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The recent detection of the B-mode polarization from the BICEP2 observation, if confirmed to be
primordial, seems to be in tension with the upper bound on the amplitude of tensor perturbations from the
PLANCK data. We consider a phenomenological model of inflation in which the microscopical properties
of the inflationary fluid such as the equation of state w or the sound speed cs jump in a sharp manner. We
show that the amplitude of the scalar perturbations is controlled by a nontrivial combination of w and cs
before and after the phase transition while the tensor perturbations remains nearly intact. With an
appropriate choice of the fluid parameters w and cs one can suppress the scalar perturbation power
spectrum on large scales to accommodate a large tensor amplitude.
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I. INTRODUCTION

The BICEP2 observation has reported a detection of
B-mode polarization in Cosmic Microwave Background
(CMB) on l ∼ 100 [1] which, if primordial, implies the
detection of the inflationary gravitational waves with the
tensor-to-scalar ratio r ¼ 0.2þ0.07

−0.05 . However, at this level it
is far from conclusive if the detected B-mode polarization
has the primordial origins. As studied critically in [2] and
[3], see also [4], a combination of interstellar dust and
standard CMB lensing can account for the entire BICEP2
detection. Therefore, one shall wait for the upcoming
PLANCK data release to settle this issue. Having this
said, assuming the BICEP2 detection is entirely primordial,
this high value of tensor amplitude brings friction with
the PLANCK date [5] in which it is found r < 0.11 at
95% C.L. This is because a high value of r implies a large
temperature power spectrum from the sum of the scalar and
the tensor perturbations at low l multipoles which is not
observed.
The BICEP2 collaboration already presented a possible

resolution to this conflict by allowing the curvature
perturbation spectral index ns to run with αs ¼ d ln ns=
d ln k≃ −0.02. However, this large value of αs is not easy
to achieve in simple models of slow-roll inflation in which
αs ∼ ðns − 1Þ2 so with ns ≃ 0.96 one typically obtains
αs ∼ 10−4. As a possible proposal to remedy this conflict
it was argued in [6,7] that a suppression of curvature
perturbation power spectrum PR on low multipoles
can help to keep the total tensor þ scalar contributions
in temperature power spectrum consistent with the
PLANCK data, see also [8–11] for similar line of thought.
The mechanism employed in [6,7], following their earlier

works [12–15], are based on the scalar field dynamics in
which a jump either in the slow-roll parameter ϵ≡ − _H=H2

or in sound speed cs is induced to reduce PR on large
scales. To see how this works, note that PR is given by
PR ¼ H2

8π2M2
Pϵcs

in which H is the Hubble expansion rate

during inflation and MP is the reduced Planck mass. As a
result, one can change either cs or ϵ to lower PR on large
scales. The idea of producing local features during infla-
tion, like the above two mentioned mechanisms, have been
studied vastly in the literature for various purposes, for an
incomplete list see [16–39].
In this paper we present a model of single fluid inflation

in which the fluid’s microscopical properties such as the
equation of state w or the sound speed cs undergo a sharp
jump. In the spirit this idea is similar to the proposal
employed in [6] and [7]. However, we do not restrict
ourselves to scalar field theory. Working with the fluid
description of inflation will help us to engineer the required
jump in fluid’s microscopical properties without entering
into technicalities associated with the scalar field dynamics.
Therefore the results obtained here, based on the general
context of fluid inflation, can be employed for the broad
class of inflation from a single degree of freedom, in which
the scalar field theory is the prime example. In addition, we
present a careful matching condition on the surface of
fluid’s phase transition. For a sharp phase transition, after
performing the proper matching conditions, our analysis
shows that some con-trivial combinations of cs and w
controls the final amplitude of curvature perturbation power
spectrum. This should be compared from the usual expect-
ation that it is the combination ϵcs, as appearing in PR,
which has to jump. This is true for mild phase transition but
for a sharp or nearly sharp transition there are additional
nontrivial combinations of cs and wwhich controls the final
amplitude of PR as we shall see below.
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Having this said, we emphasis that our model is a
phenomenological one. We do not provide a Lagrangian
mechanism for the fluid. For the simple case of fluid
inflation based on a barotropic fluid a Lagrangian formal-
ism is presented in [40]. In principle a similar Lagrangian
formalism can be considered for the general case in which
the fluid may be nonbarotropic. Also note that we consider
a single fluid with no entropy perturbations. As a result, the
curvature perturbations on superhorizon scales remain
frozen as we shall verify explicitly.
Note that we need the jump to be extended for one or two

