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Spectroscopic redshift surveys offer great prospects for constraining the dark sector in cosmology.
Future surveys will however be both deep and wide and will thus require an analysis in three-dimensional
spherical geometry. We review and compare several methods which have been proposed in the literature for
this purpose, focusing in particular on implementations of the spherical harmonic tomography (SHT)
power spectrum Cij

l and the spherical Fourier Bessel (SFB) power spectrum Clðk; k0Þ. Using a Fisher
analysis, we compare the forecasted constraints on cosmological parameters using these statistics. These
constraints typically rely on approximations such as the Limber approximation and make specific choices
in the numerical implementation of each statistic. Using a series of toy models, we explore the applicability
of these approximations and study the sensitivity of the SHT and SFB statistics to the details of their
implementation. In particular, we show that overlapping redshift bins may improve cosmological
constraints using the SHT statistic when the number of bins is small, and that the SFB constraints are
quite robust to changes in the assumed distance-redshift relation. We also find that the SHT can be tailored
to be more sensitive to modes at redshifts close to the survey boundary, while the SFB appears better suited
to capture information beyond the smooth shape of the power spectrum. In this context, we discuss the pros
and cons of the different techniques and their impact on the design and analysis of future wide field
spectroscopic surveys.
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I. INTRODUCTION

Constraining the nature and properties of dark energy
and dark matter are amongst the most intriguing tasks of
current physics. Spectroscopic galaxy redshift surveys offer
a way to probe the matter distribution at low redshift which
is strongly affected by the properties of the dark sector.
Upcoming spectroscopic clustering surveys like the
Hobby-Eberly Telescope Dark Energy Experiment [1],
the Dark Energy Spectroscopic Instrument [2] and the
Prime Focus Spectrograph [3] experiment are therefore
amongst the most promising tools to achieve these tasks. As
opposed to the CMB which can be analyzed through two-
dimensional maps on the sky, galaxy surveys are inherently
three-dimensional, making their analysis more complex.
Depending on the galaxy survey geometry, different analy-
sis methods have thus been proposed.
For surveys with limited angular sky coverage, the sky

can be approximated as flat. Therefore the clustering of
galaxies can be analyzed in three-dimensional Cartesian
coordinates by means of the spatial correlation function
ξðrÞ or through its Fourier counterpart, the Cartesian power
spectrum Pðk; rÞ.
In recent years, galaxy redshift surveys have become

both wider and deeper, leading us to investigate analysis
methods other than Pðk; rÞ, which do not rely on the
flat-sky approximation and which facilitate combination of
galaxy clustering data with other cosmological probes.

A statistic which naturally incorporates the curvature of the
sky is the spherical harmonic tomography (SHT) power
spectrum Cij

l , the spherical harmonic transform of the
angular correlation function at redshifts zi (for theoretical
studies see e.g. [4–7] and for application to data see e.g.
[8,9]). The three-dimensional information can partly be
retrieved from this tomographic analysis by performing the
spherical harmonics decomposition at a number of different
redshifts. Tomographic analyses of the matter overdensity
field require subdivision of data into bins, since a finite
redshift resolution is needed to compute angular correla-
tions in practice.
Another common way to analyze the three-dimensional

matter overdensity field in spherical geometry, which has
been applied to galaxy redshift surveys (e.g. [10,11]), weak
lensing (e.g. [12,13]) and the integrated Sachs-Wolfe
effect [14], is to measure its spherical Fourier transform.
The result is the three-dimensional spherical Fourier Bessel
(SFB) power spectrum Clðk; k0Þ where the angular depend-
ence is encoded in the multipole l and the radial depend-
ence in the wave vector k. This statistic allows us to retrieve
the clustering information without having to adopt the
flat-sky approximation or the need for redshift binning.
Recently, the spherical harmonic tomography power

spectrum has been compared to Pðk; rÞ, showing that
the two methods yield consistent results [7] and both these
methods have been employed to investigate the comple-
mentarity of weak lensing and galaxy redshift surveys (see
e.g. [15,16]).*andrina.nicola@phys.ethz.ch
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With the aforementioned galaxy redshift surveys under
development, it becomes increasingly important to further
test and compare the applicability of these statistics to
survey requirements. In this paper, we compare the two
spherical-sky statistics i.e. the SHT power spectrum and the
SFB power spectrum using a Fisher analysis. We study the
sensitivity of these statistics to the detail of their imple-
mentation, placing particular emphasis on the advantages
and disadvantages of each method, some of which we
illustrate with simplified toy models.
This paper is organized as follows. In Sec. IIwe summarize

our comparison baselinemodel. In Secs. III and IVwe review
three-dimensional spherical analyses of the matter overden-
sity field as well as Fisher matrix forecasting techniques and
present applications to the SFB power spectrum. In Sec. Vwe
present a comparison of the spherical harmonic tomography
and the SFB power spectrum. We conclude in Sec. VI.
Derivations and discussion of employed toy models are
deferred to the Appendix.

II. COMPARISON BASELINE

In this work, we consider a wCDM1 cosmological model
in the framework of general relativity specified by the set of
seven cosmological parameters θ ¼ ðh;Ωm;ΩΛ; w0; wa;
ns; σ8Þ, where we fix the baryon density Ωb ¼ 0.045.
This model allows for a dynamical evolution of dark
energy as well as curvature and is characterized by seven
parameters: the mean fractional matter density Ωm, the
fractional density of dark energy ΩΛ, the Hubble constant
H0 ¼ 100h km=s=Mpc, the rms of matter fluctuations σ8 in
spheres of comoving radius 8h−1Mpc, the scalar spectral
index ns and two parameters w0 and wa that characterize the
equation of state of dark energy ([17,18])

wðaÞ ¼ w0 þ ð1 − aÞwa: ð1Þ

We choose fiducial values θfid ¼ ð0.7; 0.3; 0.69;−0.95; 0;
1.0; 0.8Þ, which are consistent with the recent results by
WMAP 9 [19]. In all calculations we fix wa ¼ 0.
We define the baseline survey in terms of total surveyed

volume V and number of detected galaxies Ngal by
expressing the galaxy number density as [20]

nðrÞ ¼ n0ϕðrÞ ¼
Ngal

V
ϕðrÞ ð2Þ

where r is the comoving distance and ϕðrÞ defines the
radial survey selection function with normalizationR
d3rϕðrÞ ¼ V as in [11,20]. The normalization condition

defines the window function in redshift WðzÞ [20]. For
incomplete sky coverage, parametrized by the fraction of
sky covered in the survey fsky, it becomes

Z
drr2ϕðrÞ ¼

Z
dz

c
HðzÞ r

2ϕðrÞ ¼
Z

dzWðzÞ ¼ V
4πfsky

:

ð3Þ

For all surveys considered, we assume fractional sky
coverage fsky ¼ 0.125, which represents a lower limit to
the sky fraction covered by future surveys, and a radial
selection function given by

ϕðrÞ ¼ e−ð
r
r0
Þ2 ð4Þ

which yields a survey volume of V ¼ π
3
2r30. This choice is

motivated by the fact that it allows for the analytical
computation of SFB power spectra in the absence of
evolution, which is useful to test the full results. In order
to match window functions characteristic of upcoming
galaxy redshift surveys, we set r0 ¼ rðz ¼ 1Þ ¼
2354h−1Mpc, as computed in our fiducial cosmologi-
cal model.
Figure 1 shows the angular galaxy density as a function

of redshift for a volume density of n0 ¼ 10−3ðh−1MpcÞ−3;
it further illustrates the binning scheme adopted in the
tomographic analysis. Each bin configuration is chosen by
requiring the same number of galaxies in each redshift bin.
Our baseline choices are summarized in Table I. For
comparison and future reference we show recent choices
made in the literature in Table II. This table highlights the
breadth of possible choices to make when analyzing a
galaxy redshift survey. The most important ones include
(1) Statistic used: spherical harmonic tomography

power spectrum, spherical Fourier Bessel power
spectrum or Cartesian power spectrum.

FIG. 1 (color online). Survey window function with mean
redshift z̄ ¼ 1.2 and constant galaxy volume density
n0 ¼ 10−3ðh−1 MpcÞ−3. This corresponds to a galaxy surface
density of nA ¼ 0.49 arcmin−2.

1A cold dark matter cosmological model with time-dependent
dark energy equation of state.
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(2) Physical effects included: redshift space distortions,
relativistic corrections (see e.g. [4,20]).

(3) Implementation scheme: examples include simplify-
ing assumptions like the Limber approximation,
Fisher matrix computation method or number of
cosmological parameters considered.

From Table II we see that the choices made differ
considerably. One of the aims of this paper is therefore
to investigate how much parameter forecasts and con-
straints are influenced by some of these choices.

III. THREE-DIMENSIONAL SPHERICAL
POWER SPECTRA

A. The Cartesian power spectrum

A common approach to analyze the observed matter
overdensity field δðx; rÞ is to expand it into its Cartesian

Fourier components δðk; rÞ, where we use the comoving
distance r as a measure of time t. The real-space over-
density field is related to its Fourier counterpart through

δðx; rÞ ¼ 1

ð2πÞ3
Z

d3kδðk; rÞeik·x: ð5Þ
The Fourier space correlation function is the Cartesian
matter power spectrum Pðk; rÞ defined by

hδðk; rÞδðk0; rÞi ¼ ð2πÞ3δDðk − k0ÞPðk; rÞ: ð6Þ
hi denotes an ensemble average. We only focus on the
linear matter power spectrum which factorizes into a time
and scale dependent part as

Pðk; rÞ ¼ D2ðrÞP0ðkÞ ð7Þ
where DðrÞ is the linear growth factor and P0ðkÞ is the
power spectrum at redshift z ¼ 0. We assume a transfer
function as summarized in [25] and neglect both the effects

TABLE I. Baseline specification.

