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The prospects for direct measurements of inflationary gravitational waves by next generation
interferometric detectors inferred from the possible detection of B-mode polarization of the cosmic
microwave background are studied. We compute the spectra of the gravitational wave background and the
signal-to-noise ratios by two interferometric detectors (DECIGO and BBO) for large-field inflationary
models in which the tensor-to-scalar ratio is greater than the order of 0.01. If the reheating temperature TRH

of chaotic inflation with the quadratic potential is high (TRH > 7.9 × 106 GeV for upgraded DECIGO and
TRH > 1.8 × 106 GeV for BBO), it will be possible to reach the sensitivity of the gravitational background
in future experiments at 3σ confidence level. The direct detection is also possible for natural inflation with
the potential VðϕÞ ¼ Λ4½1 − cosðϕ=fÞ�, provided that f > 4.2Mpl (upgraded DECIGO) and f > 3.6Mpl

(BBO) with TRH higher than 108 GeV. The quartic potential VðϕÞ ¼ λϕ4=4 with a nonminimal coupling ξ
between the inflaton field ϕ and the Ricci scalar R gives rise to a detectable level of gravitational waves for
jξj smaller than the order of 0.01, irrespective of the reheating temperature.
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I. INTRODUCTION

The inflationary paradigm was originally proposed to
address the horizon, flatness, and monopole problems in
the standard big-bang cosmology [1]. Moreover, inflation
can be responsible for the generation of primordial density
perturbations [2] and gravitational waves [3] by stretching
quantum fluctuations over super-Hubble scales. The sim-
plest slow-roll inflationary scenario driven by the potential
energy of a single scalar field gives rise to nearly scale-
invariant primordial power spectra of scalar and tensor
perturbations.
While the primordial scalar perturbation has been

observed by COBE [4], WMAP [5], and Planck [6]
satellites as a form of temperature anisotropies of the
comic microwave background (CMB), gravitational waves
had eluded the detection for a long time. This is attributed
to the fact that the relative amplitude of gravitational waves
to scalar perturbations is suppressed in the standard infla-
tionary scenario (see Refs. [7] for reviews).
The tensor-to-scalar ratio r and the spectral index ns of

scalar perturbations are two important quantities to probe
models of inflation by using CMB observations. Although
the Planck satellite measured ns in high precision, this is
not sufficient to narrow down the allowed models of
inflation unless r is constrained tightly [8–10]. The
detection of primordial gravitational waves is crucial to
break the degeneracy between inflationary models. In fact,
there is the consistency relation between r and the spectral

index of primordial gravitational waves nt: r ¼ −8nt for
potential-driven slow-roll inflation [11]. The detection of
gravitational waves is a litmus test for inflationary
cosmology.
Recently, the BICEP2 Collaboration reported the evi-

dence for the detection of B-mode polarization in the
CMB [12]. They claimed that the observed B mode can be
fit by a lensed Λ cold dark matter (ΛCDM) model with
r ¼ 0.2þ0.07

−0.05 . This bound is larger than the upper limit r <
0.11 derived by the Planck data of temperature anisotropies
[6,8] combined with the WMAP large-angle polarization
(WP) data [13]. There is also an argument that the presence
of the polarized dust weakens the constraints on r [14].
Since the BICEP2 measured the B-mode polarization at a
single frequency (150 GHz), the upcoming independent
observations at different frequencies with precise measure-
ments of the dust polarization will be crucial to clarify
whether the signal is really the cosmological origin or not.
If the B-mode polarization reported by BICEP2 comes

from the primordial origin, it marks a milestone in the
inflationary cosmology [15]. Since the primordial B mode
can be generated only from tensor or vector perturbations
[16] and vector perturbations sourced by topological
defects are disfavored by the CMB data [17], the detection
of B-mode polarization indicates an indirect discovery of
inflationary gravitational waves. A relatively large value of
the tensor-to-scalar ratio of the order of 0.1 can be
explained by the so-called large field inflationary models
in which the field variation Δϕ during inflation is greater
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than 10Mpl, whereMpl ¼ 2.435 × 1018 GeV is the reduced
Planck mass [18].
The typical examples of the large-field models are chaotic