e-folds. The first reason is that while we want to reduce PR
on low multipoles, it should stabilize to its well-measured
value for l≳ 100. Secondly, a very sharp phase transition
will induce dangerous spiky local-type non-Gaussianities
and unwanted oscillations in PR which may not be
consistent with the PLANCK date [5]. As a result, in
our numerical results below we consider the limit in which
the duration of phase transition takes one or two e-folds.

II. THE SETUP

In this section we present our setup. As explained
above, we consider a model of inflation based on a single
fluid. In addition, we assume that the microscopical
properties of the fluid w and cs undergo a rapid change
from ðw1; cs1Þ during the first phase of inflation to ðw2; cs2Þ
for the second stage of inflation. In order to get theoretical
insight how the jump in ðw; csÞ can help to reduce PR we
consider the idealistic limit in which the phase transition
happens instantly with no time gap. In this limit we can
calculate the final power spectrum analytically and see how
the model parameters control the result. However, as we
mentioned before, to be realistic we need the phase
transition to take one or two e-folds in order to prevent
generating large non-Gaussianities and unwanted oscilla-
tions superimposed on PR on small scales. While our
analytical results are for a sharp phase transitions, but we
present the numerical results for the realistic case in which
transition takes one or two e-folds.
We assume that in each phase w and cs are constant and

are independent free parameters. Only for barotropic fluids
one can simply relate cs and w such as c2s ¼ w. Therefore,
in our discussions below, each fluid is labeled by its
parameters ðwi; csiÞ which are determined from its ther-
modynamical/microscopical properties.
We do not provide a specific dynamical mechanism for

the jumps in w and cs. However, in principle, one can
engineer this effect by coupling the inflaton fluid to
additional fluid or field. For example, consider the model
in which the inflaton field is coupled to a heavy waterfall
field. During the first stage of inflation the waterfall is very
heavy so we are only dealing with a single field model.
Once the inflaton field reaches a critical value the waterfall
becomes tachyonic and rapidly rolls to its global minimum.
The back-reactions of the waterfall induces a new mass

term for inflaton field and will affect its trajectory. As long
as the waterfall is heavy and the waterfall phase transition is
sharp, one can effectively consider the system as a single
field model with the effects of the waterfall instability to
cause a sudden change in slow roll parameters.

A. The background dynamics

With these discussions in mind, let us proceed with our
analysis. The background is a flat FLRW universe with the
metric

ds2 ¼ −dt2 þ aðtÞ2dx2 ¼ a2ðηÞð−dη2 þ dx2Þ; ð1Þ

in which η, defined by dη ¼ dt=aðtÞ, is the conformal time.
Denoting the energy density and the pressure of the

fluid by ρ and P respectively, the equation of state is
w ¼ P=ρ. We assume inflation has two stages separated at
η ¼ η�. For the period η < η� our parameters are w ¼ w1,
cs ¼ cs1 while for η� < η < ηe they are w ¼ w2, cs ¼ cs2
in which ηe represents the time of end of inflation. In
order to support inflation we assume −1 < wi < −1=3,
while for the slow-roll model we may further assume
that 1þ wi → 0.
Using the energy conservation equation the evolution of

energy density is given by

ρ ¼ ρ�

�
a
a�

�
−3ð1þwÞ

; ð2Þ

in which ρ� represents the value of ρ at the time of phase
transition (with similar definition for other quantities with
the subscript �). Note that the above equation is valid for
each phase so we have removed the index i.
In addition, the Friedmann equation is

