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The observational evidence for the acceleration of the Universe demonstrates that canonical theories of
cosmology and particle physics are incomplete, if not incorrect, and that new physics is out there, waiting to
be discovered. Forthcoming high-resolution ultrastable spectrographs will play a crucial role in this quest
for new physics, by enabling a new generation of precision consistency tests. Here we focus on
astrophysical tests of the stability of nature’s fundamental couplings, and by using principal component
analysis techniques further calibrated by existing VLT data we discuss how the improvements that can be
expected with ESPRESSO and ELT-HIRES will impact on fundamental cosmology. In particular we show
that a 20 to 30 night program on ELT-HIRES will allow it to play a leading role in fundamental cosmology.
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I. INTRODUCTION

Cosmology is now a data-driven science. This is manifest
in the so-called concordance model—a remarkably simple
model in the sense of being able to fit observations with a
small number of free parameters, though at a cost of
assuming that 96% of the contents of the Universe are in
a still unknown form (never directly observed thus far). It is
thought that this dark sector has two components: a clustered
one (dark matter), and a dominant unclustered one (dark
energy) which is presumably responsible for the observed
acceleration of the Universe. Characterizing the properties of
these dark components, and ultimately understanding their
nature, is the key driver for modern cosmological research.
While lambda cold dark matter provides the simplest

viable possibility, it is arguably vulnerable to standard
fine-tuning arguments: one needs to explain why the vacuum
energy density is many orders of magnitude smaller than one
would expect from particle physics based arguments. One
may therefore argue that alternatives involving scalar fields,
an example of which is the recently discovered Higgs field
[1,2], may be more likely. Observationally, the main differ-
ence between the two paradigms is that in the first case the
density of dark energy is always constant (it does not get
diluted by the expansion of the Universe) while in the second
one it does change. One way to distinguish the two possibil-
ities is to find ways to measure the dark energy density (or its
equation of state) at several epochs in the Universe.
Astrophysical measurements of nature’s fundamental

couplings [3,4] can be used to constrain the properties
of dynamical scalar fields that might also be responsible for

the dark energy. These measurements can be used either by
themselves or in combination with other cosmological data
sets (such as type Ia supernovae and the cosmic microwave
background). The concept behind this method is described
in [5,6] (see also [7] for a more phenomenological
approach). It complements other methods due to its large
redshift lever arm and the fact that these measurements
can be done from ground-based facilities, in both the
UV/optical and the radio/mm bands.
In [8] we extended principal component analysis (PCA;

see e.g. [9]) methods previously available in the published
literature (for type Ia supernovae, lensing and several other
contexts in cosmology) and studied the feasibility of
applying them to astrophysical measurements of varying
couplings—whether they are detections of variations or
null results—by forecasting the number of modes of the
dark energy equation of the state parameter that can be well
constrained by future facilities, using a combination of
supernovae data and measurements of varying fundamental
couplings at high redshift.
Some recent observational data suggest that the fine-

structure constant α (a dimensionless measure of the
strength of electromagnetism) was different at redshifts
z ∼ 2– 3, the relative variation being at the level of a few
parts per million [10]. Various efforts to confirm or refute
this result are ongoing [11,12], but a detailed answer to this
important question may have to wait for the next generation
of higher-resolution, more stable spectroscopic facilities.
Nevertheless, and despite the fact that tests of the stability
of fundamental couplings are a key science driver for future
instruments, it is clear that observation time on these top
facilities will be scarce, and therefore optimized observa-
tional strategies are essential.
Here we take some steps toward fully quantifying the

potentialities of this method. We use currently available
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varying α measurements from VLT/UVES as a benchmark
that can be extrapolated into future (simulated) data sets
whose impact for dark energy characterization can be
studied. We will be interested in ESPRESSO (for the
VLT) [13], and especially in the E-ELT’s high-resolution
spectrograph (ELT-HIRES) [14,15], but our methodology
is generic. In the present paper we concentrate on the
varying coupling measurements themselves, while in a
companion paper we will discuss in more detail the
synergies between these measurements and other data sets
(such as type Ia supernovae).
In the next section we review the relevant PCA meth-

odology and summarize and extend the results of our PCA
analysis in [8]. Then in Sec. III we study the relevant
features of the main existing database of VLT measure-
ments of α, allowing us to relate our theoretical PCA
analysis to observationally relevant properties. Finally in
Sec. IV we combine the two analyses and discuss future
prospects for ESPRESSO and ELT-HIRES. We summarize
our results in Sec. V.

