22]) choose to normalize
the transmission amplitude, their key result is instead

jrj2 þ k−
kþ

jtj2 ¼ 1: ð43Þ

This is not physically different, but is perhaps a little less
transparent.

V. SPONTANEOUS EMISSION

To understand spontaneous emission we need to bring in
some foundational ideas from second quantization. The key
point in second quantization is to understand the vacuum
state; choosing a vacuum state amounts to (what is called)
choosing the division between “positive and negative
frequencies,” an issue which is now just a little more subtle
than one might at first expect. Recall that k� ¼ ω ∓ Ω, and
that the unit flux modes are singular at k� ¼ 0 (that is at
ω ¼ Ω in the right-hand half line, and at ω ¼ −Ω in the
left-hand half line).
This observation now leads us, on the two half lines, to

identify “particle modes” as

expð−i½ωt− ½ω∓Ω�xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jω∓Ωjp ; ω>�Ω; ðfluxÞ¼þ1; ð44Þ

expð−i½ωtþ½ω∓Ω�xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jω∓Ωjp ; ω>�Ω; ðfluxÞ¼−1; ð45Þ
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and to identify “vacuum modes” as

expð−i½ωt− ½ω∓Ω�xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jω∓Ωjp ; ω<�Ω; ðfluxÞ¼−1; ð46Þ

expð−i½ωtþ½ω∓Ω�xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jω∓Ωjp ; ω<�Ω; ðfluxÞ¼þ1: ð47Þ

Once these modes have been identified, the rest of the
analysis is relatively prosaic.
— For ω > jΩj we are dealing with particle modes on

both sides of the barrier; the usual scattering rules apply,
regardless of the direction the particle is initially moving in.
— For ω < −jΩj we are dealing with vacuum modes on

both sides of the barrier; this situation is not physically
relevant for our current purposes, regardless of which
direction the particle is initially moving in.
— For ω ∈ ð−jΩj;þjΩjÞ, then on one side of the barrier

you are dealing with particle modes and on the other side
with vacuummodes, this is the tricky situation. Suppose for
definiteness Ω > 0 is positive, and ω ∈ ð−Ω;þΩÞ, then in
the left-hand half-space we are dealing with particle modes,
and in the right-hand half-space we are dealing with
vacuum modes.
For particles incident from the left we have already done

the calculation and found superradiance. In the right-hand
half space we have a right-moving vacuum mode carrying a
leftward flux. But what happens if a left-moving vacuum
mode comes from the right and hits the barrier? It may
partially reflect to a right-moving vacuum mode, but
partially transmit to form a left-moving particle mode in
the left-hand half-space. This is spontaneous emission. Let
us do the relevant calculation. We now have

t
expð−i½ωtþ k−x�Þffiffiffiffiffiffiffiffiffiffi

2jk−j
p ↔

expð−i½ωtþ kþx�Þffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p
þ r

expð−i½ωt − kþx�Þffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p : ð48Þ

Continuity of wave function and derivatives now implies

tffiffiffiffiffiffiffiffiffiffi
2jk−j

p ¼ 1þ rffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p ;
tk−ffiffiffiffiffiffiffiffiffiffi
2jk−j

p ¼ ð1 − rÞkþffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p : ð49Þ

Note several strategic sign flips compared to the previous
calculation. We now have

ð1þ rÞk− ¼ ð1 − rÞkþ; ð50Þ

so that

r ¼ kþ − k−
kþ þ k−

¼ ðω −ΩÞ − ðωþ ΩÞ
ðω − ΩÞ þ ðωþΩÞ ¼ −

Ω
ω
: ð51Þ

Similarly

t ¼
ffiffiffiffiffiffiffiffi
jk−j
jkþj

s �
1 −

Ω
ω

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ ω

Ω − ω

r �
ω −Ω
ω

�
ð52Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − ω2

p

ω
¼ signðωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

ω2
− 1

s
: ð53Þ

Since the amplitude t is associated with a left-moving
particle in the left half line, the flux in the left-hand half
line is

