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We analyze a model of hybrid natural inflation based on the smallest non-Abelian discrete group S3.
Leading invariant terms in the scalar potential have an accidental global symmetry that is spontaneously
broken, providing a pseudo-Goldstone boson that is identified as the inflaton. The S3 symmetry restricts
both the form of the inflaton potential and the couplings of the inflaton field to the waterfall fields
responsible for the end of inflation. We identify viable points in the model parameter space. Although the
power in tensor modes is small in most of the parameter space of the model, we identify parameter choices
that yield potentially observable values of r without super-Planckian initial values of the inflaton field.
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I. INTRODUCTION

Measurements of the anisotropy in the cosmic micro-
wave background (CMB) have led to the development
of a “standard model” of cosmology, with a cosmological
constant, cold dark matter and a spectrum of initial CMB
fluctuations that seed large scale structure [1]. It is widely
believed that these initial fluctuations arise from an infla-
tionary epoch, resulting in a nearly scale-invariant spec-
trum. More precise measurements of the CMB fluctuations,
including polarization measurements, have been carried
out by experiments such as WMAP [2], PLANCK [3]
and BICEP2 [4]. These measurements provide information
about initial metric perturbations that can severely constrain
(or rule out) various inflationary models.
In order to satisfy the limits on the size of the CMB

anisotropy fluctuations, the scalar self-coupling constant
of the inflaton field must be very small, typically less than
10−12 in most realistic models [5]. While such a small
coupling could be assumed, it would be aesthetically more
desirable if it arose naturally. This is the case for theories in
which the inflaton is identified with the pseudo-Goldstone
boson of a spontaneously broken approximate global
symmetry. Such “natural inflation” scenarios were pro-
posed first by Freese, Frieman and Olinto [6]. If the scale of
spontaneous symmetry breaking is f and if there is an
explicit breaking of the global symmetry via an anomaly,
the inflaton potential takes the form

V ¼ V0½1� cosðnϕ=fÞ�; ð1:1Þ

where n is an integer. The model is consistent with
measured values of the spectral index and its running, as

well as constraints on the ratio of powers in tensor and
scalar modes [7]. A concern about natural inflation is that
the value of f must be very close to or above the Planck
scale, so that quantum-gravitational corrections to the
potential are not automatically under control.
A model that can result in a lower value of f is “hybrid

natural inflation” [8–11]. The original hybrid inflation
model, proposed by Linde [12], has a second scalar field
which couples to the inflaton and ends the inflationary
epoch. As the inflaton slowly rolls, the parameters of
the potential of the second scalar field change due to the
coupling, and at some point the second scalar field acquires
a vacuum expectation value (VEV), ending inflation.
This second scalar field was referred to as the “waterfall”
field. Hybrid natural inflation models are natural inflation
models in which inflation is terminated due to the dynamics
of such additional fields.
An important question in any model based on the natural

inflation idea is the origin of the approximate global
symmetry. Global symmetries are not believed to be
fundamental (for example, they are typically violated by
quantum gravitational effects [13]), so it is desirable to
arrange that these symmetries arise by accident, as a
consequence of the form of the leading terms in the
potential; these terms are restricted by the continuous or
discrete gauge symmetries of the theory. While discrete
gauge symmetries can be thought of as discrete remnants of
a spontaneously broken continuous gauge symmetry [14],
they also can be defined consistently without such an
embedding [15]; in either case, they are preserved by
quantum gravitational effects. Cohn and Stewart [8,9]
showed that accidental global symmetries could easily
be obtained in models with non-Abelian discrete gauge
symmetries and illustrated their point with hybrid models
based on the discrete group Δð96Þ. They note that many
other models based on smaller discrete groups are likely
possible. Nevertheless, the literature on such models is
relatively sparse. Ross and Germán [10,11] have explored
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hybrid natural inflation models based on the discrete group
D4. In their model, the inflaton potential takes the form

V ¼ V0½1þ a cosðϕ=fÞ�; ð1:2Þ
where a is a constant. This potential can generate phe-
nomenologically acceptable inflation with f substantially
smaller than the Planck mass, so that higher-order correc-
tions are under control. Ross and Germán [10,11] point out
that potentials of the form Eq. (1.2) should be expected in
similar models based on other non-Abelian discrete groups.
Given the promise of the models considered in