II. THEORY AND TOOLS

Wewill base our theoretical analysis on PCA techniques.
Our formalism is described in [8], to which we refer the
reader for further details. Herewewill simply provide a brief
summary of the features that will be relevant for our
subsequent comparison with data. Throughout this discus-
sion one should bear in mind that PCA is a nonparametric
method for constraining the dark energy equation of state. In
assessing its performance, one should not compare it to
parametric methods. Indeed, no such comparison is possible
(even in principle), since the two methods are addressing
different questions. Instead one should compare it with
another nonparametric reconstruction, and for our purposes
with varying couplings the type Ia supernovae provide a
relevant comparison.
One can divide the relevant redshift range into N bins

such that in bin i the equation of state parameter takes the
value wi,

wðzÞ ¼
XN

i¼1

wiθiðzÞ: ð1Þ

Another way of saying this is that wðzÞ is expanded in the
basis θi, with θ1 ¼ ð1; 0; 0;…Þ, θ2 ¼ ð0; 1; 0;…Þ, etc.
The precision on the measurement of wi can be inferred

from the Fisher matrix of the parameters wi, specifically
from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

p
, and increases for larger redshift. One can,

however, find a basis in which all the parameters are
uncorrelated. This can be done by diagonalizing the Fisher
matrix such that F ¼ WTΛW where Λ is diagonal and the
rows of W are the eigenvectors eiðzÞ or the principal
components. These define the new basis in which the new
coefficients αi are uncorrelated, and now we can write

wðzÞ ¼
XN

i¼1

αieiðzÞ: ð2Þ

The diagonal elements of Λ are the eigenvalues λi (ordered
from largest to smallest) and define the variance of the new
parameters, σ2ðαiÞ ¼ 1=λi.
We will consider the standard class of models for which

the variation of the fine-structure constant α is linearly
proportional to the displacement of a scalar field, and
further assume that this field is a quintessence type field,
i.e. responsible for the current acceleration of the Universe
[16–21]. We take the coupling between the scalar field and
electromagnetism to be

LϕF ¼ −
1

4
BFðϕÞFμνFμν; ð3Þ

where the gauge kinetic function BFðϕÞ is linear,

BFðϕÞ ¼ 1 − ζκðϕ − ϕ0Þ; ð4Þ

κ2 ¼ 8πG and ζ is the coupling constant, which in what
follows will be marginalized over. This can be seen as the
first term of a Taylor expansion, and it should be a good
approximation if the field is slowly varying at low redshift.
Then, the evolution of α is given by

Δα
α

≡ α − α0
α0

¼ ζκðϕ − ϕ0Þ: ð5Þ

For a flat Friedmann-Robertson-Walker Universe with a
canonical scalar field, _ϕ2 ¼ ð1þ wðzÞÞρϕ, hence, for a
given dependence of the equation of state parameter wðzÞ
with redshift, the scalar field evolves as

ϕðzÞ−ϕ0¼
ffiffiffi
3

p

κ

Z
z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þwðzÞ

p �
1þρm

ρϕ

�
−1=2 dz

1þ z
; ð6Þ

where we have chosen the positive root of the solution.
Note that this allows us to write the evolution of α as

Δα
α

ðzÞ ¼ κ

Z
z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½1þ wðzÞ�ΩϕðzÞ

q dz
1þ z

; ð7Þ

where Ωϕ ¼ ρϕ=ðρm þ ρϕÞ is the fraction of the Universe’s
energy in the scalar field.
From the above one can calculate the Fisher matrix using

standard techniques, as discussed in [8]. As in that work,
we will consider three fiducial forms for the equation of
state parameter:

wcðzÞ ¼ −0.9; ð8Þ
wsðzÞ ¼ −0.5þ 0.5 tanh ðz − 1.5Þ; ð9Þ

wbðzÞ ¼ −0.9þ 1.3 exp

�
−
ðz − 1.5Þ2

0.1

�
: ð10Þ
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At a phenomenological level, these describe the three
qualitatively different interesting scenarios: an equation
of state that remains close to a cosmological constant
throughout the probed redshift range, one that evolves
toward a matterlike behavior by the highest redshifts
probed, and one that has nontrivial features over a limited
redshift range, perhaps associated with a low-redshift phase
transition (see [22] for further discussion). Thus in what
follows we will refer to these three cases as the constant,
step and bump fiducial models.
We will assume a flat Universe and further simplify the

analysis by fixing Ωm ¼ 0.3. This is a standard procedure,
which was followed in the original paper of Huterer and
Starkman [9] and also in a number of subsequent works.
This specific choice of Ωm has a negligible effect on the
main result of the analysis, which is the uncertainty in the
best determined modes. For each fiducial model we choose
the coupling such that it leads to a few parts-per-million
variation of α at redshift z ∼ 4, consistently with [10]. In [8]
the analysis was focused on forecasts for ESPRESSO [23]
and CODEX—now dubbed ELT-HIRES [24]. Here we will
start by discussing a more general analysis, leaving specific
choices to a later section.
In order to systematically study possible observational

strategies, it is of interest to find an analytic expression for
the behavior of the uncertainties of the best determined
PCA modes described above. For this one needs to explore
the range of parameters such as the number of α measure-
ments (Nα) and the uncertainty in each measurement (σα).
For simplicity we will assume that this uncertainty is the
same for each of the measurements in a given sample, and
also that the measurements are uniformly distributed in the
redshift range under consideration.
By exploring numbers of measurements Nα between 20

and 200, uniformly distributed in redshift up to z ¼ 4, and
individual measurement uncertainties between 10−5 and
10−8, we find the following fitting formula for the uncer-
tainty σn for the nth best determined PCA mode:

σn ¼ A
σα
N0.5

α
½1þ Bðn − 1Þ�: ð11Þ

The coefficients A and B will depend on the choice of
fiducial model, and also on the number of PCA bins
assumed for the redshift range under consideration.
Table I lists these coefficients for choices of 20 and 30
bins. Notice that it is useful to provide the uncertainly σα in
the fitting formula in parts per million, since in that case the
coefficients A and B are of order unity.
A comparison between the numerically determined

values and our fitting formula indicates that for Nα > 50
the present expression is reasonably accurate for all values
up to and including n ¼ 6, while for a smaller number of
measurements the number of accurately determined modes
is less than 6 (for example for Nα ¼ 20 only the first two
modes obey the above relation, with the uncertainty in the

next two being slightly higher than suggested by the
formula—and that of the next two significantly so).
Specifically, Table II shows the average and maximal
relative errors obtained by sampling the above parameter
space of ðσα; Nα; nÞ, for a fixed number of redshift bins
Nb ¼ 20. The maximal errors always occur for high n and
low Nα, while in the opposite corner of parameter space
they are below 10%. By sampling uniformly in Nα and in
the logarithm of σα one obtains average uncertainties
around 30%, which are adequate considering the simplify-
ing assumptions in our modeling.
Overall, the fitting formulas show some dependence on

the specific model being considered. One may ask if by
taking say the arithmetic mean of the values of the
coefficients A and B for the three models one will obtain
a generic fitting formula that will be reasonable for all
three. The last line of Table II shows that this is not the case,
as the uncertainties worsen considerably: the average
values of A and B are quite close to those of the bump
fiducial model, but these coefficients do not perform as well
for the other models. This model dependence should
therefore be taken into consideration if we want to establish
a simple optimization pipeline, since the correct redshift
evolution of the dark energy equation of state is not known
a priori (certainly not at the high redshifts that can be
probed through this method). There is also dependence on
the number of bins, which is to be expected: as we increase
the number of bins, the uncertainties in each bin will
increase. Despite these caveats, the fitting formulas, once
further calibrated using actual data (as will be done in the

TABLE I. The coefficients A and B in the fitting formula (11),
assuming Nb ¼ 20 (left side of the table) and Nb ¼ 30 (right
side) PCA bins in the redshift range 0 < z < 4 and uncertainties
σα expressed in parts per million.