3MP
2H2 ¼ a2ρ; ð3Þ

where H ¼ a0=a is the conformal Hubble parameter in
which a prime represents the derivative with respect to
conformal time η. One can easily integrate the Friedmann
equation to get

aiðηÞ ¼ a�

�
H�
β

ðη − η�Þ þ 1

�
βi
; ð4Þ

where aiðηÞ means the value of aðηÞ during each phase
i ¼ 1, 2 and we have defined the parameter βi via

βi ≡ 2

3wi þ 1
: ð5Þ

Taking the conformal time derivative from Eq. (4) we get

Hi ¼
H�

1þ H�
βi
ðη − η�Þ

: ð6Þ
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One can check that both aðηÞ and H are continuous at the
time of phase transition η ¼ η� when w and cs undergo a
sudden change.

B. The perturbations

Now we study the scalar and the tensor perturbations in
this setup. The analysis of the scalar perturbations are
similar to the analysis in [41] and here we outline the main
results.

1. Scalar perturbations

The equation of motion for the curvature perturbations
on comoving surfaceR for a fluid with the known equation
of state parameter w and sound speed cs in the Fourier
space is given by

R00
k þ ðz2Þ0

z2
R0

k þ c2sk2Rk ¼ 0; ð7Þ

where

z≡ aðηÞMP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ

p
=cs: ð8Þ

Note that cs is defined as δPc ¼ c2sδρc in which the
subscript c indicates that the corresponding quantities
are calculated on the comoving hypersurface. We comment
that Eq. (7) (with the constant w and cs) is the same as
Eq. (4.17) in [42] with the quadratic action for R given in
their Eq. (4.17).
For constant values of w and cs one can easily solve

Eq. (7) in each phase. However, one has to perform the
matching conditions at the time of transition η ¼ η� to
match the outgoing solutions to the incoming solutions
[43]. The first matching condition is that the curvature
perturbation to be continues

½Rk�þ− ¼ 0; ð9Þ

where ½X�þ− denotes the difference in X after and before the
transition: ½X�þ− ¼ XðηþÞ − Xðη−Þ. Geometrically, the con-
tinuity of R is interpreted as the continuity of the extrinsic
and the intrinsic curvatures on the three-dimensional spatial
hypersurfaces located at η ¼ η�.
To find the matching condition for the time derivative of

R we note that Eq. (7) can be rewritten as

d
dη

�
a2

c2s
ð1þ wÞR0

k

�
þ a2ð1þ wÞk2Rk ¼ 0: ð10Þ

Integrating the above equation in a small time interval
around the surface of the phase transition, the last term
above vanishes and we obtain the second matching con-
dition as follows:

�
1þ w
c2s

R0
k

�
�
¼ 0: ð11Þ

Note the nontrivial combination ð1þ wÞ=c2s which appears
in this matching condition. This will play important roles
when we calculate the final power spectrum after perform-
ing the matching conditions. We mention that if one
naively imposes the matching conditions by requiring
the continuity of the Sasaki-Mukhanov variable v ¼ zR ∝
a

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p
R=cs and its derivative v0, as done in some

previous works, one obtains wrong results.
One can easily solve the equation of motion for Rk. For

constant values of w and cs, we have z0=z ¼ a0=a ¼ H.
As a result Eq. (7) simplifies to

�
d2

dx2
þ 2β

x
d
dx

þ 1

�
Rk ¼ 0; ð12Þ

where

x≡ −cskðη − η� þ βH−1� Þ: ð13Þ

The solution is

Rk ¼ xν½C1H
ð1Þ
ν ðxÞ þD1H

ð2Þ
ν ðxÞ�;

ν≡ 1

2
− β ¼ 3ðw − 1Þ

2ð3wþ 1Þ ; ð14Þ

in which C1 and D1 are constants of integration while
Hð1Þ

ν ðxÞ and Hð2Þ
ν ðxÞ are the Hankel functions of the first

and second kinds, respectively. Note that for slow-roll
inflation with w≃ −1, we have ν≃ 3=2.
For the modes deep inside the horizon the solution

should approach the Minkowski positive frequency mode
function so for η → −∞ we require

