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The angular dependence of the gravitational radiation emitted in compact binary mergers and
gravitational collapse is usually separated using spin-weighted spherical harmonics sYlm of spin weight
s, that reduce to the ordinary spherical harmonics Ylm when s ¼ 0. Teukolsky first showed that the
perturbations of the Kerr black hole that may be produced as a result of these events are separable in terms
of a different set of angular functions: the spin-weighted spheroidal harmonics sSlmn, where n denotes the
“overtone index” of the corresponding Kerr quasinormal mode frequency ωlmn. In this paper we compute
the complex-valued scalar products of the sSlmn’s with the sYlm’s (“spherical-spheroidal mixing
coefficients”) and with themselves (“spheroidal-spheroidal mixing coefficients”) as functions of the
dimensionless Kerr parameter j. Tables of these coefficients and analytical fits of their dependence on j are
available online for use in gravitational-wave source modeling and in other applications of black-hole
perturbation theory.
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I. INTRODUCTION

Various angular functions, including scalar, vector, and
tensor spherical harmonics, are used to perform separation of
variables in the general relativity literature. These functions
include the Regge-Wheeler harmonics, the symmetric, trace-
free tensors of Sachs and Pirani, the Newman-Penrose spin-
weighted spherical harmonics, and the Mathews-Zerilli
Clebsch-Gordan-coupled harmonics. An excellent review
article by Thorne [1] lists all of these functions and discusses
their mutual relations.
The spin-weighted spherical harmonics sYlm [2,3] are

most commonly used to separate the angular dependence of
the gravitational radiation emitted as a result of compact
binary mergers and gravitational collapse in numerical
relativity simulations. Unfortunately, the sYlm’s are not ideal
to study the perturbations of the rotating Kerr black holes of
massM and dimensionless angularmomentum j≡ a=M that
may be formed as a result of compact binary mergers or
gravitational collapse (here and below a is the usual Kerr
parameter, and we use geometrical units: G ¼ c ¼ 1).
Teukolsky [4,5] first realized that the radiation produced

by perturbed Kerr black holes is most conveniently studied
using a different set of angular functions: the spin-weighted
spheroidal harmonics sSlmðaωÞ (henceforth SWSHs). The
differential equation defining these functions is a general-
ized spheroidal wave equation [6], and it results from
separating variables in the partial differential equations
describing the propagation of a spin-s field in a rotating
(Kerr) black hole background. If we use the Kinnersley
tetrad and Boyer-Lindquist coordinates ðt; r; θ;ϕÞ, we
assume a time dependence of the form e−iωt and a ϕ

dependence of the form eimϕ, the SWSHs satisfy the
equation [4,7]

½ð1 − x2ÞsSlm;x�;x

þ
"
ðcxÞ2 − 2csxþ sþ sAlm −

ðmþ sxÞ2
1 − x2

#
sSlm ¼ 0;

ð1Þ

where x≡ cos θ, c≡ aω and θ is the Boyer-Lindquist
polar angle. The angular separation constant sAlm is, in
general, complex. The spin-weight parameter takes on the
values s ¼ 0;�1=2;�1;�2 for massless scalar, spinor,
vector and tensor perturbations, respectively.
When s ¼ 0 the SWSHs reduce to the ordinary (scalar)

spheroidal wave functions [8]. In the limit c → 0 (corre-
sponding to the Schwarzschild limit) the spin-weighted
spheroidal harmonics reduce to spin-weighted spherical
harmonics sYlm [2,3], for which

sAlm ¼ lðlþ 1Þ − sðsþ 1Þ ð2Þ

and

Z
−2Ylm

� − 2Yl0m0dΩ ¼ δl;l0δm;m0 : ð3Þ

The ordinary spherical harmonics are spin-weighted spheri-
cal harmonics with s ¼ 0.
The gravitational waves emitted by newly formed Kerr