Model A (Nb ¼ 20) B (Nb ¼ 20) A (Nb ¼ 30) B (Nb ¼ 30)

Constant 1.14 0.52 1.39 0.63
Step 2.10 0.96 2.53 1.16
Bump 1.65 0.75 2.00 0.91

TABLE II. The average and maximal errors of our fitting
formula (11), compared to the correct PCA result. We have
assumed Nb ¼ 20. The first three lines show the results for each
of the three fiducial models, while the fourth line shows the result
of trying to describe all three models with a single “average”
fitting formula, where the values of coefficients A and B are the
averages of those for the individual models.

Model Average error Max. error

Constant 29% 38%
Step 37% 48%
Bump 26% 37%
Average 51% 67%
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next section), will allow us to quantify the ability of a
particular spectrograph to distinguish between different
models.

III. CALIBRATING THE FITTING FORMULA
WITH VLT DATA

The next step is then to connect these theoretical tools to
observational specifications. A time normalization can in
principle be derived from the present VLT performances,
with the caveat that the present errors on α are dominated
by systematics and not by photons. Nevertheless, we can
assume a simple (idealized) observational formula,

σ2sample ¼
C
T
; ð12Þ

where C is a constant, T is the time of observation
necessary to acquire a sample of spectra from which one
will obtain N measurements of α at the relevant redshifts,
and σsample is the relative uncertainty in these measurements
(i.e., the uncertainty in Δα=α) for the whole sample. This is
expected to hold for a uniform sample, meaning a sample
with Nα identical objects, each of which produces a
measurement with the same uncertainty σα in a given
observation time. Naturally any real-data sample will not be
uniform, so there will be some corrections to this behavior.
The uncertainty of the sample will be given by

σ2sample ¼
1P

N
i¼1 σ

−2
i

; ð13Þ

and for the above simulated case with N measurements all
with the same α uncertainty we simply have

σ2sample ¼
σ2α
N

: ð14Þ

Clearly there are also other relevant observational factors
that a simple formula like this does not take into account, in
particular the structure of the absorber (the number and
strength of the components, and how narrow they are) and
the position of the lines in the CCD, which is connected to
the redshift of the absorption system. The latter is also
related to the wavelength range covered by each spectro-
graph. A further issue (which is easier to deal with) is the
fact that a given line of sight often has several absorption
systems, and thus yields several different measurements.
Despite these caveats, this formula is adequate for our
present purposes, as will be further discussed below.
We have used the UVES data from King’s Ph.D. thesis

[25], complemented by observation time data provided by
Murphy [26], to build a sample to calibrate the observa-
tional formula. In addition to these properties of the data
set, we also calculated the signal to noise per pixel with the
following equation, parametrized by Murphy using spec-
ifications of the UVES spectrograph,

SNR ¼ K

�
T
T0

10−0.4ðM−M0Þ
�
1=2

; ð15Þ

where T is the exposition time, M is the magnitude of the
source and for K ¼ 20, T0 ¼ 3600s and M0 ¼ 17.8.
However, we note that this signal-to-noise ratio (SNR) is
calculated for illustration purposes only and is not used in
our fitting analysis.
Figures 1, 2 and 3 display some relevant properties of

this set of absorption systems, including the magnitude of
the quasar, the redshift of the absorber, the observation time
and the SNR of the spectrum. In all cases the circles denote
the absorbers that lead to measurements with better than
10 ppm statistical uncertainty, whereas crosses depict the
rest of the absorbers. Note that several lines of sight contain
multiple absorption systems, which is why several circles
and crosses overlap in the magnitude-time panel of Fig. 1.
It is clear that this sample is far from ideal, as it does not

display the types of correlations that one would expect from
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FIG. 1 (color online). Observation time and SNR for the VLT
absorbers of [25], as a function of the quasar magnitude. Circles
denote absorbers yielding measurements with better than 10 ppm
statistical uncertainty, and crosses denote the rest of the absorbers.
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such a sample: better SNR or observation time do not
necessarily lead to a better measurement of α. Undoubtedly
this is a consequence of having a data set put together from
archival data. We do find the obvious correlation between
SNR and the magnitude of the quasar (bottom panel of
Fig. 1). The more interesting result of this analysis is shown
in Fig. 3, which shows that higher redshift absorbers lead to
proportionally better measurements. Moreover, in low-
redshift absorbers brighter systems tend to give better
measurements, while for higher redshift ones fainter
systems can still yield good measurements. The reason
for these differences stems from the different transitions
within the range of the spectrograph at the various
redshifts—see [25] for further discussion.
We do find a strong correlation between the number of