Survey

Sky coverage: fsky ¼ 0.125
Selection function: ϕðrÞ as in Eq. (4) with r0 ¼ 2354h−1 Mpc

Galaxy volume density: n0 ¼ 10−3ðh−1 MpcÞ−3
Galaxy surface density: nA ¼ 0.49 arcmin−2

Angular scales covered: l ∈ ½2; 50�

Model

Cosmological parameters: θ ¼ ðh;Ωm;ΩΛ; w0; ns; σ8Þa
Fiducial values: θfid ¼ ð0.7; 0.3; 0.69;−0.95; 1.0; 0.8Þ

Prior: none
Galaxy bias: bðk; rÞ ¼ 1

Redshift space distortions: yes
Relativistic corrections: no

Implementation
SFB SHT

k range: k ∈ ð0.0007; 0.2ÞhMpc−1 Number of bins: 7
Fisher matrix: diagonal Redshift range: 0.05 ≤ z ≤ 3.0

aWe further fix Ωb ¼ 0.045 and wa ¼ 0.

TABLE II. Compilation of different implementations used in the literature.

Paper Statistic RSD
Rel.

corrections Bias
Limber
approx. Nparam Prior

Fisher analysis

Gaztanaga et al., 2012 [21] Cij
l ; PðkÞ yesa no yes yes 8 Planckþ SN-II

de Putter et al., 2013 [16] Cij
l ; PðkÞ yesa no yes yes 9 Planck

Cai et al., 2012 [22] Cij
l ; PðkÞ yesa no yes yes 6 CMB p. s.b

Kirk et al., 2013 [15] Cij
l yes no yes no 7 Flat

Font-Ribera et al., 2013 [23] Cij
l ; PðkÞ yesa no yes yes 8 Planck

Di Dio et al., 2014 [6] Cij
l yes yes no no 5 none

This work Cij
l ; Clðk; k0Þ yes no no no 6 none

General analysis

Bonvin et al., 2011 [4] Cij
l yes yes no no � � � � � �

Challinor et al., 2011 [5] Cij
l

yes yes yes no � � � � � �
Rassat et al., 2012 [11] Clðk; k0Þ no no no no � � � � � �
Yoo et al., 2013 [20] Clðk; k0Þ yes yes no no � � � � � �
Pratten et al., 2013 [24] Clðk; k0Þ yes no no no � � � � � �

aTransverse modes with Cij
l . RSDs taken into account for the radial modes in each redshift bin using PðkÞ.

bAssume primordial CMB power spectrum known.
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of baryon oscillations (BAOs) and neutrinos in our baseline
configurations. In Sec. V we investigate the impact of
BAOs on our results.
The measurement of this statistic from galaxy redshift

surveys bears one complication: the observables in these
surveys are the galaxy redshifts z and their angular
positions on the sky ðθ;ϕÞ. Therefore, in order to compute
any three-dimensional power spectrum from data, the
redshift needs to be related to a wave number k through
the assumption of a radial distance. This transformation
depends on the choice of a fiducial cosmological model.
Any three-dimensional analysis of the matter overdensity
field therefore requires the assumption of a cosmological
model [26], prior to testing it.
Another consequence of the fact that radial galaxy

distances are only accessible through their redshift is that
the distance estimates will be affected by peculiar galaxy
velocities. The comoving galaxy distances s inferred from
their redshifts are given by [27]

s ¼ rþ v · n
aHðaÞ ð8Þ

where v is the galaxy velocity due to the linear collapse of
overdensities, HðaÞ is the Hubble parameter and n denotes
the line of sight direction. These redshift space distortions
(RSDs) lead to an enhancement of the Cartesian matter
power spectrum given by [27]

Psðk; rÞ ¼ Pðk; rÞð1þ βμ2kÞ2 ð9Þ

where β ¼ f=b. The quantity f ¼ d lnDðaÞ=d ln a denotes
the linear growth rate, b is the galaxy bias, discussed below,
and μk is the cosine of the angle between the line of sight
and the wave vector k. Measuring the power spectrum in
redshift space therefore allows us to also estimate the
growth rate f of matter perturbations.
Irrespective of the analysis method, galaxy redshift

surveys pose an additional complication. Since galaxies
are only expected to form inside the peaks of the over-
density field [28] and galaxy formation is not completely
understood yet, the galaxy overdensity field δgðk; rÞ is
expected to constitute a biased tracer of the underlying dark
matter distribution δdmðk; rÞ i.e. δgðk; rÞ ¼ bðk; rÞδdmðk; rÞ.
In this paper we assume that galaxies perfectly trace dark
matter, which amounts to setting the bias parameter
bðk; rÞ ¼ 1. Since in this work we focus on clustering
on large scales, where the scale dependence of galaxy bias
is negligible (e.g. [29]), we believe that this simplified
assumption is appropriate because the statistics we compare
will all equally suffer from the problem of bias. An
investigation of the effects of scale dependent bias on
our results would be interesting for future work.

B. The spherical harmonic tomography
power spectrum

The need for assuming a cosmological model, which
arises in three-dimensional analyses of galaxy clustering, can
be circumvented with a tomographic analysis. This amounts
to discretizing the redshift and analyzing the angular depend-
ence of galaxy clustering through the spherical harmonic
tomography power spectrum Cij

l at a number of different
redshifts in order to partly recover the three-dimensional
information. In practice, a galaxy catalog is analyzed by
subdividing the galaxies into redshift bins and computing
both the auto- and cross-power spectra for all the bins.
Assuming the overdensity field to be statistically iso-

tropic and homogeneous, the spherical harmonic tomog-
raphy power spectrum including RSDs between redshift
bins i and j, with radial selection functions ϕiðrÞ and ϕjðrÞ
respectively, is given by [30]

Cij
l ¼ 2

π

Z
dkk2P0ðkÞðWi

lðkÞ þ βWi;r
l ðkÞÞðWj

lðkÞ

þ βWj;r
l ðkÞÞ ð10Þ

where the auto-power spectra are obtained for i ¼ j and the
cross-power spectra for i ≠ j. The selection functions are
normalized i.e.

R
drϕiðrÞ ¼ 1. Their unnormalized coun-

terparts, the redshift distributions for each bin, are shown in
Fig. 1. Wi

l is the real-space window function whereas Wi;r
l

accounts for the corrections due to RSDs; both window
functions are defined in terms of the spherical Bessel
functions jl as [30]

WlðkÞ ¼
Z

drDðrÞϕiðrÞjlðkrÞ ð11Þ

Wr
l ðkÞ ¼

Z
drDðrÞϕiðrÞ

� ð2l2 þ 2l − 1Þ
ð2lþ 3Þð2l − 1Þ jlðkrÞ

−
lðl − 1Þ

ð2l − 1Þð2lþ 1Þ jl−2ðkrÞ

−
ðlþ 1Þðlþ 2Þ

ð2lþ 1Þð2lþ 3Þ jlþ2ðkrÞ
�
: ð12Þ

Figure 2 shows both the auto and the cross (neighboring
redshift bins) SHT power spectraCij

l as a function of angular
scale l for the baseline configuration defined in Sec. II.
The computation of the spherical harmonic tomography

power spectrum through Eq. (10) can be computationally
expensive and it is therefore common to resort to the small
angle and wide selection function approximation. At large
l, the spherical harmonic tomography power spectrum can
be approximated through Limber’s approximation as [31]

Cij
l ≃

Z
dr

ϕiðrÞϕjðrÞ
r2

D2ðrÞP0

�
k ¼ lþ 1

2

r

�
: ð13Þ

NICOLA et al. PHYSICAL REVIEW D 90, 063515 (2014)

063515-4



C. The spherical Fourier Bessel power spectrum

An alternative way for analyzing the galaxy overdensity
field is through the spherical Fourier Bessel transform
(e.g. [10,11,20,24]). The galaxy overdensity field δðrÞ can
be expanded into its translationally invariant parts i.e. the
eigenfunctions of the Laplacian in spherical coordinates. In
flat space these are given by products of spherical Bessel
functions and spherical harmonics Ylmðθ;ϕÞ which lead to
the expansion

δðrÞ ¼
ffiffiffi
2

π

r Z
dk
X
l;m

δlmðkÞkjlðkrÞYlmðθ;ϕÞ ð14Þ

The coefficients δlmðkÞ are given by

δlmðkÞ ¼
1

2π2

ffiffiffi
2

π

r
kil

Z
drr2

×
Z

d3k0δðk0; rÞjlðkrÞjlðk0rÞY�
lmðθk0 ;ϕk0 Þ: ð15Þ

The SFB power spectrum is defined as the variance of these
coefficients as given below, where the last equality holds if
the overdensity field δðrÞ is statistically isotropic and
homogeneous (SIH) [11]

hδlmðkÞδ�l0m0 ðk0Þi ¼ Clðk; k0Þδll0δmm0

¼ ClðkÞδDðk − k0Þδll0δmm0 ð16Þ

Under the SIH assumption we further obtain [13]

ClðkÞ ¼ PðkÞ: ð17Þ

A similar identity can be obtained in the presence of
RSDs in the flat-sky limit and for high radial wave vectors
k. In this case we approximately obtain