Rk →
e−icskη

zðηÞ ffiffiffiffiffiffiffiffiffi
2csk

p for η → −∞: ð15Þ

Imposing this initial condition on Rk and using the
asymptotic form of the Hankel function we find D1 ¼ 0
and

RkðηÞ ¼ C1x1ðηÞν1Hð1Þ
ν1 ðx1ðηÞÞ; η < η�; ð16Þ

where

x1 ≡ −cs1kðη − η� þ β1H−1� Þ;

ν1 ¼
1

2
− β1 ¼

3ðw1 − 1Þ
2ð3w1 þ 1Þ ; ð17Þ

and
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C1 ≡ −1
2MPa�

�
iπcs1eiπν1

3kð1þ w1Þ
�

1=2

x1=2−ν11� : ð18Þ

Not that x1� ¼ x1ðη�Þ and so on.
We would like to calculate the curvature perturbationRk

at the end of inflation ηe ≃ 0. The curvature perturbation
power spectrum PR is given by

hRkRk0 i≡ ð2πÞ3PRðkÞδ3ðkþ k0Þ; PR ≡ k3

2π2
PRðkÞ;

PRðkÞ ¼ jRkj2: ð19Þ

For the modes that leave the sound horizon during the
first stage of inflation, the power spectrum at the time
η ¼ η� in the slow-roll limit (ϵ ≪ 1) is given by

PRðη�Þ≃ H2�
8π2MP

2cs1ϵ1
; ð20Þ

in which the slow-roll parameter ϵ is

ϵ≡ −
_H
H2

¼ 3

2
ð1þ wÞ: ð21Þ

Since we work with a single adiabatic fluid the curvature
perturbation is conserved if this mode remains super-
horizon until the end of inflation, and we have

PRðηeÞ ¼ PRðηη� Þ≃
H2�

8π2MP
2cs1ϵ1

: ð22Þ

For the second stage of inflation we have

RkðηÞ ¼ C2x
ν2
2 H

ð1Þ
ν2 ðx2ðηÞÞ þD2x

ν2
2 H

ð2Þ
ν2 ðx2ðηÞÞ;

η� < η < ηe; ð23Þ

where x2ðηÞ is defined in accordance with the general
definition (13),

x2 ≡ −cs2kðη − η� þ β2H−1� Þ;

ν2 ¼
1

2
− β2 ¼

3ðw2 − 1Þ
2ð3w2 þ 1Þ : ð24Þ

Imposing the matching condition forR andR0 at η ¼ η�,
we can calculate C2 and D2 in terms of C1. Following [41]
we obtain

C2 ¼ −
πxν11�

4ixν2−12�
C1½Hð1Þ

ν1 ðx1�ÞHð2Þ
ν2−1ðx2�Þ − fHð1Þ

ν1−1ðx1�ÞH
ð2Þ
ν2 ðx2�Þ�; ð25Þ

D2 ¼
πxν11�

4ixν2−12�
C1½Hð1Þ

ν1 ðx1�ÞHð1Þ
ν2−1ðx2�Þ − fHð1Þ

ν1−1ðx1�ÞH
ð1Þ
ν2 ðx2�Þ�; ð26Þ

where we have defined

f ≡ ð1þ w1Þ
ð1þ w2Þ

cs2
cs1

¼ ϵ1cs2
ϵ2cs1

: ð27Þ

As usual, we are interested in modes that are super-
horizon at the end of inflation x2ðηeÞ ≪ 1 for ηe → 0.
Using the small argument limit of the Hankel function,
we obtain

Rkðηe → 0Þ≃ −
i2ν2

π
Γðν2ÞðC2 −D2Þ: ð28Þ

As in [41] we define the transfer function TR for the
curvature perturbation power spectrum as