black holes can be decomposed as a superposition of
complex quasinormal modes (QNMs) with frequencies
ωlmn, where the “overtone index” n measures the magni-
tude of the imaginary part of the frequencies: low-n modes
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damp most slowly, and therefore they dominate the
response of the black hole [9–11]. Each QNM can be
associated to a SWSH angular eigenfunction sSlmn ≡
sSlmðaωlmnÞ labeled by the corresponding overtone index
n [6,7,12]. Due to their importance in black-hole physics,
the properties of SWSHs have been investigated in some
depth [4,5,13–16]. Press and Teukolsky [5] provided a
polynomial fit in c of the eigenvalues sAlm, which is valid
up to c ∼ 3. A formal perturbation expansion in powers
of c was carried out by Fackerell and Crossman [14]
(see also [15], where some typos were corrected). Analytic
expansions for small and large values of c were discussed
and compared to numerical results in [16].
In practice, only the first few QNMs contribute notice-

ably to the ringdown radiation from a newly formed Kerr
black hole. These modes were first investigated in detail by
Leaver and Onozawa [7,17]. Higher-order modes may have
some relevance in the context of black-hole thermodynam-
ics and quantum gravity (see [18–25]), but they will not be
discussed in this paper.
The main motivation for the present study is that the use

of spherical harmonics (rather than SWSHs) induces
significant mode mixing in numerical relativity simulations
of black-hole binary mergers. This mixing is particularly
evident in the ðl ¼ 3; m ¼ 2Þ spin-weighted spherical
harmonic mode, where (as first noticed in [26]) the ring-
down radiation is a superposition of the ω320 and ω220

modes. Subsequent studies confirmed this finding [27–31],
and it was recently proved beyond any reasonable doubt
that the observed QNM mixing occurs because spherical
harmonics contain a superposition of several spheroidal
harmonics [32–34].
Mathematically, mode mixing occurs because, to leading

order in perturbation theory, SWSHs with angular indices
ðl; mÞ are a superposition of spherical harmonics with the
same value of m but different values of l0 ≠ l. As shown
by Press and Teukolsky [5],

sSlm ¼ sYlmþ
X
l0≠l

hsl0mjh1jslmi
lðlþ 1Þ−l0ðl0 þ 1Þ sYl0mþ�� � ; ð4Þ

where the specific form of hsl0mjh1jslmi is not important
for the moment (cf. Appendix for details).
A systematic investigation of the mixing between

spherical and spheroidal harmonics is needed to construct
semianalytical models of the transition from merger to
ringdown, both in the extreme mass-ratio limit [34,35] and
for comparable-mass binaries [36,37]. Furthermore, a
better understanding of this mixing can help in selecting
the optimal frame to analyze generic precessing black-hole
binary mergers [38–42]. More in general, a “dictionary”
relating spherical and spheroidal modes is useful in all
applications of black-hole perturbation theory.
Quite surprisingly (and to the best of our knowledge) no

systematic investigation of mode mixing is available in the

literature. The main goal of this paper is to fill this gap by
computing the complex universal functions μmll0n0 ðjÞ of
the dimensionless black-hole spin j≡ a=M ∈ ½0; 1�
defined by the following inner product:

Z
sS�l0m0n0sYlmdΩ ¼ μmll0n0 ðjÞδm;m0 ; ð5Þ

where s ¼ −2, −1 or 0, and the Kronecker symbol δm;m0

comes from the eimϕ dependence of the harmonics.
Another goal of this paper is to produce a catalog of the

following quantities, that are of interest for ringdown data
analysis in the context of gravitational-wave detection
[12,43]:

Z
sSl0m0n0

�−2SlmndΩ ¼ αmll0nn0 ðjÞδm;m0 : ð6Þ

The functions αmll0nn0 ðjÞ were evaluated numerically for
specific values of the indices and for a single value of the
spin parameter (j ¼ 0.98 in Table I, and j ¼ 0.8 in Tables II
and III) in [16]. Here we extend that calculation to all
dominant modes and to all values of j ∈ ½0; 1�. Our
numerical results for both sets of coefficients μmll0n0 ðjÞ
(henceforth the spherical-spheroidal mixing coefficients)
and αmll0nn0 ðjÞ (henceforth the spheroidal-spheroidal
mixing coefficients) are available online [44].
In Fig. 1 we illustrate the importance of going beyond the

Press-Teukolsky perturbation-theory calculation in comput-
ing the mixing coefficients. There we consider the funda-
mental (n0 ¼ 0) QNMwithm ¼ 2 and we plot μmll0n0 ðjÞ for
l ¼ 2; 3, l0 ¼ 2; 3, i.e. for the dominant multipoles in
binary black-hole mergers. The plot compares: (1) the
numerical calculation of the coefficients μ2ll00 reported in
this paper, (2) a power-law fit to the numerical results
[cf. Eq. (11) below], and (3) the approximate value of these
coefficients predicted by the Press-Teukolsky expansion of
Eq. (4). Figure 1 shows that the Press-Teukolsky approxi-
mation is adequate for small spins, but it is not accurate
enough for fast rotating black holes, with relative errors1 of
order ∼30% when j → 1 even for n0 ¼ 0.
The outline of the paper is as follows. We first recall

some properties of the SWSHs (Sec. II). Then we show the
results of our numerical calculation of the mixing coef-
ficients and we give analytical fits of the j dependence of
the cofficients (Sec. III). In the conclusions we point out

1Analyzing the analytical predictions for different μmll0n0 at the
maximum spin value considered here of 0.999, we find that (i) the
absolute deviations form the analytical prediction in the mixing
coefficients for counterrotating modes (m < 0) when l ¼ l0 can
be of order unity for large n0, and are consistently in excess of 0.5
for n0 ≥ 3, and (ii) the relative deviations for m > 0 and l ≠ l0
are most of the time beyond 10%, e.g. they are between 27% and
29% for μ223n0 irrespective of n0.
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possible applications of this calculation and directions for
future work.

II. SPIN-WEIGHTED SPHEROIDAL HARMONICS

Leaver [7] found the following series solution of the
SWSH equation (1):

sSlmnðθ;ϕÞ ¼ eimϕeclmnxð1þ xÞk−ð1− xÞkþ
X∞
p¼0

apð1þ xÞp;

ð7Þ

where k� ≡ jm� sj=2, and x ¼ cos θ. The expansion
coefficients ap are obtained from a three-term recursion
relation that can be found, e.g., in [7,16].
The angular separation constant sAlmn, clmn ¼ aωlmn

and the SWSHs sSlmn are, in general, complex. They take
on real values only in the oblate case (clmn ∈ R) or,
alternatively, in the prolate case (clmn pure imaginary) with
s ¼ 0. Some useful symmetry properties hold (see eg. [7]):

(i) given eigenvalues for (say) m > 0, those for m < 0
are readily obtained by complex conjugation:

sAlmn ¼ sA�
l−mn; ð8Þ

(ii) given eigenvalues for (say) s < 0, those for s > 0 are
given by

−sAlmn ¼ sAlmn þ 2s: ð9Þ
Exploiting these symmetries, in our numerical
calculations we only consider s ≤ 0 and m ≥ 0. In
practice this means that we only compute the

positive-frequency QNMs, even though each
mode consists of both a positive-frequency and a
negative-frequency component: see [7,12] for more
extensive discussions.