ClðkÞ≃ PðkÞð1þ βÞ2: ð18Þ
A derivation of this radialization in the presence of RSDs can
be found in Appendix A. In cosmology, the SIH condition
will usually be violated for two reasons [11] (i) the observed
fields are generally confined to finite regions of space
defined by the survey selection function and (ii) the field
δðrÞ and the power spectrum Pðk; rÞ evolve.
In order to compute the observed SFB power spectrum,

constraints on radial survey geometry can be imposed
through a radial selection function ϕðrÞ, as defined in
Sec. II [11]

δobsðrÞ ¼ ϕðrÞδðrÞ: ð19Þ
Accounting for time evolution as well as the effects of
RSDs, the observed SFB power spectrum of the over-
density field δ becomes [11]

Clðk; k0Þ ¼
�
2

π

�
2
Z

dk00k002P0ðk00ÞðWlðk; k00Þ

þWr
l ðk; k00ÞÞðWlðk0; k00Þ þWr

l ðk0; k00ÞÞ: ð20Þ

Wlðk; k00Þ is the real-space window function whereas
Wr

l ðk; k00Þ accounts for the corrections due to RSDs; they
are defined as ([11,24])

Wlðk; k00Þ ¼
Z

drr2DðrÞϕðrÞkjlðkrÞjlðk00rÞ ð21Þ

FIG. 2 (color online). Spherical harmonic tomography power spectra Cij
l for the seven redshift bins and survey specified in Sec. II,

where z̄ denotes the mean redshift of each bin. The left panel shows the auto-power spectra, while the absolute value of the cross-power
spectra is shown on the right-hand side.
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Wr
l ðk; k00Þ ¼

Z
drr2β

k2

k00
DðrÞϕðrÞ

�
l2

ð2lþ 1Þ2 jl−1ðkrÞjl−1ðk
00rÞ

−
lðlþ 1Þ
ð2lþ 1Þ2 fjl−1ðkrÞjlþ1ðk00rÞ þ jlþ1ðkrÞjl−1ðk00rÞg þ

ðlþ 1Þ2
ð2lþ 1Þ2 jlþ1ðkrÞjlþ1ðk00rÞ

�

þ
Z

drr2β
k
k00

DðrÞ dϕðrÞ
dr

�
l

ð2lþ 1Þ jlðkrÞjl−1ðk
00rÞ − ðlþ 1Þ

ð2lþ 1Þ jlðkrÞjlþ1ðk00rÞ
�
: ð22Þ

Equation (22) allows for a time dependence of the over-
density field δðk; rÞ, since the survey selection functions
tend to be broad in redshift as opposed to the redshift bins
in Sec. III B.
Figure 3 shows the SFB power spectrum C0

lðk; kÞ ¼
Clðk; kÞðr0=2

ffiffiffiffiffiffi
2π

p Þ−1, both as a function of angular scale l
and wave vector k for the selection function defined in
Eq. (4). The normalization follows [20] and facilitates
comparison of the SFB with the Cartesian power spec-
trum Pðk; rÞ.
Just as for the spherical harmonic tomography power

spectrum it is useful to obtain approximations to Eq. (20).
In [20] it is shown that in the limit of large angular
multipoles l, the SFB power spectrum, neglecting RSDs,
can be approximated by [20]

Clðk; k0Þ≃ ϕ2

�
lþ 1

2

k

�
D2

�
lþ 1

2

k

�
P0ðkÞδDðk − k0Þ: ð23Þ

In the cases considered, there always remains a significant
difference between Eqs. (20) and (23), which is the SFB
analogue of Limber’s approximation. Nonetheless it proves
useful to test the accuracy of the full equation.

1. The SFB power spectrum for a generic
distance-redshift relation

The spherical Fourier Bessel coefficients are functions
of the wave vector k, which in turn depends on the measure

of separation in real space. It is customary to choose k
conjugate to the comoving separation r, making the
assumption of a cosmological model inevitable when
computing the SFB transform. As an alternative, in this
paper we additionally compute the SFB power spectrum for
two distance-redshift relations which can directly be
computed from observable quantities.
In order to derive an expression for the SFB power

spectrum, we assume a generic distance-redshift relation
defined as ~rðzÞ where ~r is an arbitrary monotonic function
of the redshift z.
With this choice of distance-redshift relation the SFB

power spectrum reduces to

Clðν; ν0Þ ¼
�
2

π

�
2
Z

dk00k002P0ðk00ÞðWlðν; k00Þ

þWr
l ðν; k00ÞÞðWlðν0; k00Þ þWr

l ðν0; k00ÞÞ ð24Þ

where ν denotes the wave vector conjugate to the new
separation measure and ϕ0 is the selection function in this
coordinate system. Wlðν; k00Þ is the real-space window
function whereas Wr

l ðν; k00Þ accounts for the corrections
due to RSDs; they are given by

Wlðν; k00Þ ¼
Z

drr2DðrÞϕ0ð~rÞνjlðν~rÞjlðk00rÞ ð25Þ

FIG. 3 (color online). The SFB auto-power spectrum C0
lðk; kÞ as a function of wave vector k and angular scale l.
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Wr
l ðν; k00Þ ¼

Z
drr2β

ν2

k00
DðrÞϕ0ð~rÞ d~r

dz
HðzÞ
c

�
l2

ð2lþ 1Þ2 jl−1ðν~rÞjl−1ðk
00rÞ

−
lðlþ 1Þ
ð2lþ 1Þ2 fjl−1ðν~rÞjlþ1ðk00rÞ þ jlþ1ðν~rÞjl−1ðk00rÞg þ

ðlþ 1Þ2
ð2lþ 1Þ2 jlþ1ðν~rÞjlþ1ðk00rÞ

�

þ
Z

drr2β
ν

k00
DðrÞ dϕ

0

d~r
d~r
dz

HðzÞ
c

�
l

ð2lþ 1Þ jlðν~rÞjl−1ðk
00rÞ − ðlþ 1Þ

ð2lþ 1Þ jlðν~rÞjlþ1ðk00rÞ
�
: ð26Þ

Since the selection function transforms as a scalar quantity,
ϕ0ð~rÞ is related to the selection function in terms of the
comoving distance through ϕ0ð~rðzÞÞ ¼ ϕðrðzÞÞ. For a
derivation of these identities, the reader is referred to
Appendix B.
As an illustration of the impact of the choice of distance-

redshift relation, we consider two alternatives to the
comoving distance:

~rðzÞ ¼ c
H0

z

~rðzÞ ¼ c
H0

lnð1þ zÞ: ð27Þ

The first is the linear approximation to the comoving
distance valid for low redshifts, while the second is a
logarithmic approximation to r chosen to reproduce its
behavior at both low and intermediate redshift. The resulting
SFB power spectra are shown in Fig. 6. The normalization
again follows [20].

IV. FISHER MATRICES FOR THREE-
DIMENSIONAL SPHERICAL

POWER SPECTRA

The Fisher matrix (FM) allows us to forecast the
constraints on cosmological parameters obtainable with
future surveys under the approximation of Gaussianity (for
an overview of Fisher forecasting see e.g. [32,33] on which
this summary is based). This method can be applied to
survey optimization or, as done in this paper, it can be used
to assess the constraining power of different data analysis
methods. The FM allows for the propagation of uncertain-
ties in the measurement to uncertainties on the model
parameters, which here are the parameters of the wCDM
cosmological model. Bayes’s theorem allows us to relate
the posterior probability distribution pðθ∣xÞ around the
maximum likelihood estimator to the data likelihood
Lðx; θÞ. The inverse covariance matrix of the posterior
distribution is called the Fisher matrix and given by

Fαβ ¼
�
−
∂2 lnL
∂θα∂θβ

�
: ð28Þ

When several parameters are simultaneously estimated
from the data, the marginalized uncertainty on each

parameter θα is bounded by Δθα ≥
ffiffiffiffiffiffiffiffi
F−1
αα

p
[34]. The fixed

uncertainty, obtained when keeping all parameters except
one fixed, is smaller or equal to the former and given by
Δθα ≥ 1=

ffiffiffiffiffiffiffiffi
Fαα

p
[34].

A. The Fisher matrix for the spherical harmonic
tomography power spectrum

The FM for a tomographic survey employing N redshift
bins can be derived from Eq. (28) assuming a Gaussian
likelihood for the spherical harmonics coefficients. The
result is [35]

Fαβ ¼ fsky
X
l

ð2lþ 1ÞΔl
2

Tr½Dlα
~C−1
l Dlβ

~C−1
l � ð29Þ

where the sum is over bands of width Δl in the power
spectrum and we set Δl ¼ 1. The data covariance is an
N × N matrix given by

½ ~Cl�ij ¼ C
xixj
l þ N

xixj
l ð30Þ

where the xi; xj denote the respective bins. The first term in
Eq. (30) represents the innate cosmic variance, while the
second term is due to shot noise and given by N

xixj
l ¼

1=nAδxixj , where nA is the galaxy surface density of the
survey.
The matrix Dlα contains the dependence of the observ-

ables on the parameters θα and has elements given by

½Dlα�ij ¼
∂Cxixj

l

∂θα : ð31Þ

The simple scaling with fsky accounts for the fact that
angular modes become coupled for incomplete sky cover-
age. This reduces the number of independent modes at a
given angular scale l and therefore increases the uncer-
tainties due to cosmic variance [36].

