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The resultant response of the rotating torsion-bar antenna for gravitational waves discussed in M. Ando
et al. [Phys. Rev. Lett. 105, 161101 (2010)] is reinvestigated from a general-relativistic point of view. To do
this, the equation of motion of a free-falling particle in the proper reference frame of a rotating observer is
used. As a result, the resultant response derived in the above paper is also valid even when ωg ∼ Ω, where
ωg and Ω are the angular frequencies of gravitational waves and the rotation of the antenna, respectively.
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The torsion-bar antenna (TOBA) is a novel type of
gravitational-wave antenna for low-frequency observa-
tions. This antenna is formed by two bar-shaped test
masses, arranged parallel to the x–y plane and orthogonal
to each other. Each bar is supported at its center, so as to
rotate around the z axis. When gravitational waves pass
through this antenna, tidal forces by the gravitational waves
will appear as differential angular changes in these bars.
These changes are extracted as a gravitational-wave signal
by using a sensitive sensor, such as a laser interferometer.
A characteristic feature of this antenna is that it can expand
the observation band to lower frequencies by using modu-
lation and up-conversion of gravitational-wave signals
though rotating the antenna.
A similar conceptwas proposedmore than 40 years ago as

a heterodyne detector for circular-polarized gravitational
waves [1,2]. Recently, the idea for the up-conversion of
low-frequency gravitational waves was reinvestigated [3]
and a space-borne prototype antenna was operated [4]. In
Ref. [3], the situationwas considered inwhich the frequency
of gravitational waves is much smaller than the rotation of
the antenna. In this situation, the tidal force due to gravi-
tational waves is almost stationary and the antenna rotates in
this stationary tidal force field. Based on this intuitive
picture, the response of the antenna was derived as

θ̈diff ¼ α½ḧ× cosð2ΩtÞ þ ḧþ sinð2ΩtÞ�; ð1Þ
where θdiff is the resultant output of the antenna, α is the
shape factor of the antenna, h× and hþ are the two
independent polarization components of gravitational
waves propagating along the z axis, and Ω is the angular
velocity of the rotation of the antenna. From this equation,
it was concluded that the gravitational-wave signal is
modulated by the rotation; a gravitational-wave signal with
an angular frequency of ωg is up- and down-converted to
appear at ωg � 2Ω frequencies. However, due to the above

intuitive picture, the resultant output (1) was valid only
when ωg ≪ Ω.
The purpose of this paper is the rederivation of the

resultant output (1) of the rotating TOBA from a general-
relativistic point of view. Usually, the geodesic deviation
equation is the basic equation to estimate the force that
affects gravitational-wave detectors. However, in the case
of the response of the rotating TOBA, we cannot apply the
geodesic deviation equation, because the world line of the
test mass in the rotating TOBA is not geodesic. Therefore,
in this article, we estimate the torque, which affects the
rotating TOBA test mass, through the proper reference
frame for a rotating observer.
The proper reference frame for an accelerating and

rotating observer was discussed in Ref. [2]. After the
publication of this textbook, Ni and Zimmermann [5]
derived the metric which is accurate to the second order
with respect to the proper distance from the origin of
coordinates. They also derived the equations of motion
for freely falling particles, which is accurate to the first
order. Their equation of motion contains many terms,
which represent many types of effects of inertial forces
as well as forces due to the Riemann curvature.
The situation discussed by Ni and Zimmermann [5] is

appropriate to the rotating TOBA. Therefore, we use the
proper reference frame with the rotation discussed by Ni
and Zimmermann [5] to estimate the gravitational-wave
torque which affects the rotating TOBA response. The
metric and the equation of motion discussed in this paper is
the special case of the proper reference frame discussed by
Ni and Zimmermann [5]. Through this metric, we show the
resultant output (1) is valid even if ωg ∼Ω. Throughout
this paper, we use natural units, in which the light velocity
is unity.
Here, we consider the situation where the TOBA is

rotating around the Z axis, where the center of the TOBA
is setting X ¼ Y ¼ Z ¼ 0. Consider the world line P0ðτÞ
of the center of the TOBA with four-velocity uaðτÞ and
four-rotation ωa in gravitational waves with Riemann*kouji.nakamura@nao.ac.jp
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tensor Rabc
d. The orthogonal tetrad eaðαÞ, which is carried

by observers at the center of the TOBA, transports
according to [2]