Refs. [8–11], and motivated by minimality, we explore
in this paper a hybrid natural inflation model based on the
smallest non-Abelian discrete group, the permutation group
S3. The discrete symmetry restricts both the inflaton
potential and the couplings of the inflaton to the waterfall
fields. The S3 charge assignments in our model satisfy the
requirements for a discrete gauge symmetry, as set out in
Ref. [15]. In Sec. II, we review the group S3 and its
representations. The model is presented in Sec. III. After
reviewing inflationary parameters in Sec. IV, we study a
typical point in model parameter space in quantitative
detail in Sec. V. Motivated by the potential signature in
gravitational waves, we show in Sec. VI that the model can
yield a potentially observable tensor-to-scalar ratio, without
requiring super-Planckian values of the inflaton field, and
we explain why this is not in conflict with the Lyth bound
[16]. In Sec. VII, we discuss the cutoff of inflation and
reheating. Finally, in Sec. VIII, we present our conclusions.

II. THE GROUP S3

We base our model on S3, the smallest non-Abelian
discrete symmetry group. The group has six elements
whose action can be identified with the permutation of
three objects. A useful discussion of this symmetry in a
model-building context can be found in Ref. [17].
S3 has three irreducible representations: a two-

dimensional representation 2 and two one-dimensional
representations, 1A and 1S. The 1S representation is the
trivial singlet. The rules for group multiplication are given
by 1A ⊗ 1A ¼ 1S ⊗ 1S ¼ 1S, 1A ⊗ 1S ¼ 1A and 2 ⊗ 2 ¼
2 ⊕ 1A ⊕ 1S. The product of two doublet representations
can be decomposed into its irreducible components using
Clebsch-Gordan matrices. Let ψ and η represent two-
component column vectors that transform as doublets under
S3 and let σa denote the Pauli matrices. The products
ψTC1Sη and ψTC1Aη transform in the 1S and 1A represen-
tations, respectively, where

C1S ¼ 1 and C1A ¼ iσ2: ð2:1Þ
Similarly, we can construct a doublet"

ψTCð1Þ
2 η

ψTCð2Þ
2 η

#
∼ 2; ð2:2Þ

where

Cð1Þ
2 ¼ σ3 and Cð2Þ

2 ¼ −σ1: ð2:3Þ
The model we present in the next section includes an S3

doublet field ϕ ¼ ðϕ1;ϕ2ÞT , so it is useful to enumerate the
S3 invariants that can be constructed from products of ϕ, up
to quartic order. The quadratic combination of fields that
transforms in the 1S representation has the form

ðϕ2Þ1S ≡ ϕTC1Sϕ ¼ ϕ2
1 þ ϕ2

2: ð2:4Þ
While there are three 1S reps in the product 2 ⊗ 2 ⊗ 2 ⊗ 2,
all such invariants constructed from a single ϕ have the
same form:

ðϕ4Þ1S ¼ ðϕ2
1 þ ϕ2

2Þ2: ð2:5Þ
While Eqs. (2.4) and (2.5) follow from S3 invariance, it is
important to note that these expressions are also invariant
under a continuous symmetry, SO(2), under which the ϕ
field is also a doublet. However, this accidental symmetry is
broken by the S3 cubic invariant

ðϕ3Þ1S ¼ ϕ1ðϕ2
1 − 3ϕ2

2Þ: ð2:6Þ
The model of the next section will identify the inflaton field
θ with the pseudo-Goldstone boson of this accidental SO(2)
symmetry; the soft breaking of this symmetry by the cubic
invariant will be used to generate the inflaton potential.
Notice, if we parameterize

ϕ ¼ ðρþ vÞ
�
cosðθ=vÞ
sinðθ=vÞ

�
; ð2:7Þ

where v is the scale of spontaneous symmetry breaking and
ρ is the massive radial excitation, then Eqs. (2.4) and (2.5)
are independent of θ, indicating that these terms contribute
nothing to the inflaton potential. (Note that in this param-
eterization the kinetic term for θ is canonically normalized.)
On the other hand, Eq. (2.6) simplifies to

ðϕ3Þ1S ¼ ðρþ vÞ3 cosð3θ=vÞ; ð2:8Þ
which can be used to lift the flat direction. In the next
section we show how these ingredients can be combined to
produce a viable model of hybrid natural inflation.