(iii) Let us define ρlmn ≡ iclmn. If ρlmn and −sAlmn
correspond to a solution for given ðs; l; m; nÞ, then
another solution can be obtained by the following
replacements: m → −m, ρlmn → ρ�lmn, −sAlmn →
−sA�

l−mn.
Leaver’s solution gives a simple and practical algorithm

for the numerical calculation of eigenvalues sAlmn and
eigenfunctions sSlmn for a perturbed Kerr black hole. The
procedure we use is standard and it is described in many
papers [7,10,17,45], so here we give a very concise
summary. Start from the analytically known angular eigen-
value for a given overtone n in the Schwarzschild limit,
Eq. (2). In the Kerr space-time, linear gravitational pertur-
bations are described by a pair of coupled differential
equations: one for the angular part of the perturbations, and
the other for the radial part. The radial equation is given,
e.g., in [4,7]. The angular equation is the SWSH equa-
tion (1). Boundary conditions for the two equations can be
cast as a pair of three-term continued fraction relations.
Solve the radial continued-fraction equation to find ωlmn in
the Schwarzschild limit. Now increase j in small incre-
ments and, for given values of ðs;l; m; nÞ, look for
simultaneous zeros of the radial and angular continued
fraction equations to find both the “radial eigenvalue” ωlmn
and the angular separation constant sAlmn, using the values
computed for smaller j as initial guesses in the numerical
search. Once the radial and angular eigenvalues are known,
the series coefficients ap can be computed using the
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FIG. 1 (color online). Real (left panel) and imaginary part (right panel) of the spherical-spheroidal mixing coefficients μmll0n0 for
m ¼ 2, n0 ¼ 0. Here we consider the dominant multipoles (l ¼ 2;l0 ¼ 3) (very thick lines in the upper half of each panel),
(l ¼ 3;l0 ¼ 2) (thick lines in the lower half of each panel) and (l ¼ l0 ¼ 2) (thin lines in each panel). Solid lines (black online)
correspond to the numerical calculation presented in this paper; dash-dotted lines (red online, almost indistinguishable from the black
lines) are the fitting relations of Eq. (11); dashed lines (blue online) are the leading-order Press-Teukolsky approximation [5]. In the case
l ¼ l0 ¼ 2 the mixing coefficients are close to unity, so we actually plot 1 − μ2220; furthermore, to leading order the Press-Teukolsky
calculation predicts that they are exactly equal to unity, so their approximation is not shown in the plot.
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recursion relation and plugged into the series solution (7)
to get the corresponding eigenfunction to the required
precision. In our numerical calculations we truncate
the series at some p ¼ pmax such that the inclusion of
subsequent terms would not modify the series by more than
one part in 106. This algorithm only determines the
eigenfunction up to a normalization constant, which can
easily be fixed by imposing the normalization condition

Z
jsSlmnj2dΩ ¼ 1: ð10Þ

III. MIXING COEFFICIENTS

In this section we present and discuss our numerical
results for both, the spherical-spheroidal mixing coeffi-
cients μmll0n0 ðjÞ and the spheroidal-spheroidal mixing
coefficients αmll0nn0 ðjÞ. We also present power-law fits
of the dependence of these coefficients on the dimension-
less Kerr parameter j.

A. The spherical-spheroidal mixing coefficients

Figure 2 shows how the mixing coefficients for l ¼
l0 ¼ 2 andm ¼ 2 (left) orm ¼ 1 (right) behave for the first
eight QNMs (n0 ¼ 0;…; 7) as the Kerr parameter increases
from the Schwarzschild limit j ¼ 0 (where μmll0n0 ¼ 1) to
the extremal Kerr limit j ¼ 1. Each curve can be thought of
as a parametric plot, where the parameter along the curve is
j. Circles denote the following discrete values of j:
j ¼ 0; 0.1; 0.2;…; 0.9; 0.99. The numerical data are trun-
cated at j ¼ 0.999, because the behavior of QNMs for
values of j very close to unity requires a special treatment
[46,47].