ub∇beaðαÞ ¼ −ΩabebðαÞ; ð2Þ

where

Ωab ≔ aaub − abua þ ϵabcducωd; ð3Þ
aaðτÞ ≔ ub∇bua: ð4Þ

Even when the TOBA is rotating, the world line P0ðτÞ of
the center of the TOBA is still a geodesic with the four-
velocity ua, if the laboratory can be regarded as a local
inertial system. Furthermore, we concentrate only on the
case where the angular velocity of rotation is constant.
Therefore, in this paper, we may treat the case where

aaðτÞ ¼ 0; ub∇bω
aðτÞ ¼ 0 ð5Þ

along Pð0ÞðτÞ.
At any event P0ðτÞ, we consider geodesics Pðτ; na; sÞ

orthogonal to uaðτÞ, where na is the unit vector tangent to a
particular geodesic at P0ðτÞ, and naua ¼ 0. At each event
P0ðτÞ, a proper distance s along any geodesic Pðτ; na; sÞ
with tangent vector na is assigned by the local coordinates

X0̂ ≔ τ; ð6Þ

Xĵ ≔ snaeðĵÞa ¼ sαĵ; ð7Þ

where αĵ is the spatial direction cosine and αĵ ¼ Xĵ=s with
s2¼ðXîÞ2¼ðX1̂Þ2þðX2̂Þ2þðX3̂Þ2, and X0̂¼τ¼T, X1̂ ¼ X,
X2̂¼Y, and X3̂¼Z. This means na¼αĵeaðĵÞ. This coordinate
system is well defined for events near the world line
P0ðτÞ if the “light cylinder” has not been reached
(s ≪ 1=jΩj), or if the curvature has not yet caused geo-
desics to cross (s ≪ 1=jRabc

dj1=2), and the Riemann tensor
has not yet changed much from its value on the world line
P0ðτÞ (s ≪ jRabc

dj=j∂aRabc
ej). In the case of gravitational

waves, the last condition corresponds to the fact that s
should be much smaller than the wavelength of gravita-
tional waves.
Using the above coordinate system fXμ̂g, Ni and

Zimmermann [5] derived the second-order expansion of
the metric near P0ðτÞ as
ds2 ¼ −ðdX0̂Þ2½1þ ðωl̂Xl̂Þ2 − ðωÞ2Xl̂Xl̂ þ R0̂ l̂ 0̂ m̂X

l̂Xm̂�

þ 2dX0̂dXî

�
ϵî ĵ k̂ω

ĵXk̂ −
2

3
R0̂ l̂ î m̂X

l̂Xm̂

�

þ dXîdXĵ

�
δî ĵ −

1

3
Rî l̂ ĵ m̂X

l̂Xm̂

�

þOðdXμ̂dXν̂Xl̂Xm̂Xk̂Þ; ð8Þ

where ωl̂ and Rα̂ β̂ μ̂ ν̂ are evaluated on the world line PðτÞ at
time X0̂ ¼ τ.
To calculate the coordinate acceleration of a freely

falling body, we use the geodesic equation in the form

d2Xî

ðdX0̂Þ2
þ
�
Γî

μ̂ ν̂ − Γ0̂
μ̂ ν̂

dXî

dX0̂

�
dXμ̂

dX0̂

dXν̂

dX0̂
¼ 0 ð9Þ

and substitute into it the first-order expansion of the Γ’s.
Defining Wi ≔ dXî=dX0̂, the velocity measured by the
accelerated rotating observer, the resulting coordinate
acceleration is

d2Xî

ðdX0̂Þ2
¼ −R0̂ ĵ 0̂

îXĵ

− ð~ω × ð~ω × ~XÞÞi − 2ð~ω × ~WÞi

− 2R0̂ k̂ ĵ
îXk̂Wĵ þ 2R0̂ l̂ ĵ

0̂Xl̂WĵWî

þ 2

3
Rm̂ k̂ ĵ

îXm̂WĵWk̂ −
2

3
R̄l̂ k̂ ĵ

0̂Xl̂WĵWk̂Wî

þOððXîÞ2Þ: ð10Þ
The first line in Eq. (10) is the tidal force due to the
curvature near P0ðτÞ. The first term in the second line of
Eq. (10) is the centripetal force and the second term is the
Coriolis force. These terms should be neglected in the case
of the configuration of the TOBA as discussed below.
Here, we consider the configuration of the rotating