III. THE MODEL

In addition to the doublet field ϕ described in the
previous section, our model includes two real scalars, χ1
and χ2, each in the 1S representation of S3. We assume a
Z2 symmetry under which both χ fields are odd, which
eliminates unwanted linear terms that would otherwise give
the χi VEVs. The SO(2) invariant terms in the potential

VSOð2Þðϕ; χiÞ ¼ −
1

2
m2

ϕðϕ2
1 þ ϕ2

2Þ þ λϕðϕ2
1 þ ϕ2

2Þ2 þ � � �
ð3:1Þ
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lead to the spontaneous breaking of the SO(2) symmetry
due to the negative mass squared term for ϕ. The terms
not shown include various ϕ2χ2 couplings as well as the
potential for the χi fields by themselves. It is not hard to see
that it is possible to choose parameters such that ϕ2

develops a vacuum expectation value, while the χi do
not. The details are not crucial for our purposes because the
SO(2) invariant terms have no effect on the form of the
inflaton potential. All that is relevant at this stage is that
the spontaneous symmetry breaking is consistent with the
parameterization in Eq. (2.7), with the Goldstone boson θ
identified as the inflaton.
In the spirit of a perturbative expansion, we now

introduce smaller terms which violate the accidental
SO(2) symmetry. At the renormalizable level, we can
include a term of the form m0ðϕ3Þ1S ; the dimensionful
coefficient m0 parameterizes the breaking of the SO(2)
symmetry. We could simply assume a small value of m0 as
a fine-tuning in the model (after all, we have to accept the
same for the Higgs boson mass in any nonsupersymmetric
theory). However, we can do better if we allow an addi-
tional Z0

2 symmetry under which the ϕ doublet and χ1
are odd and treat m0 consistently as a soft Z0

2-breaking
parameter. Since the Z0

2 symmetry is restored in the limit of
vanishing m0, there can be no large radiative corrections
and a small m0 will be natural following the criterion of
’t Hooft [18]. We will adopt this assumption henceforth.
The only other term that we include that violates the SO(2)
symmetry is of the form χ1χ2ðϕ3Þ1S . Identifying the χ fields
as the waterfall fields of a hybrid inflation model, such
couplings are responsible for ending inflation in the model.
In the present case, this SO(2)-breaking term is Planck
suppressed for sub-Planckian field values.
We now consider the effective theory below the

SO(2)-breaking scale (the scale of the ρ mass). With the
particle content and the symmetries of the theory as we
have specified them, the scalar potential for the θ, χ1 and χ2
fields is somewhat cumbersome for a general analysis.
We will therefore adopt a simplifying assumption in our
parameter choices to demonstrate most simply that viable
cosmological solutions exist. Additional solutions are
possible for less restrictive choices of model parameters.
We study the following simplified form for the scalar

potential:

Vðθ; χiÞ ¼ V0 þ c1
v3

MP
χ1χ2 cosð3θ=vÞ −m0v3 cosð3θ=vÞ

þ 1

2
m2

χðχ21 þ χ22Þ þ ðλχ41 þ λ12χ
2
1χ

2
2 þ λχ42Þ:

ð3:2Þ
Here V0 is a constant, c1, λ and λ12 are couplings, and mχ

is a common χi field mass. The second and third terms are
SO(2)-breaking interactions discussed previously. For def-
initeness, we assume c1 > 0. In contrast to the most general
case, we have assumed symmetry under χ1↔χ2. This

simplifying assumption has no effect on the shape of the
inflaton potential (which is obtained by setting χi ¼ 0) but
substantially streamlines our presentation. If one relaxes
this assumption, one has to contend with minimization
conditions that are cubic; this complicates the analysis but
does not affect our conclusions qualitatively. Note also that
we have omitted the ðχ21 þ χ22Þ cosð3θ=vÞ and χ1χ

