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Accretion of fields by black holes is a subject of great interest in physics. It is known that accretion plays
a fundamental role in active galactic nuclei and in the evolution of black holes. Accretion of fundamental
fields is often related to the study of absorption cross section. Basically all black holes for which absorption
of fields has been studied so far present singularities. However, even within general relativity, it is possible
to construct regular black holes: objects with event horizons but without singularities. Many physically
motivated regular black hole solutions have been proposed in the past years, demanding the understanding
of their absorption properties. We study the absorption of planar massless scalar waves by Bardeen regular
black holes. We compare the absorption cross section of Bardeen and Reissner–Nordström black holes,
showing that the former always have a bigger absorption cross section for fixed values of the field
frequency and of the normalized black hole charge. We also show that it is possible for a Bardeen black hole
to have the same high-frequency absorption cross section of a Reissner–Nordström black hole. Our results
suggest that, in mid-to-high-frequency regimes, regular black holes can have compatible properties with
black holes with singularities, as far as absorption is concerned.
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I. INTRODUCTION

One of the most intriguing predictions of general
relativity (GR) is the existence of black holes (BHs).
BHs became a paradigm in physics, and are believed to
populate the galaxies [1]. Within standard GR, black holes
are simple objects, described only by their mass, angular
momentum and charge [2]. However, standard black holes
suffer from one of the main problems of GR: the presence
of singularities. Our physical knowledge breaks down at
singularities. Although generally hidden by a horizon, and
protected by the Penrose conjecture [3] (see also Ref. [4]
for a review), singularities are expected to exist within
GR, according to the singularity theorems developed by
Hawking and collaborators [5].
Singularities are expected to be better understood with an

improved theory of gravity (whether an extension or a
modification of GR) [6]. Notwithstanding, within GR it is
possible to obtain BH solutions without singularities.
Bardeen presented a BH solution without singularities that
satisfies the weak energy condition in GR [7]. Although
Bardeen’s solution has its theoretical motivation in the
studies of BH spacetimes with no singularities, a stronger
physical motivation for it was missing until it was shown
that the Bardeen BH is a solution of GR with a nonlinear
magnetic monopole, i.e., a solution of the Einstein’s equa-
tions coupled to a nonlinear electrodynamics [8]. Apart
from this, further works with other physically motivated
regular BHs can be found in the literature (see, e.g.,
Refs. [9,10]).

One way to test the physics of BHs is analyzing test
fields around them. In this context, there are the quasi-
normal modes: natural oscillation frequencies of the fields
with physically motivated boundary conditions [11,12]. An
extensive survey of quasinormal modes of test charged
scalar fields around different types of regular BHs was
presented in Ref. [13]. Quasinormal modes of the Dirac
field were investigated in Ref. [14] and of the massive
scalar fields in Hayward regular BHs in Ref. [15].
Quasinormal modes have an interesting relation with
scattering processes in BH spacetimes. This relation can
be seen, for instance, in the scattering of Gaussian packets
by BHs [16,17].
Another important aspect of BHs is how they absorb

matter and fields around them, i.e., their accretion rate.
Accretion has an important role in the phenomenology of
active galactic nuclei, and can be considered as an
important agent to the mass growth of their BH hosts
(see, e.g., Refs. [18–20] and the references therein). Along
more than 45 years, absorption of scalar fields has been
studied extensively in many BH scenarios (see, e.g.,
Refs. [21–28] and the references therein). The initial field
configuration is usually taken to be plane waves at infinity,
and the problem is often directed to compute the absorption
cross section of the field. Also, in the classical (high-
frequency) limit, absorption cross sections are directly
related with the shadows of BHs [29–31]. Moreover, the
case of planar waves absorption has many features in
common with the case of accretion of a fluid moving with
constant velocity toward a BH (see, e.g., Ref. [32]), which
turns out to be important in the phenomenology of extreme
mass-ratio inspirals [33,34].
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In this paper we address the problem of how regular BHs
absorb fields, focusing in the analysis of the absorption
cross section of planar massless scalar waves by a Bardeen
regular BH. Generically, the line element of spherically
symmetric BH spacetimes can be written in the standard
spherical coordinate system as

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð1Þ

where the function fðrÞ depends on the particular BH under
consideration. As we shall see, the Bardeen BH has a
structure very similar to that of a standard electrically
charged BH within GR, i.e., of a Reissner–Nordström (RN)
BH. Because of that, we shall compare our results with the
RN BH ones [26,35].
The remainder of this paper is organized as follows. In