B. The Fisher matrix for the SFB power spectrum

The computation of the FM for the SFB power spectrum
from the Gaussian likelihood for the SFB coefficients
δlmðkÞ is challenging due to the correlations between
different k modes, which are due to time evolution of
the overdensity field and finite survey effects. The com-
plication arising from the nondiagonal data covariance
matrix can be dealt with in two different ways: (i) by
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choosing a finite grid in k space and computing the FM on
this discrete grid or (ii) by approximating the full FM by
assuming a diagonal data covariance matrix. Drawing from
previous work ([12,20,37,38]) we can find expressions for
the FM in both cases.
The FM for a measurement of the SFB power spectrum

for n discrete wave vectors ki can be written as [12]

Fαβ ¼ fsky
X
l

ð2lþ 1ÞΔl
2

Tr

�
Ĉ−1

l
∂Ĉl

∂θα Ĉ
−1
l

∂Ĉl

∂θβ
�

ð32Þ

where the sum is over bands of width Δl in the power
spectrum and we set Δl ¼ 1 and the scaling with fsky
accounts for incomplete sky coverage. Ĉl is the non-
diagonal covariance matrix for given angular multipole l

Ĉl ¼

0
BBBBB@

~Clðk1; k1Þ ~Clðk1; k2Þ � � � ~Clðk1; knÞ
~Clðk2; k1Þ ~Clðk2; k2Þ � � � ~Clðk2; knÞ

..

. ..
. . .

. ..
.

~Clðkn; k1Þ ~Clðkn; k2Þ � � � ~Clðkn; knÞ

1
CCCCCA

ð33Þ

and ~Clðki; kjÞ ¼ Clðki; kjÞ þ Nlðki; kjÞ. The first term is
again the cosmic variance and the second is the shot noise
in a survey with galaxy volume density n̄ðrÞ given by [20]

Nlðki;kjÞ¼
�
2kikj
π

�Z
drr2ϕðrÞjlðkirÞjlðkjrÞ

1

n̄ðrÞ : ð34Þ

If we assume a broad window function, such that mode
coupling can be neglected [39], we can approximate
Clðk; k0Þ ¼ 0 for k ≠ k0. This allows us to obtain a
simplification of Eq. (32) given by

Fαβ ¼ fsky
X
l

ð2lþ 1ÞΔl
2

×
Z

kmax

kmin

Ldk
2π

1

ðClðk; kÞ þ Nlðk; kÞÞ2

×
∂Clðk; kÞ

∂θα
∂Clðk; kÞ

∂θβ ð35Þ

where the sum is over bands of width Δl in the power
spectrum, L denotes the maximal length scale probed in the
survey and kmin, kmax denote the wave vector limits of the
survey. For our calculations we set L to the characteristic
survey depth i.e. L ¼ r0

2 and Δl ¼ 1.
For a detailed derivation of Eqs. (32) and (35) the reader

is referred to Appendix C. We note that we do not include
any optimal weighting of the data [10], a subject which will
be interesting for future work.

V. RESULTS

As a means for assessing the applicability of both the
spherical harmonic tomography and the spherical Fourier
Bessel power spectrum to upcoming galaxy redshift sur-
veys, we compare their forecasted performance in a Fisher
matrix analysis. From the numerous possible combinations
discussed in Sec. II, we have chosen to place our emphasis
on two topics: We first focus on each statistic separately
and address the main complication associated with it;
then we compare the constraining power of both statistics
for the baseline survey (Sec. II).

A. Spherical harmonic tomography power spectrum

The constraints on cosmological parameters obtained
when analyzing the baseline survey (II) using the SHT
power spectrum and only taking into account auto-power
spectra3 are highlighted in Table III. For the baseline
configuration we obtain uncertainties of the order of the
parameter value, which is due to the fact that we only
consider large-scale information from angular multipoles
l ∈ ½2; 50�.4 Increasing the maximal angular scale probed to
lmax ¼ 200, which corresponds to the nonlinear cutoff for
the lowest redshift bin, considerably improves parameter
constraints. The restriction to large-scale angular perturba-
tions is due to the calculation of the SFB power spectrum,
which becomes slow for smaller scales. Nonetheless, the
matter density of the Universe and the power spectrum
amplitude are already sensibly constrained whereas the
dark energy sector is poorly constrained due to the
significant degeneracies present. Before comparing these
results to the constraints obtained for the SFB power
spectrum, we first discuss the main complication associated
with tomographic analyses.
The SHT power spectrum necessitates tomographic

analyses of galaxy catalogs, which amounts to splitting
the data into redshift bins. This additional freedom raises
the question of how to optimally perform this subdivision.
For a fixed baseline survey and therefore data, we expect to
see small differences between binning schemes. As we will
show below, on the contrary, we can identify instabilities
when implementing different bin configurations for a given
survey, when we estimate their respective constraining
power in a Fisher analysis using Eq. (29). Not only is this
behavior unexpected but it also implies that these insta-
bilities need to be kept in mind when e.g. comparing the
forecasted performance of future surveys.
As an example for studying the effects of red-

shift binning on parameter constraints, we investigate

2The maximal length scale probed L is not a well-defined
quantity, but parameter constraints seem stable against changing

specification, since setting L ¼ V
1
3
survey changes results by at

most 10%.

3We find that including the cross correlations does not affect
results significantly and we thus neglect them in order to match
the specifications used for the SFB power spectrum more closely.

4We believe that this reduced range does not affect our results
because we are mainly concerned with comparing two different
statistics.
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configurations that differ in the amount of redshift bin
overlap. In general there are two causes for bin overlap in
galaxy redshift surveys: (i) in spectroscopic surveys, bins
can purposely be tailored to have overlap while (ii) in
photometric surveys, redshift bins will overlap due to
inaccurate redshift measurements. We focus on spectro-
scopic surveys and therefore only consider case (i). A
nonzero overlap between redshift bins will cause them to be
correlated, if we assume that they are both located in the
same part of the sky. Investigating the impact of bin
overlap/correlation on the constraining power of galaxy
redshift surveys therefore not only highlights instabilities
with data binning but also addresses the core of the same
sky-different sky issue (see e.g. [15,16]), which is the
question of how much correlations between data sets can
affect parameter constraints.
We investigate the effects of bin configuration on

constraining power using a series of highly simplified
toy models, which are based on the Limber approximation
and ignore shot noise contributions. For a detailed descrip-
tion of these, the reader is referred to Appendix D. As
shown in Appendix D 1, we find that increasing the amount
of overlap between bins, while keeping their mean redshifts
fixed and taking into account correlations, can result in an
improvement of cosmological parameter constraints by as
much as a factor of 2. This behavior is only found when
constraining parameters that exhibit a high level of redshift
degeneracy between each other i.e. parameters which can
only be distinguished with information at separate

redshifts; an example from cosmology is the redshift
degeneracy between parameters which control the growth
of structure as a function of time and the overall clustering
amplitude. On the other hand, we find that constraints
on non-redshift degenerate parameters as well as fixed
errors are insensitive to changes in bin overlap. It is
important to point out that these conclusions do not
apply to bin overlap caused by redshift uncertainties
[case (ii)]. Redshift errors cannot be modeled solely as a
redshift bin broadening, since this approach does not take
into account the uncertainty introduced in the redshift
distribution. If redshift uncertainties are implemented as
in [40], we find that increased bin overlap due to larger
redshift uncertainties worsens parameter constraints as
intuitively expected.
These results suggest that the main effect of overlap

between redshift bins on spectroscopic surveys is to break
redshift degeneracies between parameters. This seems
counterintuitive but as we show in Appendix D 2, the
dependence of parameter constraints on correlation is a
generic feature of such data sets. This suggests that the
observed sensitivity of parameter constraints on binning
scheme is due to the fact that the amount of correlation
between redshift bins, which has an effect on parameter
constraints, is scheme dependent.
The results presented so far have been based on tomo-

graphic analyses consisting of only two redshift bins; as the
number of redshift bins is increased, the effect of bin
overlap becomes negligible as shown in Fig. 7. The more

TABLE III. Parameter constraints obtained for different implementations of the SHT and SFB power spectrum.
Results for the baseline configuration are italicized. Note that in the case of the SFB the full cov. results neglect
contributions due to shot noise, whereas all other constraints assume shot noise as specified in Sec. II.

Statistic Implementation Radial resolutiona σh σΩm
σΩΛ

σw0
σns σσ8

SHT

Limber lmax ¼ 50 7 bins 5.5 1.8 1.2 2.8 0.79 0.22
no RSD lmax ¼ 50 7 bins 2.2 0.32 0.50 1.2 1.4 0.15
RSD lmax ¼ 200 7 bins 0.082 0.040 0.10 0.23 0.10 0.030

RSD

lmax ¼ 50 7 bins 0.42 0.17 0.48 1.0 0.33 0.15
lmax ¼ 50 w=BAOs 7 bins 0.38 0.12 0.45 0.97 0.28 0.11

lmax ¼ 50 10 bins 0.078 0.098 0.26 0.59 0.30 0.084
lmax ¼ 50 20 bins 0.15 0.073 0.19 0.38 0.20 0.074
lmax ¼ 50 30 bins 0.12 0.058 0.17 0.34 0.18 0.060

SFB

full cov.b
Logarithmic 0.2hMpc−1 0.30 0.048 0.32 0.46 0.31 0.67

Linear 0.2hMpc−1 0.22 0.047 0.29 0.40 0.25 0.49
Comoving 0.2hMpc−1 0.38 0.043 0.55 1.3 0.38 0.86

diag cov.c

Logarithmic 0.2hMpc−1 0.33 0.059 0.52 0.71 0.30 0.74
Linear 0.2hMpc−1 0.53 0.086 0.82 1.0 0.39 1.2

Comoving 0.2hMpc−1 0.37 0.091 0.72 2.7 0.32 0.81
Comoving w=BAOs 0.2hMpc−1 0.11 0.028 0.31 1.2 0.15 0.26