transitions used to make one measurement (Nλ) and the
statistical uncertainty of the measurement, as can be

observed in Fig. 4 where, for each Nλ, we plot the average
uncertainty in the α measurements, σΔα=α, achieved as a
function of that number of transitions. (Note that these
transitions need not be the same as the various cases being
averaged over.) We find that a simple parametrization
shows the following approximate relation:

σΔα=α ¼ 139N−1.11
λ ppm; ð16Þ

where again we expressed the uncertainty in parts per
million. This best-fit parametrization is also plotted in Fig. 4.
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FIG. 2 (color online). Observation time and SNR for the VLT
absorbers of [25], as a function of the redshift of the absorption
system. Circles denote absorbers yielding measurements with
better than 10 ppm statistical uncertainty, and crosses denote the
rest of the absorbers.
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FIG. 3 (color online). Uncertainty in the αmeasurements for the
VLT absorbers of [25], as a function of the magnitude of the
quasar and the redshift of the absorbers. Circles denote absorbers
yielding measurements with better than 10 ppm statistical
uncertainty, and crosses denote the rest of the absorbers.

−6 −5.5 −5 −4.5 −4 −3.5

2

4

6

8

10

12

14

16

18

20

log
10

(σΔα/α)

T
ra

ns
iti

on
s

FIG. 4 (color online). Correlation between statistical uncer-
tainty of each of the α measurements and the number of
transitions used to obtain them. Each point in the plot was
obtained as an average of the various points in the data set with
each number of transitions used. The red line is the best
polynomial fit, discussed in the text.

FUNDAMENTAL COSMOLOGY FROM PRECISION … PHYSICAL REVIEW D 90, 063519 (2014)

063519-5



In passing, we note that there is also a correlation
between the sensitivity of the measurements and the
(absolute) value of the q coefficients of the transitions
being used. This is unsurprising: transitions that shift the
most for a given shift in α tend to yield better measure-
ments. However, we shall not quantify this correlation,
since it does not directly impact the phenomenological
modeling of the present work.
One consequence of these nonideal properties of the

sample is that the simple relation given by Eq. (12) will
not strictly hold. Nevertheless, there is a simple way to
correct it, which consists of allowing the former constant
C to itself depend on the number of sources. This is easy to
understand: in a small sample one typically will have the
best available sources; by increasing our sample we will be
adding sources which are not as good as the previous ones,
and therefore the overall uncertainty in the α measurement
will improve more slowly than in the ideal case—or alter-
natively one will need additional telescope time to do so.
Using standard Monte Carlo techniques we have gen-

erated several tens of thousands of subsamples of the VLT
sample, with various numbers of sources, for which we
determined the overall uncertainty in the α measurement
and the amount of telescope time needed to achieve it.
From these distributions (an example of which, for the case
N ¼ 20, is shown in the top panel of Fig. 5) one can
determine the corresponding mean values, and these then
allow us to infer the behavior for the empirical function
CðNÞ. The results of this analysis are shown in Fig. 5. We
find that a good fit is provided by the linear relation

CðNαÞ ¼ 0.31Nα þ 5.02: ð17Þ

Here the constant has been normalized such that σsample is
given in parts per million and T is in nights. As a simple
check, for the UVES Large Program for Testing
Fundamental Physics [11,12], with about 40 nights and
16 sources, we infer from the fitting formula a value of
0.5 ppm, consistent with the expectations of the collabo-
ration [27].
Finally, if we add a “systematics” term σ2sys to Eq. (12)

and repeat the above procedure, our simple analysis
indicates that values

σsys ∼ 4–6 ppm ð18Þ

provide a reasonable fit. It is interesting to note that this is
not too distant from the value obtained in [10,25],

σWebb ¼ 9 ppm; ð19Þ

naturally, their value was obtained with a much more
sophisticated analysis. Nevertheless, this suggests that our
simple toy modeling does capture the salient broad features
of the data sets.