Sec. II we review some aspects of the Bardeen regular BHs.
In Sec. III we revisit the main aspects of the absorption
cross section of planar massless scalar waves in spherically
symmetric BH spacetimes. We also present the results in
the low- and high-frequency regimes for the massless scalar
absorption cross section of Bardeen BHs. In Sec. IV we
exhibit a selection of our numerical results. We compare
our results for the Bardeen regular BH with the results for
the RN BH. Also, we discuss the possibility of having a
Bardeen BH with a similar absorption cross section of a RN
BH.We present our final remarks in Sec. V. Throughout the
paper we use natural units, for which G ¼ c ¼ ℏ ¼ 1.

II. BARDEEN REGULAR BLACK HOLES

As mentioned in the Introduction, the Bardeen BH was
one of the first regular BH solutions presented in the
literature [7]. Later, it received the physical interpretation of
a BH with a nonlinear magnetic monopole [8]. Nonlinear
electrodynamics theories within GR are generically
described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
R −

1

4π
LðFÞ

�
; ð2Þ

where R is the Ricci scalar; L is the Lagrangian of
the electromagnetic field; F ¼ 1

4
FabFab, with Fab being

the standard electromagnetic field strength; and g is the
determinant of the metric gab. For the theory that generates
the Bardeen regular BH, we have that

LðFÞ ¼ 3

2sq2

� ffiffiffiffiffiffiffiffiffiffiffi
2q2F

p
1 −

ffiffiffiffiffiffiffiffiffiffiffi
2q2F

p
�5=2

; ð3Þ

where s ¼ jqj=ð2MÞ, q is the magnetic charge andM is the
mass of the configuration [8]. The line element of the
Bardeen BH is given by Eq. (1), with

fðrÞ ¼ 1 −
2Mr2

ðr2 þ q2Þ3=2 : ð4Þ

The Bardeen solution has a structure similar to the RN
spacetime, presenting two horizons up to some value of the
BH charge. For q ¼ qext ¼ 4M=ð3 ffiffiffi

3
p Þ, the two horizons

coincide, and we have the so-called extremal BH. In this
paper, we shall consider 0 ≤ q ≤ qext.
For later comparison, it is instructive to mention explic-

itly the RN solution. The line element of the RN spacetime
is given by Eq. (1), with

fðrÞ ¼ 1 −
2M
r

þ q2

r2
; ð5Þ

where, in this case, q is the electric charge of the BH. The
extreme case of the RN BH is given by qext ¼ M. Note that
we are using the same symbol (q) for both magnetic
(Bardeen BH) and electric (RN BH) charge. To better
compare both spacetimes, we shall present our results in
terms of the normalized charge Q≡ q=qext.

III. ABSORPTION CROSS SECTION

A. Partial-waves approach

A massless scalar field Φ is described by the Klein–
Gordon equation, namely,

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
gab∂bΦÞ ¼ 0: ð6Þ

Here we are considering a minimally coupled scalar field.
A monochromatic wave with frequency ω in a spheri-

cally symmetric background can be written as

Φ ¼
X
lm

ϕðrÞ
r

Ym
l ðθ;φÞe−iωt; ð7Þ

where Ym
l ðθ;φÞ are the standard scalar spherical harmonics.

Substituting the expansion (7) in Eq. (6), and using the
properties of the spherical harmonics, we get the following
radial equation for ϕðrÞ:

�
−

d
dx2

þ VϕðrÞ − ω2

�
ϕðrÞ ¼ 0; ð8Þ

in which x is the tortoise coordinate, defined through
dx ¼ fðrÞ−1dr, and

VϕðrÞ ¼ f

�
lðlþ 1Þ

r2
þ f0

r

�
ð9Þ

is the scalar field potential. Plots of Vϕ for Bardeen and
Schwarzschild BHs are shown in Fig. 1. The scalar field
potential Vϕ is localized, in the sense that it goes to zero at

CAIO F. B. MACEDO AND LUÍS C. B. CRISPINO PHYSICAL REVIEW D 90, 064001 (2014)

064001-2



the event horizon and at infinity [36]. We are interested in a
solution that represents a wave coming from the past null
infinity. Such a solution can be written using the so-called
in modes, i.e.,