As first shown by Detweiler, for corotating modes with
l ¼ m the imaginary part of the quasinormal frequencies
goes to zero as j → 1 [48]. The physical reason for this
behavior is that QNMs can be thought of as perturbations of
null geodesics [46,47,49–51]. In the extremal limit the
spherical photon orbit approaches the horizon and the
frequency of most QNMs with l ¼ m becomes equal to
mΩH, where ΩH ¼ a=ð2MrþÞ is the angular velocity and
rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the Boyer-Lindquist radius of the

(outer) horizon. Whenever the QNM frequency tends to the
critical value for superradiance mΩH the black hole
becomes marginally unstable, the eigenvalues of the
SWSHs become real, and the SWSHs themselves become
oblate in the language of Flammer’s monograph [8]. A
surprising exception to this rule is the overtone with n0 ¼ 5:
this oddity was first noticed by Onozawa (cf. Fig. 4 of [17]).
As a consequence, the mixing coefficient corresponding to
the mode with n0 ¼ 5 in the left panel of Fig. 2 is also
exceptional, and it does not “turn around” to meet the other
modes on the real axis as j → 1.
Figure 3 shows the dominant mixing coefficients for the

first eight QNMs (n0 ¼ 0;…; 7) with ðl;l0Þ ¼ ð2; 3Þ,
ðl;l0Þ ¼ ð3; 2Þ and m ¼ 2 or m ¼ −2. We choose to
display these particular values of the mixing coefficients
because they are the most relevant to explain the spherical-
spheroidal mode mixing studied in [32,33] (for the m ¼ 2
modes of comparable mass black-hole mergers) and [34]
(for the m ¼ �2 modes of extreme-mass-ratio black-hole
mergers). Once again, note that the inner product becomes
purely real near the superradiant frequency for modes with
m ¼ 2, because the imaginary part of the QNM frequen-
cies with l ¼ m tends to zero and the harmonics become
oblate—the overtone with n0 ¼ 5 being, again, the excep-
tion. The plot also highlights the fact that the absolute value
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FIG. 2 (color online). Trajectories traced by the mixing coefficients μmll0n0 with l ¼ l0 ¼ 2, m ¼ 2 (left panel) and m ¼ 1 (right
panel) as the Kerr parameter increases from j ¼ 0 (where μm22n0 ¼ 1) to the nearly extremal Kerr limit. Each curve can be thought of as a
parametric plot, where the parameter is j. Filled circles denote the following discrete values of j: j ¼ 0; 0.1; 0.2;…; 0.9; 0.99. To guide
the eye, along each trajectory the dimensionless Kerr parameter j ¼ 0.5 is denoted by a hollow circle.
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of the mixing coefficients is typically larger for large spins
(at fixed overtone number n0) and for large overtone
numbers (at fixed spin j).
In Fig. 4 we plot the absolute value of the mixing

coefficients jμmll0n0 j with l ¼ 2, m ¼ 2, n0 ¼ 0 as l0
increases. The figure shows that (perhaps unsurprisingly)
mode coupling decays roughly exponentially with jl0 − lj.
Numerical tables of μmll0n0 ðjÞ for all modes with

jsj ≤ l ≤ 7, −l ≤ m ≤ l, −l0 ≤ m ≤ l0, 0 ≤ n0 ≤ 7 for
s ¼ −2, and 0 ≤ n0 ≤ 3 for s ¼ −1 and s ¼ 0 can be found
online [44].