IV. FUTURE OBSERVATIONAL FACILITIES

We can now put together the results of the two previous
sections to obtain a UVES-calibrated PCA formula

σn ¼ A½1þ Bðn − 1Þ� σαffiffiffiffiffiffi
Nα

p

¼ A½1þ Bðn − 1Þ�
�
CðNαÞ

T

�
1=2

; ð20Þ

where the UVES CðNÞ formula is given by Eq. (17). The
most striking feature of this result is the explicit (and
strong) dependence on the number of sources. Future
improvements will come from a better sample selection
and optimized acquisition/calibration methods, and both of
these are expected to significantly reduce this dependence,
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FIG. 5 (color online). Top: Distribution of uncertainties in α for
20-source VLT subsamples, for a total of 15000 realizations.
Bottom: Values of the effective parameter C as a function of the
number of systems considered, for the parametrization of the
observational formula applied to the current UVES data. The red
line is the best linear fit, discussed in the text.
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even eliminating it for moderately sized samples of
absorbers. In the case of the ELT-HIRES, a further
improvement will come from the larger collecting power.
With simple but reasonable extrapolations we can fore-

cast the expected changes to the UVES formula, and from
this carry out an assessment of the impact of these
measurements for constraining dark energy. We shall
consider three scenarios:

(i) A baseline scenario, where there are essentially no
improvements over UVES, that is

CðNαÞBASE ¼ 0.31Nα þ 5.02; ð21Þ

this reflects the current situation, and therefore
provides a benchmark against which future improve-
ments can be discussed. Note that although this
phenomenological fitting formula was obtained for
UVES at the VLT, we expect it to also apply—at
least qualitatively—to analogous contemporary
spectrographs in other 8 m class telescopes, such
as HIRES-Keck or HDS-Subaru.

(ii) An ESPRESSO scenario, where

CðNαÞESPRESSO ¼ 5.02
9

; ð22Þ

given realistic estimates of the available time (note
that 27 GTO nights are currently foreseen) the
observable samples are small enough to make a
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FIG. 6 (color online). The uncertainty in the best-determined
PCA model in the baseline scenario described in the main
text, as a function of the number of nights of observation
and absorbers measured, respectively, for the constant, step
and bump fiducial models (top to bottom). In each case
the color map indicates the logarithm of the uncertainty.
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baseline, ESPRESSO and ELT-HIRES cases, respectively. In
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factor of 3 gain (on average) in sensitivity due to
improved signal to noise and resolution, while
eliminating the explicit dependence of C on the
number of sources. These improvements arise from
the fact that it will be, by design [13], free of the
systematics that are known to affect UVES, and in
particular to the much more precise wavelength
calibration, which will be done with a laser fre-
quency comb. Note that ESPRESSO does have a
wavelength coverage that is substantially reduced
compared to that of UVES, and this will certainly
offset some of the above improvements.

(iii) An ELT-HIRES scenario, where

CðNαÞHIRES ¼
5.02
300

; ð23Þ

here we similarly expect a constant C parameter
(even allowing for the larger number of absorbers
measured), and further gains in sensitivity have been
factored in, including the fivefold increase in the
telescope collecting area. Another key advantage of
ELT-HIRES is its wide wavelength coverage, not
only in the ultraviolet and optical but also in the
infrared.

Figures 6 and 7 depict the uncertainty in the best-
determined PCA mode, for the three observational
scenarios discussed above and the three fiducial models
considered (the constant, step and bump models). In these,
and throughout the discussion in this section, we will
assume 20 PCA bins (Nb ¼ 20; cf. Table I). The former
figure highlights the dependence on the number of sources
in the baseline scenario, while the latter figure highlights
the gains to be expected from ESPRESSO and ELT-HIRES.
For the baseline scenario in this latter plot we assumed a
number of sources equal to half the number of nights,
which is a typical number for current observations.
An alternative way to quantify the expected improve-

ments with ESPRESSO and ELT-HIRES is to estimate the
number of observation nights needed to obtain an uncer-
tainty in the best-determined PCA mode of σ1 ¼ 1. This is
shown in Table III, where we again assumed Nα ¼ T=2 for
the baseline scenario, and the gains are obvious. Note that
here the model dependence is enhanced, since the obser-
vation time will depend on the square of the coefficient A.