ϕðrÞ ∼
�
RI þRin

ωlR
�
I x → þ∞ðr → þ∞Þ;

T in
ωlRII x → −∞ðr → rhÞ;

ð10Þ

with

RI ¼ e−iωx
XN
j¼0

Aj
∞

rj
; ð11Þ

RII ¼ e−iωx
XN
j¼0

ðr − rhÞjAj
rh ; ð12Þ

where the coefficients Aj
∞ and Aj

rh are obtained by requiring
the functions RI and RII to be solutions of Eq. (8) far from
the BH and close to the event horizon, respectively. jRin

ωlj2
and jT in

ωlj2 are the reflection and transmission coefficients,
respectively, and are related through

jRin
ωlj2 þ jT in

ωlj2 ¼ 1: ð13Þ

Using the solution (10), the absorption cross section of
planar massless scalar waves can be written as

σabs ¼
X∞
l¼0

σl; ð14Þ

with σl being the partial absorption cross sections, given by

σl ¼
π

ω2
ð2lþ 1ÞjT in

ωlj2: ð15Þ

B. Low- and high-frequency limits

In the low-frequency regime, it has been proven that the
absorption cross section of massless scalar fields by static
BHs [37], as well as stationary BHs [24,25], tends to the
area of the BH horizon. Our numerical results agree
remarkably well with this low-frequency limit. In Fig. 2
we plot the area of the event horizon for the Bardeen and
RN BHs, as a function of the normalized charge. We can
see that the event horizon area of a Bardeen BH is bigger
than the corresponding one of the RN BH with the same
normalized charge.
In the high-frequency limit, a massless scalar wave can

be described by the propagation of a null vector, which
follows a null geodesic. Therefore, in this limit we can
consider the classical capture cross section of null geo-
desics to describe the absorption cross section of massless
fields.
Geodesics around Bardeen BHs were also studied in

Ref. [38]. Here we consider null geodesics in spherically
symmetric BHs. Their motion is described by the
Lagrangian Lgeo, that satisfies

2Lgeo ¼ −fðrÞ_t2 þ fðrÞ_r2 þ r2 _φ2 ¼ 0; ð16Þ

in which we consider, without loss of generality, the motion
in the plane θ ¼ π=2. The overdot indicates a derivative
with respect to the affine parameter of the curve.
Considering the conserved quantities, namely the energy
E and angular momentum L (see, e.g., Ref. [39]), the
equation of motion becomes

_r2 þ L2
fðrÞ
r2

¼ E2; ð17Þ

 1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

V
φ

M
2

r/rh

l=0

l=1

l=2 Schwarzschild
Q=0.4
Q=0.8

Q=0.9999

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

FIG. 1 (color online). Scalar field potential (Vϕ) as function of
the radial coordinate in units of the event horizon radius (rh).
Here we compare the Bardeen BHs with the Schwarzschild case,
and we see that the shape of the potential is similar in all cases.
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FIG. 2 (color online). Event horizon area of Bardeen and RN
BHs as a function of the normalized charge.
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which can be regarded as an energy balance equation with
the effective potential

Veff ¼ L2fðrÞ=r2: ð18Þ

The high-frequency limit of the absorption cross section,
also called geometric cross section, σgeo, is then found by
computing the classical capture radius of light rays in the
spacetime under investigation. For spherically symmetric
spacetimes, the null geodesic radius rl is obtained through
V 0ðrlÞ ¼ 0, with the prime denoting a derivative with
respect to r. The critical impact parameter is given by
bc ¼ Lc=Ec, with ðLc; EcÞ being characteristic of the null
circular geodesic. Therefore, we have

rlf0ðrlÞ − 2fðrlÞ ¼ 0; ð19Þ

and

σgeo ¼ πb2c ¼ π
r2l

fðrlÞ
: ð20Þ

With Eq. (19) one finds the value of rl, and by substituting
this value in Eq. (20) one finds the capture (or geometric)
cross section σgeo.
In Fig. 3 we compare the capture cross section of the

Bardeen BH with the RN BH case, as a function of the
normalized charge. In general, a Bardeen BH has a bigger
capture cross section, compared with the RN BH with the
same value of Qð> 0Þ.
An improvement of the high-frequency approximation to

compute the absorption cross section for spherically sym-
metric BHs was proposed in Ref. [40]. It was shown that
the oscillatory part of the absorption cross section in the
eikonal limit can be written as