ðfluxÞ ¼ −jtj2 ¼ −
�
Ω2

ω2
− 1

�
< 0: ð54Þ

The flux is leftward. Particles are being emitted by the
barrier and escaping to the left. (Vacuum modes from the
right are escaping from the barrier and moving to the left,
the region in which they become particle modes.)
Unfortunately this flux is dimensionless, it is a relative
flux—the ratio of the flux of left-moving particle modes on
the left half line to the flux of left-moving vacuum modes
on the right half line.
To convert this to an absolute flux we note that the “unit

flux” condition corresponds to

d2N
dtdω

¼ 1: ð55Þ

That is, one particle per unit time per unit frequency. Then
the absolute spontaneous emission rate of left-moving
particles is

d2N
dtdω

¼
�
Ω2

ω2
− 1

�
; ω2 ≤ Ω2: ð56Þ

Note spontaneous emission occurs only within the super-
radiant regime.

VI. CONSISTENCY CHECK

Note that for the specific toy model we have considered,
the amplitudes t and r are infinite at ω ¼ 0. An observation
along these lines is hidden in Manogue’s article [2], buried
in appendix 1, near the top of page 278.
Ultimately this infinity is a kinematic singularity due to

the fact that kþðω ¼ 0Þ ¼ −k−ðω ¼ 0Þ. More generally we
could consider a “shifted” effective potential by taking

ϖðxÞ ¼ Ω̄þ ΔsignðxÞ: ð57Þ
Then whenever one encounters�Ω it would be replaced by
Ω� ¼ Ω̄� Δ. It is easy to see that one now has

k� ¼ ω ∓ Ω� ¼ ðω − Ω̄Þ � Δ; ð58Þ
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and that now kþk− ¼ ðω − Ω̄Þ2 − Δ2. Redoing the
remainder of the relevant calculations one now finds

jrj2 ¼ Δ2

ðω − Ω̄Þ2 ; jtj2 ¼
����1 − Δ2

ðω − Ω̄Þ2
����: ð59Þ

Note one still has

jrj2 þ signðkþk−Þjtj2 ¼ 1: ð60Þ
The kinematic infinity has now moved, from ω ¼ 0 to
ω ¼ Ω̄, but the basic form of the flux conservation law is
unaltered. The stability of the flux conservation law under
the introduction of and shifts in Ω̄ is encouraging.
Indeed, the basic form of the flux conservation law

cannot depend on the particular toy model, which was
adopted only for simplicity of presentation. As long as
well-defined asymptotic states exist in the infinite left and
infinite right (so ϖð�∞Þ must be well defined and finite),
then the form of the relevant second-order ODE guarantees
the existence of a transfer matrix [30,31], and also permits
(with a suitable change in normalization) a Wronskian
analysis along the lines of Richartz et al. [3].

VII. ADDING DISSIPATION

We had earlier alluded to the fact that dissipation can be
modeled by adding an imaginary contribution to the
potential. Let us now see how this works in practice. Set
VðxÞ → iΓδðxÞ so that we are now interested in the ODE

∂2
xψðxÞ ¼ ½iΓδðxÞ − ðω −ΩsignðxÞÞ2�ψðxÞ: ð61Þ

For an imaginary delta-function potential the scattering
calculation is an easy modification of the quite standard
calculation for a real delta-function potential. The key point
is that while the wave function is still continuous at the
origin, there will now be a discontinuity in the derivative at
the origin:

∂xψð0þÞ − ∂xψð0−Þ ¼ iΓψð0Þ: ð62Þ

A. Dissipation in Schrödinger-like situations

If we (temporarily) set Ω → 0, thereby (temporarily)
banishing even the possibility of superradiance, we will be
in a Schrödinger-like situation with damping. Then match-
ing wave functions at the origin

expðþikxÞ þ r expð−ikxÞ ↔ t expðþikxÞ; ð63Þ
leads to

1þ r ¼ t; ½kð1 − rÞ − kt� ¼ Γt; ð64Þ
or equivalently (since now k� ¼ k ¼ ω under the current
hypotheses),