3
2 þ χ2χ

3
1

interactions, which are Z0
2 odd. Since the Z0

2 symmetry is
broken only bym0, these are suppressed bym0=MP relative
to the second and fifth terms in Eq. (3.2), respectively,
making them negligible.1 We set the cosmological constant
to zero at the global minimum of the potential by choice of
the parameter V0.
Inflation occurs as the field θ slow rolls toward the

origin, between initial and final field values that lie within
the interval 0 < 3θ=v < π. During inflation, the effective χi
masses are positive and the χ fields remain at the origin.
Inflation ends via the waterfall mechanism when θ is such
that

c1
v3

MP
cosð3θ=vÞ > m2

χ : ð3:3Þ

At this point, the χi potential is destabilized and the χ fields
develop VEVs.2 Within a Hubble time, the fields reach a
global minimum, and inflation abruptly ends. Oscillations
of the waterfall fields about this minimum leads to reheat-
ing. Given the inequality in Eq. (3.3), we find that the
locations of the degenerate global minima in our model
are given by

θ ¼ 0; ð3:4Þ
χ1 ¼ −χ2; ð3:5Þ

and

χ21 ¼
1

2ð2λþ λ12Þ
�
c1

v3

MP
−m2

χ

�
: ð3:6Þ

Setting the cosmological constant to zero at any of these
minima determines the constant V0 in Eq. (3.2):

V0 ¼ m0v3 þ
1

4

1

ð2λþ λ12Þ
�
c1

v3

MP
−m2

χ

�
2

: ð3:7Þ

1If one prefers to dispense with the softly broken Z0
2 symmetry

and allow m0 to be fine-tuned, then these terms can be omitted as
a parametric simplification. The effect of including a c2

v3
MP

ðχ21 þ
χ22Þ cosð3θ=vÞ term, with c2 > 0, is to change Eq. (3.3) by
replacing c1 → c1 − c2 and Eqs. (3.6) and (3.7) by m2

χ → m2
χþ

2c2 v3
MP

. If one adds a λ3ðχ31χ2 þ χ32χ1Þ term, then the only change
in these equations is λ12 → λ12 − 2λ3. These changes do not affect
our results qualitatively.

2As we will see in Sec. V, cosð3θ=vÞ > 0 when inflation ends,
as has been assumed in Eq. (3.3).
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With this result in hand, the form of the inflaton potential
during the period of slow roll is fixed in term of the model
parameters:

VðθÞ ¼ V0½1 − ξ cosð3θ=vÞ�; ð3:8Þ
where ξ≡m0v3=V0 and V0 is given by Eq. (3.7). Our
parameter choices in the next sections have ξ < 1.
Equation (3.8) is amenable to the standard analysis of a

single-field inflation model until the end of inflation. We
review the quantities of interest in such an analysis in the
next section and explore numerical results for a number
of benchmark points in our model’s parameter space. For
these points, we will also present estimates to justify that
the shutoff of inflation via the waterfall mechanism is
sufficiently fast.

IV. INFLATION PARAMETERS

In terms of the inflaton potential VðθÞ, the slow-roll
parameters may be written [3]

ϵ≡ M2
P

16π

�
V 0

V

�
2

; η≡M2
P

8π

V 00

V
;

and γ ≡ M4
P

64π2
V 0V 000

V2
: ð4:1Þ

In a generic single-field model, ϵ ¼ 1 is usually chosen to
define the end of inflation; in the present case, ϵ remains
small throughout the period of slow roll until inflation is
terminated by the destabilization of the effective χ poten-
tial. The number of e-folds of inflation N may be expressed
as [1]

N ¼ 2
ffiffiffi
π

p
MP

Z
θi

θf

1ffiffiffi
ϵ

p dθ; ð4:2Þ

where θi and θf are the initial and final inflaton field values,
respectively. We will evaluate this quantity in our model to
assure that sufficient inflation is achieved.
A number of cosmic microwave background parameters

can be expressed conveniently in terms of the slow-roll
parameters, as we now summarize [3,19]. All are evaluated
at values of the inflaton field corresponding to ∼60 e-folds
before the end of inflation, when scales of order the current
Hubble radius exited the horizon. The amplitude of the
tensor power spectrum in the slow-roll approximation is