B. The spheroidal-spheroidal mixing coefficients

Motivated by the fact that ringdown waveforms should
be expanded in terms of SWSHs rather than spin-weighted
spherical harmonics [12], Ref. [16] carried out a limited and
preliminary investigation of the spheroidal-spheroidal
mixing coefficients. Table I of [16] compared a numerical
calculation of selected spheroidal-spheroidal mixing
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FIG. 3 (color online). Trajectories traced by the mixing coefficients μmll0n0 in the complex plane as the Kerr parameter increases from
j ¼ 0 (where μmll0n0 ¼ 0 for l ≠ l0) to j ¼ 1. Panels in the top row refer to ðl;l0Þ ¼ ð2; 3Þ, those in the bottom row to ðl;l0Þ ¼ ð3; 2Þ;
left panels are for m ¼ 2, right panels for m ¼ −2.
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FIG. 4 (color online). Absolute values of the mixing coeffi-
cients jμmll0n0 j with l ¼ m ¼ 2, n0 ¼ 0 and different values of
l0 ¼ 3;…; 7, illustrating the roughly exponential decay of the
mixing coefficients with jl0 − lj.
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coefficients αmll0nn0 ðjÞ, as defined in Eq. (6), with the
Press-Teukolsky perturbation theory calculation. The con-
stants αmll0nn0 ðjÞ computed using Leaver’s method were
listed in Tables II and III of [16] for j ¼ 0.8 and selected
values of the indices.
Here we extend those preliminary calculations to generic

values of j and to all modes of relevance for gravitational-
wave data analysis. Representative results are shown in
Figs. 5 and 6. Figure 5 shows the scalar product between
the dominant mode in black-hole binary merger simula-
tions (l ¼ l0 ¼ m ¼ 2, n ¼ 0) and higher overtones with
the same angular dependence (same l ¼ l0 ¼ m). All
modes describe loops that begin and end close to
α2220n0 ¼ 1; the one exception, as usual, is the QNM with
n0 ¼ 5.

The most relevant spheroidal-spheroidal mixing coeffi-
cients to understand black-hole binary simulations are
small-n overtones with low angular indices ðl;l0Þ equal
to either 2 or 3. Some of these mixing coefficients are
plotted, with the usual conventions, in Fig. 6. In particular,
we show (1) the m dependence of spheroidal-spheroidal
overlaps when l ¼ 2, l0 ¼ 3, n ¼ n0 ¼ 0, and (2) the
overlap between the fundamental mode and the first
overtone when l ¼ 2, l0 ¼ 3 and jmj ¼ 2.

C. Fitting formulas for the mixing coefficients

As illustrated in Fig. 1, we can reproduce the numerical
data for the mixing coefficients to satisfactory accuracy
(absolute deviations being typically smaller than10−4 for the
dominant modes, and smaller than a few times 10−3 for all
modes we considered) with the following power-law fits:

Reðμmll0n0 Þ ¼ δll0 þ p1jp2 þ p3jp4 ;

Imðμmll0n0 Þ ¼ q1jq2 þ q3jq4 : ð11Þ

Table I lists the fitting parameters ðpi; qiÞ (i ¼ 1;…; 4)
for some combinations of ðm;l;l0; n0Þ that are particularly
relevant in black-hole binary mergers. These values were
chosen as particularly significant because

(i) Ref. [33] successfully extracted QNMs with
ðl; m; nÞ ¼ ð2; 2; 0Þ, (3,2,0) and (2,2,1) from
numerical simulations of comparable mass black-
hole mergers, showing that mode mixing plays an
important role in the extraction procedure; and

(ii) Ref. [34] pointed out that mode mixing plays an
important role also for extreme mass-ratio binaries
(see e.g. their Fig. 7). In addition, they found that
negative-m, “counterrotating” modes (or “mirror
modes”: see [12] for a discussion) contribute to
the mixing, because frame dragging can change the
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αmll0nn0 ðjÞ with l ¼ l0 ¼ m ¼ 2, n ¼ 0 and different values
of the overtone index n0 ≥ 1 as the dimensionless spin increases
from j ¼ 0 to j ¼ 1.
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sign of the orbital frequency of the plunging particle.
This finding was confirmed by more recent time-
domain calculations [35].

Table I is only representative. Comprehensive tables
listing these fitting parameters for scalar, electromagnetic
and gravitational modes with jsj ≤ l ≤ 7, −l ≤ m ≤ l,
−l ≤ m0 ≤ l, 0 ≤ n0 ≤ 7, s ¼ −2 are publicly available
online at [44], where we also provide fitting parameters for
the αmll0nn0 ’s.