σoscðωÞ ¼ −
4Λl

ωΩ2
l

e−
Λl
Ωl sin

�
2πω

Ωl

�
; ð21Þ

where Λl ¼ πλl, with λl being the Lyapunov exponent of
the null geodesic [39,40], and Ωl ¼ dφ=dt ¼ ffiffiffiffiffiffiffiffiffiffi

fðrlÞ
p

=rl
being the angular velocity of the null geodesic. Therefore,
we can write the high-frequency absorption cross section as

σhfabs ∼ σgeo þ σosc: ð22Þ

Equation (22) is usually referred to in the literature as the
sinc approximation. In Fig. 4 we compare the results
obtained through Eq. (22) with the full numerical compu-
tation of the absorption cross section, given by Eq. (14). It
is interesting to note that, although Eq. (22) is obtained
within the assumption of high frequencies, it is still a very
good approximation for intermediate frequency values.

IV. RESULTS

We have computed numerically the absorption cross
section of planar massless scalar waves impinging on
Bardeen BHs. In this section we show a selection of our
results.
In Fig. 5 we present the partial absorption cross sections

[given by Eq. (15)] forQ ¼ 0.4; 0.6; 0.8 and 0.9999 and for
different values of l. We see that for l ¼ 0 the limit ω → 0
results in σabs → Ah, in agreement with the result men-
tioned in Sec. III B.
In Fig. 6 we present the total absorption cross section

[given by Eq. (14)] in the Bardeen BH case, for Q ¼
0.6; 0.8 and 0.9999, as well as in the Schwarzschild BH
case. The horizontal lines are the high-frequency limits in
each case. We see that the increasing of the monopole
charge implies a decreasing of the absorption cross section,
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FIG. 3 (color online). Capture cross section of null geodesics
(σgeo) by Bardeen and RN BHs. The results for Bardeen BHs
have qualitatively the same behavior of the RN BHs, with the
former presenting a bigger capture cross section for the same
value of the normalized charge.
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FIG. 4 (color online). Comparison between the full numerical
computation of the total absorption cross section of Bardeen
regular BHs, given by Eq. (14), with the high-frequency (sinc)
approximation, given by Eq. (22). We can see that the numerical
and the approximate analytical results agree remarkably well
even for intermediate values of the frequency.
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in agreement with the increasing of the scattering potential
(cf. Fig. 1), as well as with the decreasing of the horizon
area (cf. Fig. 2). The sum of the partial absorption cross
sections generates the oscillatory profile shown in the plots
of Fig. 6.

In Fig. 7 we compare the absorption cross section of
Bardeen and RN BHs, for the same values ofQ. As already
mentioned in Sec. III B (cf. Fig. 3), the high-frequency limit
of the absorption cross section of the Bardeen BH is bigger
than the correspondent RN BH case with the same value of
Q. We verified that this behavior (bigger absorption for the
Bardeen BH) also applies to the total absorption cross
section as a whole, for any fixed value of the frequency ω,
for the same normalized charge Qð> 0Þ. This is in
accordance with the fact that the scalar field potential
for the RN BH is always bigger than the corresponding one
for the Bardeen BH, as it is shown in Fig. 8, where we plot
the case in which l ¼ 0. Larger values of l present a similar
behavior.
Although for the same values ofQ the Bardeen BH has a

bigger absorption cross section than the corresponding RN
BH, for different values of the normalized charge Q they
can have the same capture cross section, i.e., the same high-
frequency limit of the absorption cross section. In Fig. 9 we
plot the values of the normalized charge for which the
capture (or high-frequency absorption) cross section is the
same for Bardeen and RN BHs. We can see from Fig. 9 that
the RN BH must have a lower value of the normalized
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FIG. 5 (color online). Partial absorption cross sections of massless scalar waves by Bardeen BHs. Different frames correspond to
different values of the normalized monopole charge Q. For comparison, in the top-left frame we also plot the partial absorption cross
sections of the Schwarzschild BH (dotted lines).
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FIG. 6 (color online). Absorption cross section of massless
scalar waves by Bardeen BHs, compared with the capture cross
section in each case (horizontal lines). The Schwarzschild BH
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charge in order to have the same capture cross section of a
Bardeen BH.
The equality between the high-frequency values of the

absorption cross section of RN and Bardeen BHs with
different normalized charges raises the following question:
Can a Bardeen BH produce the same absorption spectrum
of a RN BH? To answer this, we have computed the
absorption cross section for configurations which have the
same high-frequency limits. Some results are shown in
Fig. 10, where we plot the configurations for which
ðQRN; QBDÞ are chosen to be (0.6, 0.46809) and
(0.8, 0.63252). We can see that the low-frequency absorp-
tion cross section is different, although not only the high-
frequency limits are the same, but also the oscillation
profiles are similar.
The similarity of the oscillation profile of Bardeen and