inflation [19] and natural inflation [20]. Although chaotic
inflation with quartic potential is disfavored by the Planck
data [8], the nonminimal coupling [21–23] can reduce the
value of r [24,25] so that the model can be compatible with
the data. A similar property also holds in the presence of
Galileon couplings [26] and field derivative couplings to the
Einstein tensor [27].
If the large-field models correspond to a realistic

paradigm of inflation, the next generation interferometric
detectors such as DECIGO [28] and BBO [29] may allow
us to detect inflationary gravitational waves directly. These
instruments are designed to measure tensor perturbations
at much shorter wavelengths relative to the perturbations
associated with the CMB B-mode polarization. These
frequencies correspond to the mode that reentered the
Hubble radius during the radiation-dominated epoch.
The direct detection of gravitational waves [30–35] con-
tains useful information of the very early Universe, such as
the effective relativistic degrees of freedom [36,37] and the
reheating temperature after inflation [38].
In this paper, we compute the spectra of the gravitational

wave background for several large-field inflationary mod-
els: chaotic inflation, natural inflation and nonminimally
coupled inflation with quartic potential. We also update the
previous calculations [39] of signal-to-noise ratios by
DECIGO and BBO with various reheating temperatures.
We show that, even if these models are degenerate in terms
of the CMB observables ns and r, it is possible to
distinguish them from the direct detection of inflationary
gravitational waves.
This paper is organized as follows. In Sec. II, we present

background equations of motion during inflation/reheating
in the presence of nonminimal couplings. In Sec. III, we
review primordial gravitational waves generated during
slow-roll inflation including nonminimal couplings
between the inflaton field ϕ and the Ricci scalar R. In
Sec. IV, we calculate the spectra of the gravitational
background for the three large-field inflationary models
by using the bounds derived from the recent CMB data. In
Sec. V, we study the detectability of inflationary gravita-
tional waves by computing the signal-to-noise ratio (SNR)
associated with upgraded DECIGO and BBO. Section VI is
devoted to summary.

II. BACKGROUND EQUATIONS OF MOTION
DURING INFLATION AND REHEATING

We start with the inflationary model given by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ − 1

2
ξϕ2R

�
;

ð1Þ

where R is the Ricci scalar of the metric gμν, VðϕÞ is the
potential of a scalar field ϕ, and ξ is the nonminimal
coupling. In our sign convention, the conformal coupling
corresponds to ξ ¼ 1=6. We study the following three
models in which the variation of the field during inflation is
greater than the order of Mpl:

ðiÞ V ¼ 1

2
m2ϕ2; ξ ¼ 0; ð2Þ

ðiiÞ V ¼ Λ4

�
1 − cos

�
ϕ

f

��
; ξ ¼ 0; ð3Þ

ðiiiÞ V ¼ 1

4
λϕ4; ξ ≠ 0; ð4Þ

where m, Λ, f, and λ are constants. The models (i) and (iii)
belong to the class of chaotic inflation [19] with the
quadratic potential and the quartic potential, respectively.
In the case (iii), we have introduced the nonminimal
coupling ξ, as this can reduce the tensor-to-scalar ratio
r. The potential of the model (ii) corresponds to that of
natural inflation [20]. The slow-roll inflation is possible for
f > Mpl. For large decay constant f ≫ Mpl, it is known
that natural inflation is indistinguishable from quadratic
chaotic inflation.

A. Background equations of motion

We consider the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) background described by the line element
ds2 ¼ −dt2 þ a2ðtÞδijdxidxj, where aðtÞ is the scale factor
with cosmic time t. During the reheating after inflation,
the inflaton energy density decays into the radiation
energy density ρr. The Born decay to light particles (decay
constant Γ) during the oscillating stage of a scalar field can
be effectively described by taking into account the friction
term Γ _ϕ to the inflaton equation of motion [40,41] (a dot
represents a derivative with respect to t). Then, the
Friedmann equation and the scalar field equation of motion
are given, respectively, by