TOBA. The TOBA essentially measures the relative rota-
tion of the two bars which is induced by the tidal force of
gravitational waves. To measure the tidal force due to
gravitational waves, the centers of the bars are fixed at the
point X ¼ Y ¼ 0, but are free for rotational modes. The test
mass is aligned within the X–Y plane and the rotation axis
of the TOBA is chosen so that ωa ¼ ΩeaðZÞ. The shape of
the test mass is symmetric, which means the density
distribution ρ is symmetric in all three axes.
In this configuration, the direction of the centripetal force

−ð~ω × ð~ω × ~XÞÞi, which is the first term in the second line
of Eq. (10), is the direction along the bar. This force cancels
out when we sum this force along the bar. Similarly, the
velocity Wi of the bar is restricted to only the rotational
motion around the eaðZÞ axis. In this case, the direction of the

Coriolis force −2ð~ω × ~WÞi, which is the second term in the
second line of Eq. (10), is also the direction along the bar.
This force also cancels out when we sum this force along the
bar. Therefore, we may neglect the second line in Eq. (10).
Furthermore, we regard that the velocity Wi is induced by
gravitational waves, i.e., Wi ¼ OðhÞ. As far as we concen-
trate only on the linear effect of gravitational waves, we may
neglect the third and fourth lines in Eq. (10).
In the case where the mass distributes as the mass density

ρ, the force Fi induced by gravitational waves on a volume
element dV of the test mass of the TOBA is given by
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FîdV ¼ −ρR0̂ ĵ 0̂ îX
ĵdV: ð11Þ

This force is also derived from the potential

U≔−
Z

dV
Z

dXîFî;

¼ 1

2
R0̂ ĵ 0̂ î

Z
dVρXîXĵ: ð12Þ

The torque Fgw induced by the gravitational wave is
given by

Fgw ¼ −
∂U
∂θ ≕ −

1

2
R0̂ ĵ 0̂ îq

î ĵ; ð13Þ

where qî ĵ is the dynamic quadruple moment tensor [6].
For bar rotation, qXX ¼ −qYY ¼ −

R
ρð2XYÞdV and qXY ¼

qYX ¼ R
ρðX2 − Y2ÞdV.

To evaluate curvature components in Eq. (13), we
consider the gravitational-wave solution with a flat space-
time background gab ¼ ηab þ hab, where hab is transverse
traceless, i.e., ηabhab ¼ 0 ¼ ηad∂dhab. In an inertia frame,
the background metric is given by ηab ¼−ðdtÞaðdtÞbþ
ðdxÞaðdxÞbþðdyÞaðdyÞbþðdzÞaðdzÞb, and we assume the
gravitational wave propagates along the z axis,

hab ¼ hþðtþ zÞððdxÞaðdxÞb − ðdyÞaðdyÞbÞ
þ 2h×ðtþ zÞðdxÞðaðdyÞbÞ: ð14Þ

Since we consider the rotating TOBA with the rotating
axis z, this rotational frame fT; X; Y; Zg is given by

T ¼ t; ð15Þ

X ¼ x cosΩt − y sinΩt; ð16Þ

Y ¼ x sinΩtþ y cosΩt; ð17Þ

Z ¼ z: ð18Þ

From this coordinate transformation, the flat metric ηab and
TT-gauge gravitational wave hab are given by [7]

ηab ¼ −ð1 −Ω2ðY2 þ X2ÞÞðdTÞaðdTÞb
þ 2ΩðdTÞðaðYdX − XdYÞbÞ
þ ðdXÞaðdXÞb þ ðdYÞaðdYÞb þ ðdZÞaðdZÞb ð19Þ

and

hab ¼ Ω2ðhþðcosð2ΩTÞðY2 − X2Þ − 2 sinð2ΩTÞXYÞ þ h×ðsinð2ΩTÞðX2 − Y2Þ − 2 cosð2ΩTÞÞXYÞÞðdTÞaðdTÞb
þ 2Ωðhþðcosð2ΩTÞY − sinð2ΩTÞXÞ − h×ðsinð2ΩTÞY þ cosð2ΩTÞÞXÞÞðdXÞðaðdTÞbÞ
þ 2Ωðhþðcosð2ΩTÞX þ sinð2ΩTÞYÞ þ h×ðcosð2ΩTÞÞY − sinð2ΩTÞXÞÞðdYÞðaðdTÞbÞ
þ ðhþ cosð2ΩTÞ − h× sinð2ΩTÞÞððdXÞaðdXÞb − ðdYÞaðdYÞbÞ
þ 2ðhþ sinð2ΩTÞ þ h× cosð2ΩTÞÞÞðdXÞðaðdYÞbÞ: ð20Þ