PRðηeÞ ¼ TRPR1
ðηeÞ; ð29Þ

where PR1
ðηeÞ is the power spectrum at the end of inflation

in the absence of any change in w and cs, i.e. when w ¼ w1

and cs ¼ cs1 throughout the inflationary stage, as calcu-
lated in Eq. (22). Assuming ν1 ≃ ν2 ≃ 3=2 we obtain

TR ≃ jC2 −D2j2
jC1j2

: ð30Þ

In this view any nontrivial effect due to change in w and cs
is captured by the transfer function TR.
Using the results for C2 and D2 given in Eqs. (25) and

(26) we obtain

TR ¼
�

πxν11�
2xν2−12�

�
2

jHð1Þ
ν1 ðx1�ÞJν2−1ðx2�Þ

− fHð1Þ
ν1−1ðx1�ÞJν2ðx2�Þj2: ð31Þ

Note that

x1ðη�Þ ¼ −
cs1kβ1
H�

; x2ðη�Þ ¼ −
cs2kβ2
H�

: ð32Þ

The discussions above were general with no slow-roll
assumptions. To get better insights into the results, let us
consider the simple and more realistic case in which
wi ≃ −1 corresponding to ϵi ≃ 0. In this limit, βi and νi
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are nearly insensitive to the change in w or ϵ and one
practically takes βi ¼ −1 and νi ¼ 3=2. In this limit x1� ¼
cs1k� and x2� ¼ cs2k� ¼ cs2

cs1
k� in which we have defined

k� ≡ k
H�

: ð33Þ

Note that k� represents the mode that leaves the sound
horizon at the time η� in the absence of phase transition, i.e.
when w1 ¼ w2 and cs1 ¼ cs2. In the slow-roll approxima-
tions the transfer function simplifies to

TRðkÞ ¼
�
π2k2�cs31
4cs2

�����Hð1Þ
3
2

ðcs1k�ÞJ1
2

�
cs2
cs1

k�

�

− fHð1Þ
1
2

ðcs1k�ÞJ3
2

�
cs2
cs1

k�

�����
2

ðslow-rollÞ: ð34Þ

The interesting effect is that depending on the ratio
cs2=cs1 the inverse comoving sound horizon, H=cs, shows
nontrivial behaviors. First assume that cs2 < cs1. In this
limit the structure of the comoving sound horizon is similar
to conventional models of inflation in which H=cs is an
increasing function in both periods of inflation. As a result,
a mode which is outside the sound horizon during the first
period of inflation, corresponding to x1� ¼ cs1k� < 1, will
also be outside the sound horizon during the second stage
of inflation with x2� ¼ cs2k� < 1. Using the small argu-
ment limit of the Bessel functions, one can easily check
from Eq. (34) that TR → 1. This is expected since we work
with a single adiabatic fluid so R is blind to changes in w
and cs on super-horizon scales. In addition, there are modes
which are inside the sound horizon during the first stage of
inflation, cs1k� > 1, but leaves the sound horizon during
the second stage, cs2k� < 1. As expected, TRðkÞ shows
nontrivial behaviors for these modes.
Now consider the case in which cs2 > cs1 so x2� > x1�.

In this limit H=cs decreases during the second stage of
inflation briefly before increasing again. A plot of the
behavior of H=cs is given in Fig. 1. Now there are three
possibilities for whether a mode is superhorizon or sub-
horizon. (a) There are modes which are outside the sound
horizon in both periods of inflation, corresponding to the
case where x2� < 1. In this limit, one can easily check that
TR → 1 as explained before. (b) There are modes which are
outside the sound horizon during the first stage of inflation,
but reenter the sound horizon during the second stage of
inflation and after some time leave the sound-horizon
again. This is a new behavior which does not exist in
conventional models of inflation in which H=cs is always
increasing. (c) This corresponds to the case in which the
mode is inside the sound horizon during both stages of
inflation with x1� > 1.
We present the analytical and numerical plots of PR in

the next section.