Comoving 0.15hMpc−1 0.48 0.097 0.79 2.8 0.51 1.1
Comoving 0.1hMpc−1 0.55 0.10 0.92 2.9 0.62 1.2

aFor the SFB power spectrum this corresponds to kmax.
bResults for full Fisher matrix using full covariance matrix i.e. Eq. (32).
cResults for continuous Fisher matrix using diagonal covariance matrix i.e. Eq. (35).
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available cosmological information is recovered from a
survey, the less sensitive parameter constraints become to
binning schemes. In order to obtain stable parameter
constraints from a tomographic analysis of galaxy redshift
surveys it is therefore essential to ensure that the available
information is well recovered by the survey. We will review
the limitations imposed on a tomographic analysis
returning back to our baseline survey.
The parameter that mainly controls the constraining power

of a tomographic survey is its radial resolution; in practice
this is the number of redshift bins. Starting from the baseline
survey, we increase the number of redshift bins from NBin ¼
7 toNBin ¼ 30 as shown in Table III and Fig. 4. This reduces
uncertainties by almost a factor of 3, which is in agreement
with the rough 1=

ffiffiffiffiffiffiffiffiffi
NBin

p
scaling of parameter constraints

with bin number when shot noise is not yet dominant [6].
Therefore the maximal cosmological information retrievable
analyzing a survey using the SHT power spectrum is limited
by redshift accuracy and shot noise.
As seen from Table III we reanalyze the baseline survey

neglecting redshift space distortions, once performing the
full calculation and once assuming the Limber approxima-
tion. The results indicate that both changes deteriorate
parameter constraints, showing that including RSDs in
tomographic analyses increases the amount of cosmological
information. Furthermore, the results obtained with the
Limber approximation and the exact calculation deviate
significantly (differences of up to a factor of 5), which
suggests that approximations inpower spectrumcalculations
should be used carefully when computing Fisher matrices.

B. Spherical Fourier Bessel power spectrum

The constraints on cosmological parameters obtained
when analyzing the baseline survey (II) using the spherical
Fourier Bessel power spectrum are emphasized in Table III.

In agreement with the results for the SHT power spectrum,
we obtain constraints of the same order of magnitude as
the parameters themselves, an effect which we again
attribute to the small multipole range considered. The best-
constrained parameter is the matter density Ωm, whereas
the SFB analysis mostly yields larger uncertainties on the
remaining cosmological parameters than its tomographic
counterpart. As in the previous section, we address par-
ticular issues associated with this analysis before turning to
the comparison between the two methods.

1. Comparison of Fisher matrix computation techniques

The computation of Fisher matrices for the SFB power
spectrum through Eq. (32)5 is time consuming and numeri-
cally challenging because it requires inverting the covari-
ance matrix defined in Eq. (33). This step is tricky for two
reasons: Firstly, as seen from Fig. 3, the SFB power
spectrum falls off sharply for large scales with k ≪ l=r0
for given angular scale l and survey depth r0. This is
because in a cone of angular extent θ ∼ 1=l, large radial
modes cannot be measured when the survey depth is finite.
The rapid decrease in large-scale power results in a
considerable dynamic range in the covariance matrix
eigenvalues, making it almost singular. Secondly, neigh-
boring wave vectors k are strongly correlated, which further
complicates the inversion of the covariance matrices.
In order to estimate the SFB Fisher matrix through

Eq. (32) it is therefore inevitable to restrict calculations to
separated wave vectors with k ≥ l=r0 to overcome numeri-
cal instabilities. In practice we cut off all large-scale
information for each angular scale l as soon as it causes
the covariance matrix condition number, which is a
measure for accuracy loss in matrix inversion, to exceed
κcrit ¼ 102. This is possible but it seems desirable to
investigate alternatives to this “brute-force” approach.
Even though neighboring wave vectors are strongly

correlated, the correlations tend to rapidly decrease as we
move away from the diagonal. This suggests resorting to the
approximation Clðk; k0Þ≃ 0 for k ≠ k0 in order to obtain
useful approximations to Eq. (32). The most straightforward
implementation of these ideas is given in Eq. (35). Despite
being an approximation to the full Fisher matrix given in
Eq. (32), we find that Eq. (35) yields no shot noise as well as
shot noise constraints which are mostly accurate to better
than a factor of 2 for the baseline survey (for detailed results,
see Table V in Appendix E). These results agree with those
obtained for the Cartesian matter power spectrum [37] and
encourage the use of Eq. (35) for fast calculations which
allow errors of up to a factor of a few.

FIG. 4 (color online). Uncertainties (1σ) on cosmological
parameters obtained with SHT power spectrum as a function
of the number of redshift bins NBin.

5There is one subtlety involved with Fisher matrix calculations
for the SFB power spectrum: as can be seen from Eq. (34), the shot
noise contribution to the power spectrum is essentially a galaxy
number count and therefore cosmology dependent. Since we
ignore information from nonlinear scales, we won’t include this
information when estimating the constraining power of a survey.
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Making use of this simplifying approximation, we
investigate the impact of the nonlinearity wave vector
cut on parameter constraints. As can be seen from
Table III and Fig. 5 decreasing the maximal wave vector
kmax by a factor of 2 increases parameter uncertainties by
almost the same amount. The increase is larger than
theoretically expected, since decreasing the cutoff scale
by a factor of 2 will halve the number of available modes
and should thus lead to an increase in uncertainty by a
factor

ffiffiffi
2

p
. We believe that this is due to the fact that

increasing the cutoff scale additionally helps breaking

parameter degeneracies, since we approximately observe
the theoretical scaling for the fixed parameter constraints.

2. The choice of distance-redshift relation

As discussed in Sec. III C 1, the need for assuming a
fiducial cosmological model can be mitigated by analyzing
surveys using distance-redshift relations that can directly
be computed from observable quantities. Using the expres-
sions derived in Sec. III C 1 we can investigate the impact
of the distance-redshift relation on the obtained power
spectra as well as survey constraining power.
We focus on two simple alternatives to the comoving

distance as given in Eq. (27). Both approximations are
fairly accurate at low redshift; at very high redshifts on the
other hand, both approximations break down because they
considerably overestimate the comoving separation. The
SFB power spectra obtained with these two distance-
redshift relations are shown in Fig. 6. The choice of a
different fiducial distance causes a shift in the observed
SFB power spectra, because the window functions are
offset from those in comoving distance.
These simple distance-redshift relations are viable

alternatives to the comoving distance only if analyzing a
survey in terms of them does not significantly reduce its
constraining power. To test their performance, we compare
their constraints on cosmological parameters for a survey as
defined in Sec. II in two different ways: Since the
continuous Fisher matrix is an acceptable approximation
to the full calculation, we will employ it to compare the
forecasted parameter constraints obtained with all three
distance measures taking shot noise into account. As a
mere illustration, we additionally compare the constraints

FIG. 6 (color online). The SFB auto-power spectrum C0
lðν; νÞ for two different distance redshift relations as a function of angular scale

l. (a) Logarithmic distance-redshift relation. (b) Linear distance-redshift relation.

FIG. 5 (color online). Uncertainties (1σ) on cosmological
parameters obtained using the SFB power spectrum as a function
of maximal wave number kmax. Constraints on w0 are not shown
for clarity.
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obtained from the full Fisher matrix, neglecting any shot
noise contributions.
Both these results are shown in Table III. The constraints

are similar, irrespective of the distance-redshift relation
chosen. The only parameter exhibiting a significant depend-
ence on the way distance is related to redshift is the
dark energy equation of state parameter w0. An analogous
behavior is seen in the no shot noise constraints obtained
with the full Fisher matrix: we obtain different constraints
especially for those parameters, which the comoving dis-
tance depends on, whereas the remaining constraints are
largely insensitive to the distance-redshift relation of choice.
Choosing a distance-redshift relation other than the comov-
ing distance therefore appears to cause the SFB power
spectrum to exhibit a stronger dependence on these former
parameters because the volume element and the distance in
Eqs. (25) and (26) do not change in the same way.
As we include contributions due to shot noise, this

potential constraining power is considerably reduced
because alternative distance-redshift relations tend to
overestimate the comoving separations for large redshift.
The shot noise is therefore enhanced, which largely
removes the gain from increased sensitivity.
The above considerations illustrate that constraints

obtained from an SFB analysis of a galaxy redshift survey
seem to be mostly stable against changes in the assumed
distance-redshift relation. This suggests that it could be
possible to analyze galaxy clustering using distance-
redshift relations which only depend on observable quan-
tities, without too large a loss in constraining power.