IV. CONCLUSIONS

This paper was mainly motivated by recent investiga-
tions of spherical-spheroidal mode mixing in black-hole
binary mergers [26,32–34]. For this reason our analysis was
limited to four-dimensional SWSHs and low-order over-
tones. Despite these limitations, we expect the dictionary
developed in this paper to be useful in several applications
of black hole perturbation theory, including the construc-
tion of phenomenological models of black-hole mergers,
studies of Green’s functions in black-hole backgrounds,
self-force investigations (see e.g. [52,53]) and calculations
of Hawking radiation.
It would be interesting to extend our work to higher

overtones, that may have some relation with black-hole
area quantization (see e.g. [18–25]), or [10,45] for reviews).
It would also be useful to investigate mixing coefficients for
higher-dimensional spheroidal harmonics, that are of inter-
est for the phenomenology of black-hole formation in high-
energy particle collisions [54] and to assess the stability
of higher-dimensional rotating black holes [16,55–59].
Furthermore our analysis was limited to spin values that
are not very close to j ¼ 1, and it calls for a more careful
investigation of the nearly extremal regime, where a
bifurcation of the spectrum can occur [46,47] and lead
to turbulent behavior [60].
The numerical data and fitting coefficients computed in

this paper are publicly available for download [44]. The
webpage includes also spherical-spheroidal mixing coef-
ficients for SWSHs with s ¼ −1 and s ¼ 0, that were not

reported in this paper because they are qualitatively similar
to the data for spin weight s ¼ −2.
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APPENDIX: PERTURBATIVE EVALUATION
OF THE MIXING COEFFICIENTS

As mentioned in the main text, the SWSH equation can
be solved via an expansion in powers of c using standard
perturbation theory [5]. For c ¼ 0 the solutions are ordi-
nary spin-weighted spherical harmonics [2,3]. The next-
order correction can be found in Eq. (3.7) of Ref. [5] (see
also Appendix F of [61]); the result is Eq. (4), where

hsl0mjh1jslmi ¼
Z

sY�
l0mh1sYlmdΩ; ðA1Þ

h1 ≡ ðaωÞ2cos2θ − 2aωs cos θ: ðA2Þ
The integral can be evaluated using the identities

hsl0mj cos θjslmi

¼
�
2lþ 1

2l0 þ 1

�
1=2

hl; 1; m; 0jl0; mihl; 1;−s; 0jl0;−si;

hsl0mjcos2θjslmi ¼ 1

3
δl;l0

þ 2

3

�
2lþ 1

2l0 þ 1

�
1=2

hl; 2; m; 0jl0; mihl; 2;−s; 0jl0;−si;

where hl1;l2; m1; m2jL;Mi is a Clebsch-Gordan
coefficient.

TABLE I. Fitting function parameters in Eq. (11) for some of the μmll0n0 ’s that are most relevant in black-hole binary modeling.

Indices Reðμmll0n0 Þ Imðμmll0n0 Þ
m l l0 n0 105p1 p2 105p3 p4 105q1 q2 105q3 q4

2 2 2 0 −740 2.889 −661 17.129 1530 1.219 −934 24.992
2 2 2 1 −873 2.655 −539 15.665 4573 1.209 −2801 25.451
2 2 3 0 14095 1.112 4395 6.144 1323 0.854 −852 7.042
2 3 2 0 −10351 1.223 −5750 8.705 −1600 0.953 1003 14.755
−2 2 2 0 −1437 2.118 1035 2.229 −7015 1.005 67 3.527
−2 2 2 1 −2659 2.007 53 4.245 −21809 1.008 221 4.248
−2 2 3 0 14971 1.048 −5463 1.358 18467 1.015 −10753 1.876
−2 3 2 0 −13475 1.088 7963 1.279 −1744 1.011 516 1.821
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