2. The tensor perturbations

Now we study tensor perturbations in this background.
The equation of motion for the tensor perturbation hij

subject to ∂jhij ¼ hii ¼ 0 (sum over the repeated indices)
is given by

D00
k þ 2HD0

k þ k2Dk ¼ 0; ð35Þ

where we have used the decomposition hij ∼ eijDkeik·x in
Fourier space in which eij represents the two polarizations
of the tensor perturbations.
We note that Eq. (35) for tensor perturbation has the

same form as the scalar perturbations Eq. (7) with the
replacement z ¼ a and cs ¼ 1. The latter condition is
originated from the fact that the tensor perturbations
propagate with the speed of massless particles which is
set to unity. In addition, note that the parameter w does not
enter into tensor perturbations directly, it only enters
indirectly through the background expansion H.
The solution for the tensor perturbations has the same

form as Eq. (14) for the first phase and Eq. (23) for the
second phase. After imposing the matching conditions and
defining the transfer function for the tensor perturbations
TT similar to scalar perturbations, we obtain

TT ¼
�

πyν11�
2yν2−12�

�
2

jHð1Þ
ν1 ðy1�ÞJν2−1ðy2�Þ

−Hð1Þ
ν1−1ðy1�ÞJν2ðy2�Þj2; ð36Þ

4 6 8 10
n

0.02

0.04

0.06

0.08

0.10

cs

FIG. 1 (color online). The plot of the inverse comoving
sound horizon H=cs as a function of the number of e-folds n
for the case II in which cs2 > cs1. There are three different
distinct behaviors for the modes. The lower dashed line repre-
sents modes which are outside the sound horizon during both
stages of inflation. The middle solid line represents modes which
leave the sound horizon during the first stage of inflation, re-enter
the sound horizon during the second stage of inflation and leave
the sound horizon again during the second period of inflation.
The upper dashed-dotted line represents modes which are inside
the sound horizon during both periods of inflation. Here
cs1 ¼ 0.2, cs2 ¼ 1.0, w1 ¼ −0.96, w2 ¼ −0.996.
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in which we have defined yi ¼ xi=csi. The difference
between xi and yi is originated from the fact that the
tensor perturbations propagate with the speed equal to unity
and do not see the sound speed cs. In addition, note that
unlike TR, in TT expression the factor f did not appear.
This is because the factor f is originated from the factor
ð1þ wÞ=c2s in the matching condition Eq. (11).
The dependence of TT to changes in background only

come via the factor βi or νi which are not sensitive
functions of w. Therefore, one expects that the gravitational
waves are nearly insensitive to the changes in w or cs. To
see this more easily, consider the slow-roll limit in which
νi ¼ 3=2, βi ¼ −1 and y1� ¼ y2�. In this approximation,
Eq. (4) simplifies to

TT ≃ π2y31�
4y1�

jHð1Þ
3
2

ðy1�ÞJ1
2
ðy1�Þ −Hð1Þ

1
2

ðy1�ÞJ3
2
ðy1�Þj2 ¼ 1:

ð37Þ

We also checked numerically that TT has only a mild
dependence to the changes in w and cs.
Finally, let us denote the ratio of the two transfer

functions by γ ≡ TT=TR. From the above discussions it
is clear that γðkÞ inherits most of its nontrivial behavior
from TR. The ratio of the tensor power spectrum to the
scalar power spectrum r≡ PT=PR is related to γ via

rðkÞ ¼ γðkÞrðk�Þ: ð38Þ

We see that a nontrivial scale dependence in γðkÞ is
translated into a scale dependent of rðkÞ.

III. THE NUMERICAL RESULTS

Here we present our numerical results to see as how a
jump in ðw; csÞ can reconcile the tension between the
PLANCK and the BICEP2 data. As we explained before,
this tension can be alleviated if we consider the situation in
which PR is reduced for low-l multipoles so the total
combination of tensor+scalar power spectra matches the
PLANCK observations in this regions.
We present the plots for both the idealistic case with

arbitrarily sharp phase transition and the realistic case in
which the phase transition is mild enough to get rid of
unwanted non-Gaussinities and oscillations in PR. In our
numerical analysis for the not too sharp phase transition we
assume the phase transition takes 1.5 e-folds.
First we consider the case in which cs2 < cs1 (in our