1þ r ¼ t; ½ωð1 − rÞ − ωt� ¼ Γt: ð65Þ

Thence 2ωð1 − tÞ ¼ Γt and we have

t ¼ ω

ωþ 1
2
Γ
: ð66Þ

Note that ω is intrinsically positive, and under normal
conditions Γ ≥ 0. The transmission probability is

T ¼ jtj2 ¼ ω2

ðωþ 1
2
ΓÞ2 ∈ ½0; 1�: ð67Þ

For the reflection amplitude we now obtain

r ¼ t − 1 ¼ −
1
2
Γ

ωþ 1
2
Γ
: ð68Þ

Then for the reflection probability we have

R ¼ jrj2 ¼
1
4
Γ2

ðωþ 1
2
ΓÞ2 ∈ ½0; 1�: ð69Þ

But now T þ R ≠ 1 and in fact

T þ R ¼ 1 −
ωΓ

ðωþ 1
2
ΓÞ2 : ð70Þ

So the decay probability is identified as

PD ¼ ωΓ
ðωþ 1

2
ΓÞ2 ∈ ½0; 1�: ð71Þ

This can be viewed as the probability of absorption by the
barrier. Note that

PD ¼ ΓT
ω

: ð72Þ

Dissipation can actually be negative (antidissipation) when-
ever Γ < 0 (this occurs in nonstandard situations where the
imaginary part of the potential is negative). This observa-
tion is compatible with the results of the Wronskian-based
analysis of Richartz et al. [3].

B. Dissipation and superradiance

Now let us turn Ω back on, taking Ω ≠ 0, and see how
dissipation interacts with superradiance, and the mere
possibility of having superradiance. From what we have
previously seen, it is now important to focus on fluxes, not
probabilities. In first-quantized formalism with the unit
flux normalization we wish to match the wave functions
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eik−xffiffiffiffiffiffiffiffiffiffi
2jk−j

p þ r
e−ik−xffiffiffiffiffiffiffiffiffiffi
2jk−j

p ↔ t
eikþxffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p : ð73Þ

From continuity of the wave function, and discontinuity of
the derivative, we have

1þ rffiffiffiffiffiffiffiffiffiffi
2jk−j

p ¼ tffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p ; ð74Þ

and

k−ffiffiffiffiffiffiffiffiffiffi
2jk−j

p ð1 − rÞ − kþffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p t ¼ Γffiffiffiffiffiffiffiffiffiffiffi
2jkþj

p t: ð75Þ

So we now have

k−ð1 − rÞ − kþð1þ rÞ ¼ Γð1þ rÞ; ð76Þ

implying

r ¼ −
kþ − k− þ Γ
kþ þ k− þ Γ

¼ −
ðω −ΩÞ − ðωþ ΩÞ þ Γ
ðω − ΩÞ þ ðωþΩÞ þ Γ

: ð77Þ

Consequently,

r ¼ Ω − 1
2
Γ

ωþ 1
2
Γ
; Freflected ¼ jrj2 ¼ ðΩ − 1

2
ΓÞ2

ðωþ 1
2
ΓÞ2 : ð78Þ

But now for the transmission amplitude we have

t ¼
ffiffiffiffiffiffiffiffi
jkþj
jk−j

s �
1þ Ω − 1

2
Γ

ωþ 1
2
Γ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jω − Ωj
jωþΩj

s �
ωþ Ω
ωþ 1

2
Γ

�
:

ð79Þ

— If jωj > jΩj (the nonsuperradiant situation), then

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω −Ω
ωþ Ω

r �
ωþ Ω
ωþ 1

2
Γ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −Ω2

p

ωþ 1
2
Γ

; ð80Þ

and so

jtj2 ¼ ω2 − Ω2

ðωþ 1
2
ΓÞ2 ≥ 0: ð81Þ

In this nonsuperradiant case we can meaningfully write

Ftransmitted ¼ jtj2 ¼ ω2 −Ω2

ðωþ 1
2
ΓÞ2 ≥ 0: ð82Þ

But now, due to dissipation, Ftransmitted þ Freflected ≠ 1, and
we in fact have

Fdissipated ¼ 1 − Ftransmitted − Freflected

¼ 1 −
ω2 −Ω2

ðωþ 1
2
ΓÞ2 −

ðΩ − 1
2
ΓÞ2

ðωþ 1
2
ΓÞ2

¼ ðΩþ ωÞΓ
ðωþ 1

2
ΓÞ2 : ð83Þ

— In contrast, in the superradiant case, jωj < jΩj, a few
key signs flip. We now have