RN BHs with the same σgeo can be understood as follows.
From Eq. (21), we see that the oscillation pattern depends
on 2π=Ωl. Since we use configurations with the same

capture cross section, the angular velocity (Ωl) of the null
geodesics are also the same, once bc ¼ 1=Ωl. Therefore,
the frequency of oscillation of the two configurations will
be similar.
The above scenario suggests that a regular black hole

can, in principle, mimic a black hole with singularities, as
far as a mid-to-high-frequency absorption cross section is
concerned. However, we should note that, as Fig. 9 shows,
there is no complete correspondence between Bardeen and
RN BHs absorption spectra with the same capture cross
section, as it can be seen in Fig. 10. Moreover, as it can be
verified in Fig. 9, for a Bardeen BH with Q ¼ 1, the
corresponding RN BH with the same value of the capture
cross section has a normalized charge Q ¼ 0.8109.
Therefore, for a RN BH with a charge Q > 0.8109 there
is no correspondent Bardeen BH with the same capture
cross section.
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FIG. 7 (color online). Comparison of the absorption cross
section for the Bardeen and the RN BH cases with the same
values of Q. The plots show Q ¼ 0.6 and 0.9999.
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FIG. 8 (color online). Ratio between the scalar field potential of
the RN (Vϕ;RN) and Bardeen BHs (Vϕ;BD), for l ¼ 0 andQ ¼ 0.4,
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FIG. 9. Values of the normalized charge for which the capture
cross section of Bardeen and RN BHs is the same.
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FIG. 10 (color online). Total absorption cross section for
Bardeen and RN BHs with the same high-frequency limit
(horizontal lines). We have chosen (QRN; QBD) to be
(0.6,0.46809) and (0.8,0.63252). We see that their oscillation
profiles are similar, but their low-frequency limits are different.
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V. FINAL REMARKS

In this paper we presented a study of the absorption
properties of regular black holes: objects which have event
horizons but not singularities. For that purpose, we ana-
lyzed the case of an asymptotic planar massless scalar wave
impinging upon a Bardeen regular black hole [41].
We computed numerically the massless scalar absorption

cross section of Bardeen regular black holes showing that
the generic oscillation behavior of spherical black holes
with singularities, like the Schwarzschild and Reissner–
Nordström ones, is also present in the case of Bardeen
regular black holes. The increasing of the monopole charge,
starting from the Schwarzschild black hole case (for which
Q ¼ 0), implies a decreasing of the absorption cross
section. Our numerical results are in full agreement with
the low- and high-frequency limits of the absorption cross
section, which can be obtained analytically.
We compared the massless absorption cross section of a

Bardeen black hole with the one of a Reissner–Nordström
black hole with the same value of the normalized charge Q.
We obtained that the behavior of the absorption cross
section is qualitatively similar in both cases, but the
Bardeen case always presents a bigger absorption cross
section than the Reissner–Nordström case, for any fixed
values of ðω; QÞ.
Based on the behavior of null geodesics, we have shown

that the capture cross section of a Bardeen black hole is

always bigger than the corresponding one of a Reissner–
Nordström black hole with the same value of Q. We have
also shown that a Bardeen black hole can have the same
capture cross section of a Reissner–Nordström black hole
with a different value of Q.
We computed numerically the massless scalar absorption

cross section for arbitrary frequencies by Bardeen and
Reissner–Nordström black holes with the same high-
frequency limit. We concluded that, more than having
the same capture cross section, the oscillation of the
absorption cross section is similar for both cases. This
comes from the fact that the oscillation depends on the
angular velocity of the null circular geodesic, which is the
same for the two cases. Our results suggest that some
regular black holes could be mimicked by black holes with
singularities, as far as mid-to-high-frequency absorption
properties are concerned. The differences between the two
cases manifest mainly in the low-frequency regime.
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