numerical plots, this case is known as case I). As discussed
before, in this case H=cs is increasing during both periods
of inflation so the comoving sound horizon has the same
structure as in conventional models. In Fig. 2 we have
presented the power spectrum for both the infinitely sharp
transition and the near mild transition. As described before,
assuming that the phase transition is not infinitely sharp
will eliminate the unwanted oscillations on small scales.
For modes which are outside the sound-horizon PR is
nearly insensitive to the change in w and cs and it follows
its original nearly scale-invariant shape with a small red-tilt.

0.1 0.5 1. 5. 10.
x1 Η

2.4 10 9

2. 10 9

1.6 10 9

0.1 0.2 0.5 1.0 2.0 5.0 10.0
x1 Η

2.2 10 9

2. 10 9

1.8 10 9

1.6 10 9

0.1 0.5 1.0 5.0 10.0 50.0
y1 Η

1.55 10 10

1.45 10 10

1.35 10 10

T

FIG. 2 (color online). Case I: cs1 ¼ 1.0, cs2 ¼ 0.8, ϵ1 ¼ 0.012, ϵ2 ¼ 0.01. The left plot is for an infinitely sharp phase transition while
the right plot represents the case in which the phase transition takes 1.5 e-folds. The bottom plot if for PT. As we see, the tensor
perturbations are nearly insensitive to the phase transition.
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However, for modes which are inside the sound horizon
during the first stage of inflation, the situation is nontrivial.
This corresponds to the case in which x1� > 1 but x2� < 1.
Using the small and the large arguments limit of the Hankel
functions, one can check that TR ∼ k2. This strong k
dependence is seen near x1� > 1 in Fig. 2. Finally for
the modes which are inside the sound horizon in both
periods of inflation PR reaches nearly a constant value in

which the oscillations are damped assuming the phase
transition is mild enough. Physically this makes sense,
since very small scales are blind to nearly mild phase
transitions which happened in the past inflationary history.
Now we consider the interesting case in which cs2 > cs1

(denoted in numerical plots by case II). Of course, to
enhance the final power spectrum we need ϵ2 < ϵ1 such
that cs2ϵ2 < cs1ϵ1. In Fig. 3 we have presented the shape of
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FIG. 3 (color online). The same plot as in Fig. 2 but for case II: cs1 ¼ 0.8, cs2 ¼ 1.0, ϵ1 ¼ 0.016, ϵ2 ¼ 0.007. Note that the qualitative
shape of the jump in PR is different than the case in Fig. 2. The bottom plot represents the tensor power spectrum. Interestingly,
the tensor perturbations are more affected compared to case I in Fig. 2 since ϵ2 has decreased significantly in order to
maintain ϵ2cs2 < ϵ1cs1.

FIG. 4 (color online). Here we present the TT power spectrum in whichDl is related to Cl viaDl ¼ lðlþ 1ÞCl=2π. The red dashed-
dotted curve and the blue dashed curve, as in previous plots, correspond to case I (cs < 1) and II (cs > 1) respectively. The solid black
curve represent the standard ΛCDM with r ¼ 0. The upper dotted-dashed-black curve is for ΛCDM with r ¼ 0.2.
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the final power spectrum for this case. As described at the
end of subsection II B 1 and in Fig. 1, there are three
possibilities labeled (a), (b) and (c) for whether the mode is
inside the sound horizon or outside the sound horizon. For
case (a) the mode is outside the sound horizon during both
stages of inflation and TR → 1. The case (b) is nontrivial in
which the mode is outside the sound horizon during the first
period of inflation, reenter the sound horizon during the
second stage of inflation and leave the sound horizon again.
The shape of TR and the final power spectrum are
complicated functions which depend nontrivially on csi
and wi. In particular, the factor f ¼ ϵ1cs2=ϵ2cs1 plays a
nontrivial role. Note that with cs2 < cs1 and ϵ1 > ϵ2, f can
be a relatively large number. In this case, using the

asymptotic limit of Bessel functions, we get TR ∼ cs2ϵ21
cs1ϵ22

.