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ðω − ΩÞ
ðωþΩÞ

s �
ωþΩ
ωþ 1

2
Γ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − ω2

p

ωþ 1
2
Γ

; ð84Þ

and so in this situation

jtj2 ¼ Ω2 − ω2

ðωþ 1
2
ΓÞ2 ≥ 0: ð85Þ

In this superradiant situation we must write

Ftransmitted ¼ −jtj2 ≤ 0: ð86Þ

— In either situation, be it superradiant or normal, we
have

Ftransmitted ¼
ω2 −Ω2

ðωþ 1
2
ΓÞ2 ¼ signðkþk−Þjtj2: ð87Þ

The transmitted flux can be either positive or negative.
Furthermore, in either situation, be it superradiant or
normal, we now see

Fdissipated ¼
ðΩþ ωÞΓ
ðωþ 1

2
ΓÞ2 : ð88Þ

Note that

Fdissipated ¼
ΓFtransmitted

ω − Ω
: ð89Þ

So again dissipation can actually be negative (antidissipa-
tion), if Γ < 0. (That is, if the imaginary part of the
potential is negative.) This is again compatible with the
Wronskian-based analysis of Richartz et al. [3].
Finally we have

Ftransmitted þ Freflected þ Fdissipated ¼ 1: ð90Þ

This formula is now equally valid for both normal and
superradiant regimes, and for particles incoming from
either the left or the right. This is manifestly not con-
servation of probability; but is the perhaps more interesting
statement that we have conservation of flux. In particular,
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we see that superradiance can be adequately understood
using first quantization.

C. Dissipation and spontaneous emission

Spontaneous emission must again be analyzed using
some of the foundational ideas from second quantization.
Fortunately most of the calculation can be easily carried
over (with minor modifications) from the dissipation-free
case. Then absolute spontaneous emission rate of particles
per unit time per unit frequency is

d2N
dtdω

¼ Ω2 − ω2

ðωþ 1
2
ΓÞ2 ; ω2 ≤ Ω2: ð91Þ

Note spontaneous emission occurs only within the
superradiant regime.

VIII. DISCUSSION

So in all relevant situations (without dissipation), with
the normalizations of this article we have

Freflected þ Ftransmitted ¼ 1; ð92Þ

which we can also cast as

jrj2 þ signðkþk−Þjtj2 ¼ 1: ð93Þ
This is a very clean and convincing result, which clearly
summarizes many of the most important situations. In the
presence of dissipation we must instead write

Freflected þ Ftransmitted ¼ 1 − Fdissipated: ð94Þ

For our particular toy model

∂2
xψðxÞ ¼ ½iΓδðxÞ − ðω −ΩsignðxÞÞ2�ψðxÞ; ð95Þ

we were able to explicitly evaluate

Freflected ¼
ðΩ − 1

2
ΓÞ2

ðωþ 1
2
ΓÞ2 ; Ftransmitted ¼

ω2 −Ω2

ðωþ 1
2
ΓÞ2 ;

ð96Þ
and

Fdissipated ¼
ðΩþ ωÞΓ
ðωþ 1

2
ΓÞ2 : ð97Þ

If the last two quantities are non-negative (the first is
automatically so), then these fluxes can be reinterpreted
in terms of probabilities: R, T, and PD, for reflection,
transmission, and decay, respectively. That is

Rþ T þ PD ¼ 1: ð98Þ
However, if either of the last two quantities is negative
(either due to superradiance or antidamping), then the
formulation in terms of fluxes is more fundamental, and
discussion of probabilities should be completely avoided.
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