Δ2
TðkÞ ¼

128

3

V
M4

P
; ð4:3Þ

while the amplitude of the scalar power spectrum is

Δ2
RðkÞ ¼

128π

3M6
P

V3

V 02 ¼
8

3M4
P

V
ϵ
: ð4:4Þ

The ratio of the tensor-to-scalar amplitudes is then

r ¼ 16ϵ: ð4:5Þ

The scalar spectral index and its running are given by

nsðkÞ ¼ 1 − 6ϵþ 2η and nr ¼ 16ϵη − 24ϵ2 − 2γ:

ð4:6Þ

The predictions following from our model for the param-
eters summarized in this section can easily be computed
starting with Eqs. (3.7) and (3.8). For example, the slow-
roll parameters take the form

ϵ ¼ 9ξ2M2
Psin

2ð3θv Þ
16πv2ð1 − ξ cosð3θv ÞÞ2

; ð4:7Þ

η ¼ 9ξM2
P cosð3θv Þ

8πv2ð1 − ξ cosð3θv ÞÞ
; ð4:8Þ

γ ¼ −
81ξ2M4

Psin
2ð3θv Þ

64π2v4ð1 − ξ cosð3θv ÞÞ2
: ð4:9Þ

The parameters ns, nr, r and Δ2
R can then be evaluated

using these expressions, with θ set to θi as determined from
Eq. (4.2) with N ¼ 60. We will follow this procedure in our
quantitative analysis in the following section. The mea-
sured values of the cosmological parameters that we use in
this analysis are ns ¼ 0.9603� 0.0073, nr ¼ −0.013�
0.009, r < 0.12ð95% C:L:Þ andΔ2

R ¼ 2.2 × 10−9 [3]. Note
that the recent observation by the BICEP2 experiment of B-
mode polarization in the CMB would imply r ¼ 0.20þ0.07

−0.05
if the signal is interpreted as cosmological in origin [4].
However, the contribution of foreground dust to the
BICEP2 signal is currently uncertain, so one cannot draw
a reliable conclusion on the value of r from this measure-
ment at present [20,21].

V. NUMERICAL ANALYSIS

In this section, we present the numerical analysis
corresponding to a typical, benchmark point in the model
parameter space. We will find in this example that the
primordial gravitational wave signal is small. In the next
section, we show that for a careful choice of parameters, a
larger value of r can be obtained.
Working with the generic potential, Eq. (3.8), let us focus

first on two quantities: the spectral index

ns − 1 ¼ −
9

16π

M2
p

v2

×

�
2ξ2½2þ sin2ð3θi=vÞ� − 4ξ cosð3θi=vÞ

½1 − ξ cosð3θi=vÞ�2
�

ð5:1Þ
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and the amplitude of the scalar power spectrum,

Δ2
R ¼ 128π

27

V0v2

M6
p

1

ξ2
½1 − ξ cosð3θi=vÞ�3

sin2ð3θi=vÞ
: ð5:2Þ

Both are evaluated at the initial field value θi, correspond-
ing to 60 e-folds before the end of inflation. The number of
e-folds, following from Eq. (4.2), is given by

N ¼ 8π

9

v2

M2
P

1

ξ

�
ð1 − ξÞ ln

�
sinð3θi=vÞ
sinð3θf=vÞ

�

− ln

�
1þ cosð3θi=vÞ
1þ cosð3θf=vÞ

��
: ð5:3Þ

Let us define xi;f ≡ cosð3θi;f=vÞ, as well as

N0 ≡ 1

½ 9
4π

M2
p

v2 ξ�
and y≡

ffiffiffiffiffiffi
V0

p
Mpv

; ð5:4Þ

and temporarily work in units where Mp ¼ 1. Working in
the approximation ξ ≪ 1, which will be accurate for the
parameter choices that we consider, we choose N ¼ 60,
ns ¼ 0.9603 andΔR ¼ 4.69 × 10−5. Then, Eqs. (5.1)–(5.3)
lead to the constraints

0.9603 ¼ 1þ 1

N0

xi; ð5:5Þ

4.69 × 10−5 ¼ 2
ffiffiffi
6

pffiffiffi
π

p yN0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2i

p ; ð5:6Þ

60 ¼ 2N0 ln

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xiÞð1þ xfÞ
ð1þ xiÞð1 − xfÞ

s #
: ð5:7Þ

The parameter xf is set by the scale mχ and can be chosen
freely, provided that the magnitude of the cosine is less than
one. For this example, we choose xf ¼ 0.8. Now the three
equations above can be solved for the three unknowns, N0,
xi and y. We find

xi ¼ −0.64;