C. Comparison between spherical harmonic
tomography and SFB power spectrum

After focusing on each of the two statistics separately we
can compare their baseline constraints shown in Table III.
Unexpectedly, the survey constraining power is signifi-
cantly affected by the choice of analysis method: When
baryon acoustic oscillations are neglected, the SFB power
spectrum yields weaker constraints, particularly on those
cosmological parameters that need redshift leverage in
order to be distinguished (i.e. growth and amplitude
parameters). This is already evident for our baseline but
the effect is enhanced if we consider larger bin numbers in
the SHT analysis.
The weakness of constraints on growth as well as

amplitude of matter fluctuations seems to be a generic
feature of SFB analyses: When the underlying field is
SIH, the SFB coefficients are given by Eq. (A1) i.e. they
correspond to an angular average of the Cartesian Fourier
coefficient. In practice, the SIH condition is not met due to
time evolution of the overdensity field and finite survey
effects and the SFB coefficients are related to their
Cartesian counterparts through Eq. (15). Any violation
of the SIH condition will therefore introduce a coupling
between the considered radial and angular scales k, l and

the redshift at which δðkÞwill mostly be measured. Around
r0, the decrease in the selection function amplitude breaks
the SIH condition which causes modes to add incoherently
and leads to cancellations. The contributions to the SFB
power spectrum will therefore be preferentially weighted
toward lower redshift, which results in smaller redshift
leverage and weaker combined constraints.
These results therefore suggest that, even though both

analysis methods are equivalent for infinite survey extent
and recovery of all availablemodes, because the information
content of the overdensity field does not depend on the basis
set in which it is analyzed, they appear not to be equivalent
for finite surveys. Analyses of galaxy redshift surveys
through the SFB power spectrum are more affected by finite
survey effects, which means that some high redshift infor-
mation will be downweighted. The SHT power spectrum
analysis, on the other hand, allows us to probe more
efficiently the complete high redshift range of the survey.
We test the impact of baryon oscillations on our results

by reanalyzing our baseline configurations using the trans-
fer function as specified in [41]. From Table III we see that
adding BAOs improves the SFB constraints, while leaving
the SHT power spectrum constraints mostly unchanged.
This suggests that a significant fraction of the information
lost due to finite survey effects in SFB analyses can be
compensated for by the fact that its three-dimensional
nature allows us to recover the information contained in
the BAOs, while an SHT analysis tends to dilute these
features.6 The inclusion of BAOs results in comparable
constraints for both methods. This suggests that SFB is
better suited for capturing information beyond the smooth
shape of the power spectrum.

D. Implementation effects on estimated survey
constraining power

The constraining power of a particular survey, as
estimated from Fisher matrix calculations, is clearly deter-
mined by survey specifications and included physics.
Nevertheless, details in the particular implementation can
also affect parameter constraints and we can investigate the
magnitude of this effect using our simplified toy model (see
Appendix D 1). Our findings suggest that the magnitude
can potentially equal that of changing survey specifica-
tions, when one of the following two conditions is fulfilled:
(i) As illustrated in Appendix D 1, the choice of binning
scheme and thus implementation ceases to be relevant as
more information is retrieved from a particular survey
and parameter constraints become tighter. This therefore

6The change of transfer function from [25] to [41] without
BAOs (the so-called “no-wiggles” approximation obtained with
fractional baryon density Ωb ≠ 0 but ignoring the oscillatory
contribution to the power spectrum) does not significantly affect
parameter constraints, which suggests that the improvement in
constraining power can be mainly attributed to the presence of
BAOs.
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suggests that the choice of prior can significantly affect
the stability of parameter constraints: applying a tight prior
reduces the susceptibility of parameter constraints to
implementation. (ii) A second essential choice is the set
of constrained parameters: as highlighted by the toy model,
parameters which are redshift degenerate with each other
are particularly affected by changes in implementation. On
the other hand, constraints on nondegenerate parameters
are expected to be more stable. It is thus important to be
aware of these instabilities whenever constraining a set of
degenerate and loosely constrained parameters.
These susceptibilities can further be amplified due to

numerical instabilities in Fisher matrix calculations. Fisher
matrices can have large condition numbers κðFÞ i.e. be
close to numerically singular, if one or more parameters are
not well constrained by the data. Therefore the error
introduced by the Fisher matrix inversion can be of order
100%, if the accuracy in the Fisher matrix elements is
smaller than κðFÞ−1 [42].
These findings further suggest that care has to be taken

when comparing Fisher matrix results. Whenever two
different results need to be compared it is essential to
make sure that not only the survey specifications are
similar but also that priors and set of constrained param-
eters agree with each other. This is relevant in light of the
recent discussion regarding benefits of performing
spectroscopic and photometric galaxy surveys in the same
part of the sky (see e.g. [15,16]): a reliable comparison
between the results obtained by different groups seems
difficult due to the differing choices of priors and con-
strained parameters. Exactly matching the baseline survey
is especially important in this case since it investigates the
impact of cross correlations on parameter constraints,
which, as indicated by the toy model, only has an effect
when parameters are loosely constrained and degenerate
with each other. This suggests that changes in implemen-
tation have the potential to even affect qualitative results in
this particular case.

VI. CONCLUSIONS

Using a Fisher analysis, we have investigated three-
dimensional analyses of galaxy redshift surveys on a
spherical sky. In the course of our analysis, it has become
evident that Fisher matrix results need to be carefully
analyzed and compared. Especially when Fisher matrix
methods are used to forecast constraints on large param-
eter sets, exhibiting degeneracies among one another,
the obtained constraints are susceptible to details in
implementation.
In particular we have compared the SHT and the SFB

power spectrum, two statistics that are designed for the
analysis of galaxy redshift surveys in a spherical geometry.
By comparing their forecasted constraints on cosmological
parameters, we have shown the applicability of approx-
imations, such as the Limber approximation, and the

numerical issues associated with computing these statistics.
We have also studied the sensitivity of these statistics to the
detail of their implementation. Our analysis is based on
several simplifying assumptions; in particular, we restrict
ourselves to linear, unbiased galaxy clustering and only
focus on large-scale power spectrum modes. For future
work it would be interesting to include a treatment of these
effects.
Using toymodels, we find that constraints obtained from a

tomographic analysis of galaxy redshift surveys can be
susceptible to implementation effects like redshift bin over-
lap, if only a limited amount of the total available informa-
tion is retrieved. This suggests that in order to be stable
against changes in implementation, it is important to retrieve
as much information as possible from the tomographic
analyses, e.g. by using a large number of redshift bins.
The computation of the SFB power spectrum from data

relies on the assumption of a distance-redshift relation,
usually the cosmology-dependent comoving distance.
Analyses of galaxy redshift surveys by means of the
SFB power spectrum therefore require the assumption of
a cosmological model, prior to testing it. Comparing the
SFB parameter constraints obtained using alternative dis-
tance-redshift relations, we find them to be largely stable
against changes in the assumed distance. This suggests
that future surveys could in principle be analyzed using
distance-redshift relations only relying on observable
quantities without too large a degradation in parameter
constraints.
For the baseline survey configuration we considered, we

find that the SHT power spectrum yields somewhat tighter
constraints than the SFB power spectrum. When we add
baryon oscillations, on the other hand, the two methods
yield comparable constraints. We attribute the former to
the fact that the SFB power spectrum is less sensitive to
modes at high redshift near the survey boundary, while the
SHT power spectrum can be tailored to probe these
modes. In the presence of BAOs, this effect can be
compensated for by the fact that the three-dimensional
nature of the SFB transform allows us to resolve the
baryonic oscillations, which tend to be diluted in SHT
analyses. This fact would make SHT analyses advanta-
geous for future spectroscopic galaxy redshift surveys
mainly focusing on the power spectrum shape, while the
SFB power spectrum may be well suited for specific
applications like BAOs.
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APPENDIX A: THE RADIALIZATION OF
THE SFB POWER SPECTRUM IN THE

PRESENCE OF RSDs

The overdensity field in the absence of RSDs at a
constant time r is isotropic and homogeneous and can
be directly related to the Cartesian matter power spectrum
as in Eq. (17) [13]. The isotropy is broken in the presence
of RSDs but an approximate relation between these two
quantities still holds. The SFB coefficients of the over-
density field are related to their Cartesian Fourier counter-
part through

δlmðk; rÞ ¼
1ffiffiffiffiffiffiffi
8π3

p kil
Z

dΩkδðk; rÞY�
lmðθk;ϕkÞ: ðA1Þ

The contribution to the Cartesian Fourier coefficient due to
RSDs is given by

δRSDðk; rÞ ¼ βμ2kδðk; rÞ ðA2Þ

with a power spectrum hδRSDðk; rÞδ�RSDðk0; rÞi ¼ β2μ4kP
ðk; rÞδDðk0 − kÞ. The quantity μk is the cosine of the angle
between the line of sight direction and the wave vector
direction. In the flat-sky limit we can assume that the line of
sight direction is constant. For a fixed angular multipole l,
the SFB power spectrum will obtain contributions from
increasingly radial wave vectors for larger k. In the flat-sky
limit and large radial wave vectors k we can thus approxi-
mate μk ≃ 1. Inserting this into Eq. (A1) using the identities

δDðk0 − kÞ ¼ 1

ð2πÞ3
Z

d3xeðk0−kÞ·x ðA3Þ

and [43]

eik·r ¼ 4π
X
l;m

iljlðkrÞY�
lmðk̂ÞYlmðn̂Þ ðA4Þ

gives the contribution to the SFB power spectrum due
to RSDs

hδlmðk; rÞδ�l0m0 ðk0; rÞi ¼ β2Pðk; rÞδDðk0 − kÞδll0δmm0 :

ðA5Þ

In the flat-sky and large wave vector limit even the RSD
contribution approximately radializes in absence of a
selection function and time dependence of the overdensity
field. This behavior is perceivable in Fig. 4 of [20],
illustrating that the curvature of the sky is negligible for
small scale perturbations.