3H2ðM2
pl − ξϕ2Þ ¼ 1

2
_ϕ2 þ VðϕÞ þ 6Hξϕ _ϕþ ρr; ð5Þ

ϕ̈þ ð3H þ ΓÞ _ϕþ V;ϕ þ 6ð2H2 þ _HÞξϕ ¼ 0; ð6Þ
where V;ϕ ≡ dV=dϕ and H ≡ _a=a is the Hubble param-
eter. We caution that Eq. (6) with the Γ _ϕ term is valid only
during the oscillating stage of the inflaton around the
potential minimum [42]. Provided that H ≫ Γ during
inflation, the decay term Γ _ϕ does not play any significant
role until the onset of reheating.
Due to the energy conservation, the radiation density ρr

obeys the equation of motion

_ρr þ 4Hρr ¼ Γ _ϕ2: ð7Þ
From Eq. (5), we obtain
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H ¼
6ξϕ _ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6½2ðV þ ρrÞðM2

pl − ξϕ2Þ þ _ϕ2fM2
pl þ ξϕ2ð6ξ − 1Þg�

q
6ðM2

pl − ξϕ2Þ : ð8Þ

Taking the time derivative of Eq. (5) and eliminating the
term _H on account of Eq. (6), we have

ϕ̈ ¼ −fM2
pl½ð3H þ ΓÞ _ϕþ V;ϕ� − ϕ½3 _ϕ2 − 12H2M2

pl

þ ð3H þ ΓÞϕ _ϕþ ϕV;ϕ þ 4ρr�ξ
þ 6ϕð _ϕ − 2HϕÞð _ϕþHϕÞξ2g=½M2

pl þ ξϕ2ð6ξ − 1Þ�:
ð9Þ

We solve the differential equations (7) and (9) with Eq. (8).
For the models (i) and (ii), the slow-roll inflationary

stage is followed by oscillations of the massive inflaton
field. This corresponds to the temporal matter era during
which the evolution of the scale factor is given by a ∝ t2=3.
Around the time tRH ≃ Γ−1, ρr catches up with the inflaton
energy density ρϕ ¼ _ϕ2=2þ VðϕÞ [43]. Here, the subscript
“RH” denotes the value at the end of reheating. We
numerically find that the radiation energy density at t ¼
tRH is given by ρrðtRHÞ≃ 0.5Γ2M2

pl. On using the relation
ρrðTÞ ¼ ðπ2=30Þg�ðTÞT4, where T is the temperature and
g� is the number of relativistic degree of freedom, the
reheating temperature is given by

TRH ≃ 1.1g−1=4�;RHðΓMplÞ1=2: ð10Þ
We take g�;RH ¼ 106.75 for the value of g� at the end of
reheating. For t > tRH, the Universe enters the radiation-
dominated epoch.

B. Dynamics of reheating for the model (iii) with jξj ≪ 1

In the model (iii), the CMB observables ns and r are
subject to change relative to the case ξ ¼ 0 because the
effect of nonminimal couplings cannot be neglected due to
the large inflaton value. As we will see in Sec. III C, the
model is compatible with the observational data even
for jξj ≪ 1. Since the amplitude of the field ϕ drops below
Mpl after inflation, the effect of nonminimal couplings
on the background Eqs. (7)–(9) should be negligible
during reheating for jξj ≪ 1. In this case, the dynamics
of reheating is driven by a massless inflaton field, so that
the scale factor evolves as a ∝ t1=2 and hence, there is no
transient matter era between inflation and the radiation-
dominated epoch.
For the model (iii) with jξj ≪ 1, the dynamics of

reheating can be analytically known by using the virial
theorem h _ϕ2=2i ¼ 2hVðϕÞi, where h� � �i corresponds to the
time average over inflaton oscillations. Dropping the
contribution of nonminimal couplings in Eq. (6), it follows
that

h_ρϕi þ ð4H þ 4Γ=3Þhρϕi≃ 0: ð11Þ

Integration of Eq. (11) gives

hρϕi ¼ ρϕi

�
ti
t

�
2

e−ð4=3ÞΓðt−tiÞ; ð12Þ

where the subscript “i” is used for quantities at the onset
of inflaton oscillations and we used the solution a ¼
aiðt=tiÞ1=2 for t > ti. Substituting Eq. (12) into Eq. (7),
i.e., h_ρri þ 4Hhρri ¼ ð4=3ÞΓhρϕi, we obtain the following
solution:

hρri ¼ ρϕi

�
ti
t

�
2

½1 − e−ð4=3ÞΓðt−tiÞ�: ð13Þ

The time ti can be estimated as ti ≃ 1=ð2HiÞ. Provided
that Γ ≪ Hi, the time tRH at which hρri equals hρϕi is given
by tRH ≃ 0.52Γ−1. On using the relation ρϕi ≃ 3M2

plH
2
i , we

have hρriðtRHÞ≃ 1.4Γ2M2
pl. Equating this with the radia-

tion density ðπ2=30Þg�;RHT4
RH, it follows that

TRH ≃ 1.4g−1=4�;RHðΓMplÞ1=2: ð14Þ

We have numerically solved (7) and (9) with Eq. (8) from
the onset of reheating and confirmed that the above analytic
estimation shows good agreement with our numerical
results for jξj ≪ 1.
In Sec. V, we employ the relations (10) and (14) to

estimate TRH for a given decay constant Γ. As we see in
Sec. IV, the absence of the temporal matter era for the
model (iii) affects the resulting spectrum of the gravita-
tional wave background relative to the models (i) and (ii).

C. The number of e-foldings during inflation

The number of e-foldings during inflation is defined by
NðkÞ≡ lnðaend=akÞ, where ak is the value of a when a
wave number k equals aH during inflation and aend is its
value at the end of inflation. This quantity is related to the
observables such as ns and r, so the accurate estimation of
NðkÞ is necessary to place concrete constraints on infla-
tionary models. After inflation, there is a reheating stage
followed by the radiation-dominated epoch. Then, the wave
number k ¼ akHk divided by a0H0 (the label “0” repre-
sents today’s values) reads

k
a0H0

¼ e−NðkÞ aend
aRH

aRH
a0

Hk

H0

; ð15Þ
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where we express the Hubble constant as H0 ¼ 2.133h ×
10−42 GeV and a0H0 ¼ 2.235 × 10−4ðh=0.67Þ Mpc−1.
We assume that the entropy at the end of reheating (with

the relativistic degrees of freedom gs;RH) is conserved in the
photon and neutrino background today. This leads to the
following relation [44]:

gs;RHT3
RHa

3
RH ¼

�
2T3

0 þ
7

8
· 6T3

ν0

�
a30; ð16Þ

where T0 ¼ 2.725 K ¼ 2.348 × 10−13 GeV is the CMB
temperature at present and today’s temperature of neutrinos
is given by Tν0 ¼ ð4=11Þ1=3T0. Then, we obtain

a0
aRH

¼
�
11

43
gs;RH

�
1=3 TRH

T0

: ð17Þ

If the total energy density ρ during reheating is given by
ρ ∝ a−q, where q is constant, the number of e-foldings in
the reheating period can be estimated as NRH ≡ lnðaRH=
aendÞ ¼ ð1=qÞ lnðρend=ρRHÞ. The energy density ρRH is
related to the reheating temperature TRH, as ρRH ¼ ðπ2=
30Þg�;RHT4

RH, where g�;RH is the number of relativistic
degrees of freedom at the end of reheating.
On using the aforementioned relations in Eq. (15), it

follows that

NðkÞ¼− ln

�
k

a0H0

�
−
1

q
ln

�
30

π2

�
−
1

3
ln

�
11

43

�

þ ln
�
g1=q�;RH
g1=3s;RH

�
− ln

�
ρ1=qend

T4=q−1
RH T0

�
þ ln

�
Hk

H0

�
: ð18Þ

Here the Hubble parameter Hk is associated with the

inflationary energy density ρinf, as Hk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρinf=ð3M2

plÞ
q

.

Since ρend differs from ρinf , we define

α≡ ρend
ρinf

; ð19Þ

to quantify their difference. In the following, we set g�;RH ¼
gs;RH by assuming that no entropy production occurs after
the reheating stage until the neutrino decoupling (∼MeV).
Depending on the values of q, we shall discuss two
qualitatively different cases.