N0 ¼ 16;

y ¼ 8.0 × 10−7: ð5:8Þ

Once v is specified, we can solve for the parameters V0 and
m0 (the latter given by the definition of ξ.). In this example,
we choose v ¼ Mp=100. Then we find (including the input
mass scales, for comparison)

MP ¼ 1.2 × 1019 GeV;

v ¼ MP=100;

V0 ¼ ð1.1 × 1015 GeVÞ4;
m0 ¼ 6.7 TeV: ð5:9Þ

In our fundamental theory, Eq. (3.2), V0 is fixed by
Eq. (3.7). We find that the value for V0 shown in
Eq. (5.9) is obtained for the dimensionless parameter
choices3 λ ¼ 0.1, λ12 ¼ 0.2 and c1 ¼ 0.051. Notice that
none of the fundamental dimensionless couplings is forced
to be unnaturally small, unlike the nonsupersymmetric
model based on the groupD4 that appeared in Ref. [10]; the
D4 symmetry in that proposal allows marginal SO(2)-
violating quartic self-couplings for the inflaton doublet,
which necessitates a fine-tuning, while the S3 symmetry
prevents such operators and avoids this outcome. Given
our choice of xf, it follows from Eq. (3.3) that mχ ¼
2.5 × 1015 GeV. Since this is a nonsupersymmetric model,
tuning of scalar masses is unavoidable; however, the χ mass
is at a relatively high scale, so the largest tuning required is
still that of the Higgs boson mass, as in the standard model.
Now we can summarize the values of the remaining

cosmological parameters:

ϵ ¼ 7.9 × 10−8;

r ¼ 1.3 × 10−6;

nr ¼ 1.1 × 10−3: ð5:10Þ

These are consistent with the current bounds, assuming
that one conservatively accepts the Planck upper bound on
r. An observable primordial gravitational wave signal, if
confirmed, would rule out this parameter choice. Therefore,
we next consider how one could obtain a solution with
larger r.

VI. ENHANCING PRIMORDIALGRAVITYWAVES

In the slow-roll approximation, by Eqs. (4.1) and (4.5),

r ¼ 16ϵ ¼ M2
P

π

�
V 0

V

�
2

: ð6:1Þ

On the other hand, the scalar spectral index was given in
Eq. (4.6):

nsðkÞ ¼ 1 − 6ϵþ 2η; ð6:2Þ
with the value ns ¼ 0.9603� 0.0073, from Ref. [3]. In
order to increase r with fixed ns in our model, we need to
increase the values of both ϵ and η at the time that the

3Given our normalization of the quartic couplings, perturba-
tivity requires that they be ≪ ð4πÞ2=4! ≈ 6.6, which is easily
satisfied.
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fluctuations were created, which we take to be 60 e-folds
prior to the end of inflation. We must therefore increase
jV 0=Vj while V 00=V becomes less negative; this suggests
that the inflaton in our model should minimize
j cosð3θi=vÞj in order to obtain large r. Although we find
that it is challenging to obtain 60 e-folds of inflation while
satisfying observational constraints beginning with such a
small magnitude of cosð3θi=vÞ, we find nonetheless that
there are points in parameter space where a primordial
gravitational wave signal is large enough to be potentially
observable in upcoming experiments. These points require
a relatively small separation between v and MP, pushing
the limits of effective field theory.
The Lyth bound [16] relates the number of e-folds of

inflation to the change in the inflaton field θ during the
same period and suggests that in a wide class of models it is
not possible to obtain a sizable gravitational wave signal
without a change in the inflaton field during inflation that is
much larger than MP. Such large field values would be
problematic for the effective-field-theory interpretation of
the model. Using the inflaton equation of motion and the
relations for the power spectra of scalar and tensor modes in
the slow-roll approximation, one obtains the relation [16]�

dθ
dN

�
2

¼ M2
P

64π
r: ð6:3Þ

If r is roughly constant during the last 60 e-folds of
inflation, then one obtains

Δθ ¼ 1

8
ffiffiffi
π

p N
ffiffiffi
r

p
MP; ð6:4Þ

which exceeds MP for N
ffiffiffi
r

p
> 8

ffiffiffi
π

p
. In particular, this will

be the case if N ¼ 60 and r is of a typical observable value,
for example, r ∼ 0.1. We refer to Eq. (6.4) as the Lyth
bound. Hybrid natural inflation models, including the one
presented here, can evade the Lyth bound if the inflaton
rolls from a steep point in the potential to near the bottom of
the potential prior to the end of inflation [22,23], as
sketched in Fig. 1. In that case r varies significantly during
inflation, which violates the assumption of nearly constant
r that fed into the bound.