APPENDIX B: THE SFB POWER SPECTRUM
FOR A GENERIC DISTANCE-REDSHIFT

RELATION

The need for assuming a cosmological model before
testing it can be avoided by choosing a distance-redshift
relation which does not depend on cosmology. In order to
derive an expression for the SFB power spectrum, we
assume a generic distance-redshift relation defined as ~rðzÞ
where ~r is an arbitrary monotonic function of the redshift z.
The measured redshift will be affected by peculiar galaxy
velocities v along the line of sight n [44] i.e.

zobs ≃ ztrue þ
v · n
ac

ðB1Þ

where c is the speed of light. The distance s inferred from
the galaxy redshifts therefore becomes

s ¼ ~rðzobsÞ≃ ~rðztrueÞ þ
v · n
ac

d~r
dz

: ðB2Þ

The overdensity field can be decomposed in the SFB basis
set with coefficients given by

δlmðνÞ ¼
ffiffiffi
2

π

r Z
d3sϕ0ðsÞδðsÞνjlðνsÞY�

lmðθ;ϕÞ ðB3Þ

where ν denotes the wave vector conjugate to ~r and ϕ0 is the
selection function in the new coordinate system. Since the
overdensity field is independent of the distance measure we
have d3sδðsÞ ¼ d3rδðrÞ where r is the comoving distance.
Equation (B3) therefore reduces to

δlmðνÞ ¼
ffiffiffi
2

π

r Z
d3rϕ0ðsÞδðrÞνjlðνsÞY�

lmðθ;ϕÞ: ðB4Þ

Following [38], the functions of ~r can be expanded as

ϕ0ðsÞ≃ ϕ0ð~rÞ þ dϕ0

d~r

�
v · n
ac

d~r
dz

�

jlðνsÞ≃ jlðν~rÞ þ
djlðν~rÞ
d~r

�
v · n
ac

d~r
dz

�
ðB5Þ

which can be inserted into Eq. (B4) to yield to first order

δlmðνÞ ¼
ffiffiffi
2

π

r
1

ð2πÞ3
	Z

d3r
Z

d3k0ϕ0ð~rÞδðk0Þ

× eik
0·rνjlðν~rÞY�

lmðθ;ϕÞ

þ
Z

d3r
Z

d3k0 vðk0Þ · n
ac

eik
0·rν

×
d~r
dz

d
d~r

½ϕ0ð~rÞjlðν~rÞ�Y�
lmðθ;ϕÞ



: ðB6Þ

The linear continuity equation allows us to relate the
Fourier transform of the galaxy velocity field to the
overdensity through [45]
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vðkÞ ¼ iβ
aHðzÞδðkÞ

k2
k: ðB7Þ

Thus the SFB power spectrum for the distance-redshift relation ~rðzÞ reduces to

Clðν; ν0Þ ¼
�
2

π

�
2
Z

dk00k002P0ðk00ÞðWlðν; k00Þ þWr
l ðν; k00ÞÞðWlðν0; k00Þ þWr

l ðν0; k00ÞÞ: ðB8Þ

Wlðν; k00Þ is the real-space window function whereasWr
l ðν; k00Þ accounts for the corrections due to RSDs; they are given by

Wlðν; k00Þ ¼
Z

drr2DðrÞϕ0ð~rÞνjlðν~rÞjlðk00rÞ ðB9Þ

Wr
l ðν; k00Þ ¼

Z
drr2β

ν2

k00
DðrÞϕ0ð~rÞ d~r

dz
HðzÞ
c

�
l2

ð2lþ 1Þ2 jl−1ðν~rÞjl−1ðk
00rÞ − lðlþ 1Þ

ð2lþ 1Þ2 fjl−1ðν~rÞjlþ1ðk00rÞ

þ jlþ1ðν~rÞjl−1ðk00rÞg þ
ðlþ 1Þ2
ð2lþ 1Þ2 jlþ1ðν~rÞjlþ1ðk00rÞ

�

þ
Z

drr2β
ν

k00
DðrÞ dϕ

0

d~r
d~r
dz

HðzÞ
c

�
l

ð2lþ 1Þ jlðν~rÞjl−1ðk
00rÞ − ðlþ 1Þ

ð2lþ 1Þ jlðν~rÞjlþ1ðk00rÞ
�
: ðB10Þ

Since the selection function transforms as a scalar, ϕ0ð~rÞ is
related to the selection function in comoving distance
through ϕ0ð~rðzÞÞ ¼ ϕðrðzÞÞ.
Any measurement of the SFB power spectrum will be

affected by shot noise. The number of galaxies Ngal
observed in a given survey is independent of the dis-
tance-redshift relation of choice i.e.

Ngal ¼
Z

d3 ~rϕ0ð~rÞn0ð~rÞ

¼
Z

d3rϕðrÞnðrÞ ðB11Þ

where nðrÞ is the galaxy volume density in comoving
coordinates and n0ð~rÞ is the volume density in terms
of ~r. Together with the identity ϕ0ð~rðzÞÞ ¼ ϕðrðzÞÞ, this
implies

n0ð~rÞ ¼
���� d

3r
d3 ~r

����nðrÞ: ðB12Þ

For a generic distance-redshift relation the shot noise
therefore reduces to

Nlðν; ν0Þ ¼
2νν0

π

Z
drr2ϕ0ð~rÞ 1

n0ð~rÞ jlðν~rÞjlðν
0 ~rÞ

¼ 2νν0

π

Z
dr~r2

���� d~rdr
����ϕðrÞ 1

nðrÞ jlðν~rÞjlðν
0 ~rÞ:

ðB13Þ

APPENDIX C: DERIVATION OF THE FISHER
MATRIX FOR THE SFB POWER

SPECTRUM

1. Full Fisher matrix

The FM obtained from a data likelihood with covariance
matrix C and mean μ is given by [32]

Fαβ ¼
1

2
Tr

�
C−1 ∂C

∂θαC
−1 ∂C

∂θβ
�
þ ∂μT

∂θα C
−1 ∂μ

∂θβ : ðC1Þ

Assuming a measurement of the SFB coefficients of the
matter overdensity field δlmðkÞ for a discrete set of radial
wave vectors k denoted ðk1; k2;…; knÞ, the data covariance
matrix is given by

Ĉ ¼

0
BBBBBBBBBBBB@

Ĉl1 0 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � Ĉl1 0 � � � 0

0 0 0 Ĉl2 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � Ĉlmax

1
CCCCCCCCCCCCA

ðC2Þ

where the subcovariance matrices are defined as
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Ĉli ¼

0
BBBBBB@

~Cliðk1; k1Þ ~Cliðk1; k2Þ � � � ~Cliðk1; knÞ
~Cliðk2; k1Þ ~Cliðk2; k2Þ � � � ~Cliðk2; knÞ

..

. ..
. . .

. ..
.

~Cliðkn; k1Þ ~Cliðkn; k2Þ � � � ~Cliðkn; knÞ

1
CCCCCCA

and

~Clðki; kjÞ ¼ Clðki; kjÞ þNlðki; kjÞ ðC3Þ

Since Ĉ is block diagonal and μ ¼ hδlmðkiÞi ¼ 0, Eq. (C1)
yields

Fαβ ¼ fsky
X
l

ð2lþ 1ÞΔl
2

Tr

�
Ĉ−1

l
∂Ĉl

∂θα Ĉ
−1
l

∂Ĉl

∂θβ
�

ðC4Þ

where the sum is over bands of width Δl in the power
spectrum.

2. Diagonal Fisher matrix

The computation of the SFB FM through Eq. (32) is
numerically challenging and it is therefore desirable to
investigate possible approximations. Although the amount
of cross correlationClðk; k0Þ between neighboring k vectors
can be considerable, it tends rapidly to zero for separated
wave vectors. If we assume a broad window function,
such that mode coupling can be neglected [39], we can
approximate Clðk; k0Þ ¼ 0 for k ≠ k0.7 Assuming a meas-
urement of a set of discrete SFB modes δlmðkiÞ up to
l ≤ lmaxwhich satisfy hδlmðkiÞi ¼ 0 and defining

δlmðkiÞ ¼ δlm;i

hδlmðkiÞδlmðkiÞi ¼ Clðki; kiÞ þ Nlðki; kiÞ ¼ Δ2
l;i ðC5Þ

the data likelihood can be written as

Lðx; θÞ ¼ 1

ð2πÞlmaxðlmaxþ2Þn
2

Q
l;iΔ2lþ1

l;i

e
−1
2

P
l;m;i

δ2
lm;i
Δ2
l;i : ðC6Þ

Applying Eq. (28), the FM becomes

Fαβ ¼ fsky
X
l;i

ð2lþ 1ÞΔl
2

1

ðClðki; kiÞ þ Nlðki; kiÞÞ2

×
∂Clðki; kiÞ

∂θα
∂Clðki; kiÞ

∂θβ ðC7Þ

where the sum is over bands of width Δl in the power
spectrum and wave vectors ki. To proceed, we assume that
the maximal length scale probed by the survey is given by

L. Therefore the minimal measurable mode is kmin ¼
2π=L which also defines the k-space resolution. The
maximal measurable mode is determined by the smallest
distance ΔL and given by kmax ¼ 2π=ΔL. Turning the
Riemann sum in Eq. (C7) into a continuous integral yields

Fαβ ¼ fsky
X
l

ð2lþ 1ÞΔl
2

Z
kmax

kmin

Ldk
2π

1

ðClðk; kÞ þNlðk; kÞÞ2

×
∂Clðk; kÞ

∂θα
∂Clðk; kÞ

∂θβ : ðC8Þ

APPENDIX D: TOY MODELS ILLUSTRATING
EFFECTS OF REDSHIFT BINNING

1. Toy model I

Investigating the exact cause of changes in cosmological
Fisher matrix calculations due to different redshift binning
schemes in tomographic analyses is complicated by the
large number of cosmological parameters to constrain and
the degeneracies between those. To study these we there-
fore resort to highly simplified toy models, which are
designed to be mostly analytically solvable. We believe that
such a simplified treatment allows us to interpret results
more easily.
We assume a toy model matter power spectrum,

defined as

Pðk; rÞ ¼ A0

�
r
r0

�
−β
�
k
k0

�
−α

ðD1Þ

where k is the wave vector, r the comoving distance
and k0, r0 are normalization constants, assumed to be
precisely known. The power spectrum is specified by
the parameters α, β and A0, which mimic the three generic
features of the linear ΛCDM matter power spectrum:
A0 is a multiplicative amplitude, α imitates the spectral
index and β determines the growth of structure. In accor-
dance with the cosmological power spectrum we set their
fiducial values to A0 ¼ 1, α ¼ 3 and β ¼ 1, where the last
two equalities mimic the slope of the high k matter power
spectrum and the growth factor in a matter dominated
Universe.
We consider tomographic analyses of a galaxy redshift

survey with varying bin geometries. Because the qualitative
results of the toy model do not depend on the order of
accuracy of the Limber approximation, we compute the
spherical harmonic tomography power spectrum employ-
ing a simplified version. This approximation yields results,
which are easier to interpret, and is given by