1. Massive inflaton ðq ¼ 3Þ
The models (i) and (ii) belong to the class in which the

energy density during reheating decreases as ρ ∝ a−3. In
this case, the number of e-foldings (18) reads

NðkÞ ¼ 55.9 −
1

3
ln α − ln

�
k

a0H0

�
− ln

�
h

0.67

�

þ 1

3
ln

�
TRH

109 GeV

�
þ 2

3
ln

�
ρ1=4inf

1016 GeV

�
: ð20Þ

As we will see in Sec. III, the Hubble parameter Hk is
related to the amplitude PT of tensor perturbations as
PT ¼ 2H2

k=ðπ2M2
plÞ ¼ rPR, where PR ≃ 2.198 × 10−9 is

the amplitude of curvature perturbations constrained by
Planck [6]. Then, the inflationary energy scale can be
generally estimated as

ρ1=4inf ¼ 1.84 × 1016
�

r
0.1

�
1=4

GeV: ð21Þ

For the monomial potential VðϕÞ ¼ λϕn=n the field
value during inflation is analytically known as
ϕ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nðN þ n=4Þp
Mpl, with ϕend ¼ nMpl=

ffiffiffi
2

p
. Hence

the parameter α can be estimated as

α≃ 4

3

ϕn
end

ϕn ≃ 4

3

�
n
4N

�
n=2

; ð22Þ

where the factor 4=3 comes from the contribution of the
inflaton kinetic energy to ρend. For the model (i), i.e., n ¼ 2,
we have α≃ 2=ð3NÞ. This leads to a non-negligible change
to NðkÞ of the order of 1. Accordingly, Eq. (20) becomes

NðkÞ ¼ 56.5þ 1

3
lnNðkÞ − ln

�
k

a0H0

�
− ln

�
h

0.67

�

þ 1

3
ln

�
TRH

109 GeV

�
þ 1

6
ln

�
r
0.1

�
: ð23Þ

For given k, h, and TRH,NðkÞ is known by solving Eq. (23).
In Fig. 1, we plot NðkÞ versus TRH for several different
values of k. This result is obtained by numerically solving
the background equations of motion from inflation to the
present epoch. We have confirmed that the numerical
values of NðkÞ show good agreement with those estimated
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Model (i)
Model (ii): f=7M pl

FIG. 1. The number of e-foldings NðkÞ versus the reheating
temperature TRH for the model (i) (solid line) and the model
(ii) with f ¼ 7Mpl (dashed line). We choose four different values
of k which are inside the observed CMB range. For increasing
TRH and decreasing k, NðkÞ gets larger.
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by Eq. (23). On the largest scale observed in the CMB
(k ¼ a0H0), the number of e-foldings is in the range
53 < NðkÞ < 61 for 103 GeV < TRH < 1013 GeV. For
larger k, NðkÞ becomes smaller.
In natural inflation [the model (ii)], the number of

e-foldings can also be calculated as

N ≃ −2
�

f
Mpl

�
2

ln

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2

�
Mpl

f

�
2

s
cos

�
ϕ

2f

�#
; ð24Þ

with cos2ðϕend=2fÞ ¼ 1=½1þ ðMpl=fÞ2=2�. Then, the
parameter α reads

α≃ 4

3

sin2ðϕend=2fÞ
sin2ðϕ=2fÞ ≃ 4=3

1þ 2ðf=MplÞ2ð1 − e−NM2
pl=f

2Þ
:

ð25Þ

Accordingly, Eq. (20) is replaced by

NðkÞ ¼ 56.5þ 1

3
ln

�
1

2
þ
�

f
Mpl

�
2

ð1 − e−NðkÞM2
pl=f

2Þ
�

− ln

�
k

a0H0

�
− ln

�
h

0.67

�

þ 1

3
ln

�
TRH

109 GeV

�
þ 1

6
ln

�
r

0.10

�
: ð26Þ

In the f → ∞ limit, natural inflation becomes indistin-
guishable from quadratic chaotic inflation, so that Eq. (26)
reduces to Eq. (23).
In Fig. 1, we show numerically derived values of NðkÞ

versus TRH for the model (ii) with f ¼ 7Mpl. The number
of e-foldings exhibits only a tiny difference from that in the
model (i).