For a more ambitious goal, we can instead estimate the
number of nights needed to reach the same sensitivity on
the first PCA mode as the “SNAP-like” data set of 3000
supernovae. This turns out to be σ1;SNAP ∼ 0.033, with the
model dependence appearing at the next decimal place [8].
In this case we find that this level of sensitivity is not
achievable at all with current facilities, while our estimates
for ESPRESSO and ELT-HIRES are listed in Table IV.
Importantly we see that a few tens of nights are sufficient
for ELT-HIRES, further highlighting the key role that the
ELT will be able to play on fundamental cosmology.
We note that a uniform redshift cover is important in

obtaining these results. Moreover the range of redshifts
considered will also play a role, as it will determine how
many useful transitions will fall within the range of the
spectrograph. A more detailed study of these effects is left
for future work.

V. CONCLUSIONS

We have highlighted how the forthcoming generation of
high-resolution ultrastable spectrographs will play a crucial
role in the ongoing search for the new physics that is
currently powering the acceleration of the Universe, We
focused on ongoing and planned astrophysical tests of the
stability of nature’s fundamental couplings, specifically
discussing the improvements that can be expected with
ESPRESSO and ELT-HIRES and their impact on funda-
mental cosmology. However, much of what has been said is
also relevant for other forthcoming instruments, such as
PEPSI at the LBT or HROS at the TMT.
Our analysis suggests different observational strategies

for ESPRESSO and ELT-HIRES. In fact that of ELT-
HIRES is easy to outline: given its exquisite sensitivity, it
should focus on mapping out the behavior of α on a wide
range of redshifts, leading to competitive constraints on
dark energy and fundamental physics paradigms.
Nevertheless, the choice of redshift ranges to probe may
be influenced by the earlier ESPRESSO results. For
ESPRESSO, the gains in sensitivity are partially offset
by its relatively limited wavelength range, which will limit
the range of redshifts that can be mapped at high sensitivity.

TABLE III. Number of nights needed to achieve an uncertainty
of unity in the best-determined PCA mode, σ1 ¼ 1, for the
various scenarios and fiducial models considered. For the base-
line scenario Nα ¼ T=2 was assumed.

Model Baseline ESPRESSO ELT-HIRES

Constant 8.2 0.7 0.02
Step 70.0 2.5 0.07
Bump 23.6 1.5 0.05

TABLE IV. Number of nights needed to achieve, with α
measurements uniformly spaced in redshift, an uncertainty in
the best-determined PCA mode equal to that expected from a
SNAP-like data set of 3000 type Ia supernovae, for the ES-
PRESSO and ELT-HIRES scenarios and the various fiducial
models considered. Note that this is not possible at all in the
baseline scenario

Model ESPRESSO ELT-HIRES

Constant 649.8 19.5
Step 2231.6 66.9
Bump 1420.1 42.6
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Although this issue warrants further study, our results
suggest that one should concentrate on testing the stability
of fundamental couplings using a relatively small set of
carefully chosen absorbers.
Our findings are directly relevant for the target selection

process for both spectrographs, and even for the ELT-
HIRES Phase A studies, which has clear potential for being
a leading instrument in the field of fundamental cosmology.
Although we have not specifically addressed the issue of
redshift coverage (which we leave for future work), it is
clear that a large redshift lever arm for the measurements is
important, leading to the requirement of a broad wave-
length range for the spectrograph (which also maximizes
the number of transitions available for the measurements).
Finally, let us point out that if varying fundamental

couplings are confirmed by ESPRESSO and ELT-HIRES,
these spectrographs can themselves carry out consistency
tests by looking for additional observational effects that
must exist if constants vary. One example, to which both
spectrographs can contribute, is tests of the redshift

dependence of the cosmic microwave background temper-
ature [28,29]. A second example is provided by the redshift
drift [30,31], which is probably outside the reach of
ESPRESSO but will be a key driver for ELT-HIRES
(and may also be measured, at lower redshifts, by other
facilities such as the SKA).
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