Cl;Limber ¼
Z

dr
ϕiðrÞϕjðrÞ

r2
P

�
k ¼ l

r
; r

�
ðD2Þ

7This approximation is equally justified when we assume that
the SFB power spectrum is computed for radial wave vector bins
which are broader than the correlation scale due to finite survey
effects.
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where i and j label the selection function of a particular
redshift bin. We consider two Gaussian bins, each charac-
terized by its mean r̄i and variance σi, which are both
accurately known. In this minimal tomographic analysis,
we vary the amount of overlap between the two bins by
increasing their variances while keeping their means fixed.
For each bin configuration we compute the parameter
constraints using Eq. (29) once assuming physically dis-
tinct i.e. uncorrelated redshift bins and once assuming them
to be correlated (implementation details are described in
Table IV).8 These two settings correspond to conducting a
survey in two different parts of the sky or on the same sky
patch respectively. To further simplify calculations, we
assume the total number of surveyed galaxies to be large so
that measurement uncertainties due to shot noise can be
neglected, meaning that our conclusions are only applicable
to non-shot noise dominated surveys. Figure 7 shows the
constraints on β as a function of bin variance for constant
bin mean separationΔr≃ 500 Mpc. The behavior suggests
that configurations with more correlation give tighter
constraints on β, because the constraints for correlated
bins decrease with increasing bin overlap while those for
uncorrelated bins stay approximately constant. The con-
straints on A0 exhibit an analogous behavior, while those on
α, as well as the fixed parameter constraints, depend only
weakly on overlap and thus correlation. From Eq. (D1) we
see that while A0 and β exhibit considerable redshift
degeneracies, α is the only parameter which affects the
wave vector dependence of the power spectrum and it is not
degenerate with the others. This suggests that increased bin
overlap mainly introduces correlations between bins which
help breaking redshift degeneracies between parameters.
As the number of redshift bins used in the tomographic

analysis is gradually increased from NBin ¼ 2 to NBin ¼ 30,
bin overlap becomes increasingly less important as shown in
Fig. 7. This suggests that the information gained from the
cross correlation between overlapping bins becomes negli-
gible as we recover an increasing amount of information
from the survey.

2. Toy model II

The results from toy model I suggest that parameter
constraints can depend on the amount of correlation
between redshift bins, which results in a dependence of
Fisher matrix constraints on binning scheme for small bin
numbers. In order to understand the reasons for these
results we resort to an even simpler model.
Toy model I is in its essence identical to the problem

of fitting a straight line through two data points with
correlated errors. We can thus try to gain intuition about the
former by considering this trivial problem.
We assume conducting two measurements of a given

physical quantity y at the points x1 and x2. The measured
values are denoted y1, y2 and the correlation between these
data points is allowed to vary from no correlation to full
positive or negative correlation. Mathematically we can
describe this situation by assuming that the two data points
y1 and y2 follow a bivariate Gaussian probability distribu-
tion given by

LðyjθÞ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffi
detC

p e−
1
2
ðy−ȳÞC−1ðy−ȳÞ ðD3Þ

where the means of the distribution are assumed to linearly
depend on the measurement points through the parameters
θ1, θ2 i.e.

ȳi ¼ θ1xi þ θ2: ðD4Þ

The data covariance matrix can be written as

C ¼
�

σ21 rσ1σ2
rσ1σ2 σ22

�
ðD5Þ

where σi denotes the respective variance in the measure-
ment and the correlation between the two data points is
quantified by the correlation coefficient r with jrj ≤ 1,
which is defined by [46]

r ¼ hðy1 − ȳ1Þðy2 − ȳ2Þi
σ1σ2

: ðD6Þ

TABLE IV. Specification of toy models.

Toy model I

Sky coverage: fsky ¼ 0.125
Angular scales covered: l ∈ ½1; 1000�

Parameters: θ ¼ ðα; β; A0Þ
Fiducial values: θfid ¼ ð3.0; 1.0; 1.0Þ

Two bins: r̄1 ¼ 2116:h−1 Mpc, r̄2 ¼ 2607:h−1 Mpc
Several bins: means equally spaced in ½1656:; 3068:�h−1 Mpc

Toy model II

Parameters: θ ¼ ðθ1; θ2Þ
Fiducial values: none

Measurement points (arbitrary units): x1 ¼ 1, x2 ¼ 2
Measurement uncertainties (arbitrary units): σ1 ¼ 0.1, σ2 ¼ 0.1

8In practice we set the cross correlation between the bins to
zero in the first case, while in the second case we take it into
account to determine parameter constraints.
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We can compute the conditional probabilities for both
variables i.e. the probability distribution of the second
measurement after having conducted the first. As an
example, the conditional probability for measurement y2
given measurement y1 is

Lðy2jθ; y1Þ ¼
LðyjθÞ
Lðy1jθÞ

¼ 1ffiffiffiffiffiffi
2π

p
σ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p e
− 1

2σ2
2
ð1−r2Þ½y2−ȳ2−r

σ2
σ1
ðy1−ȳ1Þ�2

:

ðD7Þ

This is also a Gaussian with mean and variance

Eðy2jy1Þ ¼ ȳ2 þ r
σ2
σ1

ðy1 − ȳ1Þ ðD8Þ

Varðy2jy1Þ ¼ σ22ð1 − r2Þ: ðD9Þ

When the two measurements are correlated, the separation
of the first measurement from its mean determines that of
the second one from its respective mean. In the case of
positive nonzero correlation the measurements will there-
fore both lie either above or below their respective means.
For negative nonzero correlation on the other hand, one
measurement will tend to overestimate while the other will
tend to underestimate its respective mean. A correlation
between measurements thus provides information on the
relative location of the data points. Constraints on one
particular data point do not benefit from this kind of
information, while constraints on any combination of data
points on the other hand will be sensitive to it.

To investigate how correlations between data points
affect constraints on the straight line parameters θ1 and
θ2, we compute their forecasted FM uncertainties assuming
a flat prior from Eq. (28) (implementation details are
described in Table IV).
Figure 8 shows the constraints on the slope θ1 as a

function of correlation coefficient r. As the correlation
between the data points is increased, the constraints
improve, a behavior analogous to that of toy model I.
Being fully analytic, straight line fitting allows us to
examine the expression for the maximum likelihood
estimator for the slope, which is given by

θ̂1 ¼
y2 − y1
x2 − x1

: ðD10Þ

FIG. 7 (color online). The marginalized uncertainty on β as a function of bin variance i.e. overlap on the left as well as bin number on
the right.

FIG. 8 (color online). The marginalized uncertainty on the
slope θ̂1 as a function of correlation coefficient r.
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This quantity directly depends on the difference between y1
and y2. When these two data points are positively correlated
they both lie either above or below their respective means,
implying that the errors will tend to cancel when computing
the uncertainty on θ̂1. The opposite applies to the sum of the
two data points, since in this case the errors for positive
correlation will tend to add. As r is increased, Eqs. (D8)
and (D9) show that the second measurement increasingly
depends on the first i.e. its independent variance decreases
[47], an effect which further reduces uncertainties on the
difference of data points.
These trivial considerations therefore suggest that con-

straints on parameters, which depend on combinations of
the data, are sensitive to correlations, because those provide
information about the relative location of data points.
Applying this to tomographic analyses of galaxy redshift
surveys suggests that cosmological parameters can be
divided into two classes, depending on how constraints
depend on correlations: (i) Redshift degenerate parameters
can only be simultaneously constrained with redshift
leverage. The estimators for these parameters are likely
to depend on a combination of the data used to constrain
them, making their uncertainties sensitive to correlations.
Furthermore if the parameters happen to depend on the
difference between the various measurements, the uncer-
tainties will tend to decrease as we increase the amount of
correlation, as is found in the calculations of Appendix D 1.

(ii) Parameters that can be distinguished from all others on
the other hand can already be constrained with only one
data point. Their maximum likelihood estimator will likely
only depend on one data point and therefore the constraints
on such non-redshift degenerate parameters are expected to
show a weak dependence (if any) on the amount of
correlation between the data.
Since the amount of overlap between redshift bins used

in a tomographic analysis of galaxy redshift surveys affects
the level of correlation between the data, the observed
dependence of parameter constraints on binning scheme is
probably due to the “directional information” contained in
the correlations. The counter-intuitive overlap dependence
of parameter constraints is therefore probably a manifes-
tation of a generic feature of correlated data sets.

APPENDIX E: COMPARISON OF FM
COMPUTATION TECHNIQUES FOR THE

SFB POWER SPECTRUM—RESULTS

The parameter constraints obtained for the SFB power
spectrum using both FM computation methods and
applying the same wave vector cuts, both neglecting
and including shot noise contributions, are shown in
Table V. Apart from the constraints on w0 the results agree
reasonably well, as mentioned in Sec. V B 1.
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