Finally for the case (c) in which the mode is inside the

sound horizon in both stages of inflation, we have TR ∼ ϵ2
1

ϵ2
2

.

We have checked that both of these estimations for TR for
cases (b) and (c) are in reasonable agreement with the full
numerical analysis with a relatively mild phase transition.
We also presents the predictions of our model for the TT,

EE and BB correlations using the CAMB software. In order
to run CAMB we make an analytic template which mimics
the tensor and scalar power spectra. We then play with the
scale at which the transition occurs, k�, and also slightly
change the initial amplitudes to obtain reasonable plots.
In the plots we have set k� ¼ 0.0005 Mpc−1.
In Fig. 4 we present the temperature power spectrum TT

for both cases cs1 > cs2 and cs1 < cs2. As can be seen
schematically, on low multipoles the temperature power
spectrum can be reduced to match the power deficiency as
observed by PLANCK while on l ≥ 100 the temperature
power spectrum matches the well-measured results of
ΛCDM. Of course, to see whether our model provides a

better fit one has to perform a careful numerical analysis
using the BICEP2 and PLANCK data.
In Fig. 5 we present the EE power spectra of our model

compared to the results from ΛCDM with r ¼ 0 and
r ¼ 0.2. In Fig. 6 we present the BB power spectrum of
our model compared with the results from ΛCDM. Finally,
in Fig. 7 we present the tensor power spectrum. The general
conclusion is that, compared to the ΛCDM, one can
enhance the power spectrum of tensor perturbations in
our model while reducing the amplitude of the scalar
perturbations on low multipoles. As a result, one can
alleviate the tension between the PLANCK and the
BICEP2 observations. Our numerical analysis are sche-
matic, only at the level of demonstration of the validity of
the idea employed. One has to perform a careful data
analysis using the actual BICEP2 and PLANCK data to see

FIG. 5 (color online). The EE power spectrum with DEE
l ¼ lðlþ 1ÞCEE

l =2π. The curves’ descriptions and the parameters are the
same as in Fig. 4.

FIG. 6 (color online). The BB power spectrum with
DBB

l ¼ lðlþ 1ÞCBB
l =2π. The dashed and dotted-dashed curves

are the same as in previous plots. The solid black curve is for
ΛCDM with r ¼ 0.004.
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whether this theory is a better fit compared to standard
ΛCDM model.
To summarize, we have shown that the tension between

the PLANCK and the BICEP2 observations can be alle-
viated in models of single fluid inflation in which the
microscopical properties of the fluid such as the equation of
state or the sound speed undergo a jump. As we have seen,
the tensor perturbations do not feel the changes in w and cs
directly while the changes in w and cs directly affect the
evolution of the scalar perturbations. Technically this

originated from the nontrivial matching condition for R0
as given in Eq. (11) and the fact that, unlike the tensor
perturbations, the evolution of scalar perturbations is
controlled by the sound horizon incorporating the addi-
tional parameter cs. The qualitative jump in PR for the case
cs2 > cs1 is different than the case cs2 < cs1 as can be seen
in Figs. 2 and 3. This is attributed to the fact that in
scenarios with cs2 > cs1 the structure of the comoving
sound horizon is different the usual inflationary models in
which H=cs is a monotonically increasing function.
In this paper we followed a phenomenological approach

and did not present a dynamical mechanism in generating
the rapid jump in w and cs. As we argued before, this may
be engineered if one couples the inflaton fluid or field to
other fluids or fields. The idea of a sharp waterfall during
the early stage of inflation, as used in [44], is an interesting
example which can be used to engineer the jump in ϵ
dynamically. Alternatively, one may look into models of
brane inflation from string theory in which there are brane
annihilations during inflation such as in [32,33]. Also one
may find a natural mechanism for a sudden change either in
slow-roll parameters or the sound speed cs via fields
annihilation and particle creations [35,45–47].
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