In order to obtain 60 e-folds of inflation in this enhanced-
gravity-wave scenario, we need inflation to end near the
bottom of the inflaton potential, which is possible if the
waterfall fields have large diagonal massesmχ . After fixing
the parameters to the well-measured values of ΔR and ns,
we find that the less-well-measured running of the scalar
tilt, nr ¼ −0.013� 0.009 from the Planck experiment [3],
in fact provides the greatest obstacle to rolling from near the
steepest point of the potential. A viable parameter choice
within 2σ of the measured nr is obtained by setting xf ¼
0.995 and v ¼ MP=2, in which case we find4

xi ¼ −0.32;

N0 ¼ 9.3;

y ¼ 1.70 × 10−6: ð6:5Þ

The physical mass scales in this case are given by

MP ¼ 1.2 × 1019 GeV;

v ¼ MP=2;

V0 ¼ ð1.12 × 1016 GeVÞ4;
m0 ¼ 2.6 × 106 GeV: ð6:6Þ

In terms of the fundamental potential, Eq. (3.2), the scale
V0 can be reproduced in this case with the choices λ ¼ 0.1,
λ12 ¼ 0.2 and c1 ¼ 0.0017. In that case, from Eq. (3.3) we
find mχ ¼ 1.8 × 1017 GeV.
The cosmological parameters evaluated at θ ¼ θi are

now

ϵ ¼ 8.9 × 10−4;

r ¼ 0.014;

nr ¼ 4.8 × 10−3: ð6:7Þ

For this point in parameter space, a primordial gravitational
wave signal could be within the reach of future CMB
polarization measurements. With the same value of xf but
with v ¼ MP=3 rather than MP=2, r decreases to 0.0066.
We have assumed that the cutoff of the theory isMP, where
quantum gravity effects are expected to become strong,
rather than the reduced Planck mass M� ¼ MP=

ffiffiffiffiffiffi
8π

p
that

normalizes the gravitational coupling. If we assume v ¼
M�=2 with the same value of xf as above, we obtain
r ¼ 0.00061. For comparison, the upcoming primordial
inflation polarization explorer (PIPER) experiment expects
a sensitivity to measure r as low as 0.007 [24].

FIG. 1 (color online). The Lyth bound is evaded if the inflaton
slowly rolls from a steep point in the potential to near the
minimum before the waterfall fields turn on.

4For this point in parameter space, there is a more substantial
difference in the second significant digit between the exact results
and those obtained using the small-ξ approximations in
Eqs. (5.5)–(5.7). Hence, we show the exact results in this section.
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VII. INFLATION SHUTOFF AND REHEATING

In this section, we consider the end of inflation and
reheating. We first present estimates that indicate the end of
inflation happens abruptly, less than a Hubble time after the
χ fields develop vacuum expectation values.
Our estimates follow the arguments of Ref. [12].

Consider the evolution of the inflaton field θ during Δt ¼
H−1 after the critical time tc, where Eq. (3.3) is an exact
equality. At the very end of slow roll, 3H _θ ≈ −V 0ðθfÞ;
hence the change in the inflaton field during the subsequent
Δt is given by

Δθ ¼ −
3M2

P

8πv

ξ sinð3θf=vÞ
½1 − ξ cosð3θf=vÞ�

: ð7:1Þ

At tc, the χ mass matrix has a zero eigenvalue, so the
magnitude of the negative mass squared term that emerges
Δt later is determined by Δθ. To assure a rapid evolution of
the χ fields, we require that the magnitude of this negative
squared mass is larger than H2:

3jc1j
v2

MP
sinð3θf=vÞjΔθj > H2; ð7:2Þ

which, in the notation of the previous section, leads to the
inequality

27

64π2
jc1jξð1 − x2fÞ

v
MP

>
V0

M4
P
: ð7:3Þ

(Here and below we work to lowest order in ξ ≪ 1.) In
addition, the nonzero χ VEVs after tc generate a contri-
bution to the θ mass squared which we also require to be
greater than H2:

9jc1j
v
MP

hχ1χ2i > H2; ð7:4Þ

which reduces to

27

16π

c21
2λþ λ12

ð1 − xfÞ
�

v
MP

�
4

>
V0

M4
P
: ð7:5Þ

For the two points in parameter space studied in Secs. Vand
VI, respectively, we find numerically that the inequalities in
Eqs. (7.3) and (7.5) are satisfied by between 4 and 6 orders
of magnitude. This suggests that the fields will be driven to
their global minimum sufficiently quickly, bringing infla-
tion to an end.
The reheat temperature is sensitive to whether there is

substantial preheating and depends on details of the cou-
plings of the waterfall fields to matter, but for an estimate we
assume reheating through a Higgs portal due to the quartic
coupling,

Vχ2H2 ¼ λχH
2

ðχ21 þ χ22ÞH†H ⊃
λχH
2

χ2H†H; ð7:6Þ

where the waterfall field χ ≡ ðχ1 − χ2Þ=
ffiffiffi
2

p
oscillates during

reheating about the minimum of Vðθ; χiÞ, which was
determined in Eq. (3.6). We neglect the mixing with the
orthogonal combination of ðχ1 þ χ2Þ=

ffiffiffi
2

p
and the inflaton

field θ in this simplified analysis. The Higgs-portal coupling
contains the term λχHhχiχH†H, where hχi= ffiffiffi

2
p ¼ hχ1i ¼

−hχ2i, with the hχii determined by Eq. (3.6). This coupling
leads to the χ decay rate

Γχ ¼
λ2χHhχ1i2
4πmχeff

: ð7:7Þ

The effective χ mass at the minimum of the potential is
given by

m2
χeff ¼

2c1v3

MP
− 2m2

χ : ð7:8Þ

In most scenarios the reheat temperature is within an order of
magnitude of [25]

Trh ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
MPΓχ

p ¼ λχH
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPmχeff

ð2λþ λ12Þπ

s
: ð7:9Þ

With parameters as in Secs. V and VI we find a generically
high reheat temperature5 Trh ∼ 1017λχH GeV.

VIII. CONCLUSIONS

We have analyzed a model of inflation based on the
non-Abelian discrete group S3. The mass term and quartic
self-coupling of a doublet of scalar fields preserve an
accidental SO(2) symmetry. The SO(2) is spontaneously
broken, giving rise to a pseudo-Goldstone boson which
plays the role of the inflaton, as in natural inflation. After
the inflaton rolls sufficiently, the coupling of the inflaton to
two additional scalar fields generates an instability in a
linear combination of those fields, ending inflation and
reheating the universe as in hybrid inflation. We studied
constraints on the model due to the slow-roll conditions, the
requirement of at least 60 e-folds of inflation, the measured
magnitude of cosmic density perturbations, the measured
scalar spectral index and its running. The model has a
viable parameter space with technically natural couplings

5Note that the coupling λχH first affects the flatness of the
inflaton effective potential at two loops, but only if a Planck-
suppressed inflaton-Higgs coupling is present. Such a coupling
can be taken small independently so that the range of λχH is not
restricted from this consideration. All other effects on the inflaton
potential involving λχH occur at three or more loops.
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and can accommodate potentially observable power in
tensor modes without super-Planckian field values during
inflation, with r ∼ 0.01.
Our work has been motivated in part by the minimality of

S3, which is the smallest possible non-Abelian discrete
gauge group. However, it also is worth pointing out that the
group S3 has been used successfully in flavor model
building [17]. Such models include substantial scalar
sectors (the flavons) that are restricted by the discrete
symmetry. It would be interesting in future work to see if
the model described here could be incorporated into

the flavor-symmetry-breaking sector of a flavor model
involving S3 symmetry. In addition, the present model
was constructed in a nonsupersymmetric framework, for
the sake of simplicity. A study of a supersymmetric S3
natural hybrid inflation model, which would also stabilize
the electroweak scale, will be discussed elsewhere [26].
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