We note that the metric (19) is consistent with Eq. (8).
In this rotational coordinate system, the components of

the Riemann curvature that are necessary for the evaluation
of Eq. (13) are summarized as

RTXTX ¼ 1

2
ðsinð2ΩTÞḧ× − cosð2ΩTÞḧþÞ

¼ −RTYTY; ð21Þ

RTXTY ¼ −
1

2
ðcosð2ΩTÞḧ× þ sinð2ΩTÞḧþÞ: ð22Þ

Since qXX ¼ qYY ¼ 0 and qXY ¼ ∶Iα in the case of the
thin bar aligned along the X axis, the torque that affects this
thin bar is given by

FgwðxbarÞ ¼ −
Iα
2
ðcosð2ΩTÞḧ× þ sinð2ΩTÞḧþÞ; ð23Þ

where I is the inertia moment of the bar and α is the shape
factor. On the other hand, in the case of the thin bar aligned

along the Y axis, we have qXX ¼ qYY ¼ 0 and qXY≕ − Iα,
and the torque affects this thin bar is given by

FgwðybarÞ ¼ þ Iα
2
ðcosð2ΩTÞḧ× þ sinð2ΩTÞḧþÞ: ð24Þ

In an approximation where the test-mass bar freely rotates
around the Z axis, the equation of motion for the resultant
output of the antenna θdiff is given by

Iθ̈diff ¼ FgwðxbarÞ − FgwðybarÞ

¼ Iαðcosð2ΩTÞḧ× þ sinð2ΩTÞḧþÞ: ð25Þ
This is completely identical to the result (1) derived
in Ref. [3]. In that paper, Eq. (25) was derived in the case
ωgw ≪ Ω, as mentioned above. However, the derivation in
this paper shows that the limitation ωgw ≪ Ω is not
necessary and that Eq. (25) is valid even in the case
ωgw ≃Ω. Of course, the proper reference frame is valid
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only near the rotation axis, and Eq. (25) is valid only when
the size s of the antenna satisfies ωgws;Ωs ≪ 1. If this
limitation become serious, we have to evaluate the next-
order expression discussed by Li and Ni [8].

K. N. deeply thanks Professor Masa-Katsu Fujimoto
for his valuable discussions and encouragement. This
work was supported by JSPS KAKENHI Grant
No. 24244031.

[1] V. B. Bragihnsky and V. S. Nazarenko, in Proceedings of the
Conference on Experimental Tests of Gravitation Theories
(Jet Propulsion Laboratory, Pasadena, 1971), pp. 45–46.

[2] C. W. Misner, T. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[3] M. Ando, K. Ishidoshiro, K. Yamamoto, K. Yagi, W.
Kokuyama, K. Tsubono, and A. Takamori, Phys. Rev. Lett.
105, 161101 (2010).

[4] W. Kokuyama, Ph.D. thesis, The University of Tokyo, 2012.

[5] W.-T. Ni and M. Zimmermann, Phys. Rev. D 17, 1473
(1978).

[6] H. Hirakawa, K. Narihara, and M.-K. Fujimoto, J. Phys. Soc.
Jpn. 41, 1093 (1976).

[7] This coordinate transformation is called the first-kind gauge
transformation and has nothing to do with the second-kind
gauge transformation. The second-kind gauge degree of
freedom is completely fixed through the TT gauge.

[8] W.-Q. Li and W.-T. Ni, J. Math. Phys. (N.Y.)20, 1473 (1979).

KOUJI NAKAMURA AND MASAKI ANDO PHYSICAL REVIEW D 90, 064008 (2014)

064008-4

http://dx.doi.org/10.1103/PhysRevLett.105.161101
http://dx.doi.org/10.1103/PhysRevLett.105.161101
http://dx.doi.org/10.1103/PhysRevD.17.1473
http://dx.doi.org/10.1103/PhysRevD.17.1473
http://dx.doi.org/10.1143/JPSJ.41.1093
http://dx.doi.org/10.1143/JPSJ.41.1093
http://dx.doi.org/10.1063/1.524203