2. Massless inflaton ðq ¼ 4Þ
For jξj ≪ 1 the model (iii) belongs to the class of

massless inflaton characterized by q ¼ 4. In this case,
the number of e-foldings (18) does not depend on TRH.
Following the same argument as before and using the
relations (21) and (22) with n ¼ 4, we obtain

NðkÞ ¼ 61.6þ 1

2
lnNðkÞ − ln

�
k

a0H0

�
− ln

�
h

0.67

�

−
1

12
ln

�
g�;RH
106.75

�
þ 1

4
ln

�
r
0.1

�
: ð27Þ

If h ¼ 0.67, g�;RH ¼ 106.75 and r ¼ 0.1, we have NðkÞ ¼
63.6 for k ¼ a0H0 and NðkÞ ¼ 58.2 for k ¼ 0.05 Mpc−1.

III. PRIMORDIAL PERTURBATIONS
GENERATED IN LARGE-FIELD
INFLATIONARY MODELS AND
CONSTRAINTS FROM CMB

We consider the following perturbed metric on the flat
FLRW background [45]:

ds2 ¼ −ð1þ 2AÞdt2 þ 2∂iBdtdxi

þ a2ðtÞ½ð1þ 2ψÞδij þ hij�dxidxj; ð28Þ

where A, B, and ψ are scalar perturbations, and hij is the
tensor perturbation. We choose the unitary gauge in which
the field perturbation δϕ vanishes, such that the gauge-
invariant curvature perturbation R≡ ψ −Hδϕ= _ϕ is
identical to ψ . This fixes the time component of the
gauge-transformation vector ξμ. We have also fixed the
spatial component of ξμ by gauging away the scalar
perturbation E appearing as the form E;ij in the
metric (28).

A. Tensor perturbations

Expanding the action (1) for the transverse and traceless
tensor perturbation, the second-order action reads

Sð2Þt ¼
Z

d4xa3
M2

plF

4

�
1

2
_h2ij −

1

2a2
ð∂hijÞ2

�
; ð29Þ

where F≡ 1 − ξϕ2=M2
pl. We write hij in terms of Fourier

components, as

hijðt; xÞ ¼
X
μ¼þ;×

Z
d3k

ð2πÞ3=2 ϵ
μ
ijðkÞhμkðtÞeik·x; ð30Þ

where k is a comoving wave number. The polarization
tensors ϵþ;×

ij satisfy symmetric and transverse-traceless

conditions and are normalized as
P

i;jϵ
μ
ijðϵμ

0
ijÞ� ¼ 2δμμ

0
.

From the action (29), the Fourier mode hμk obeys the
equation of motion

ḧμk þ
�
3H þ

_F
F

�
_hμk þ

k2

a2
hμk ¼ 0: ð31Þ

For the quantization procedure, we express hμk in the
form

hμkðtÞ ¼ hkðtÞaμðkÞ þ h�kðtÞa†μð−kÞ; ð32Þ

where the annihilation and creation operators satisfy
½aμðkÞ; a†μ0 ðk0Þ� ¼ δμμ0δ

ð3Þðk − k0Þ. A canonically normal-
ized field, which is defined by

vk ≡ zhk; where z≡ aMpl

ffiffiffiffiffiffiffiffiffi
F=2

p
; ð33Þ
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obeys the equation of motion

v00k þ
�
k2 −

z00

z

�
vk ¼ 0; ð34Þ

where a prime represents a derivative with respect to the
conformal time τ≡ R

a−1dt. In the asymptotic past, the
solution corresponding to the Bunch-Davies vacuum is
given by vk ¼ e−ikτ=

ffiffiffiffiffi
2k

p
, i.e.,

hk ¼
e−ikτ

aMpl

ffiffiffiffiffiffi
Fk

p ; for τ → −∞: ð35Þ

On the quasi–de Sitter background with a nearly constant
Hubble parameter, the variation of the quantity F is
negligibly small relative to that of a, such that z00=z≃ a00=
a≃ 2=τ2. Under this approximation, the solution to
Eq. (34) during inflation reads

hkðτÞ≃ iHe−ikτ

k3=2Mpl

ffiffiffiffi
F

p ð1þ ikτÞ: ð36Þ

We define the tensor power spectrum as

PT ≡ k3

π2
X
μ¼þ;×

jhμkj2: ð37Þ

After the Hubble radius crossing (k ¼ aH), the solution
(36) approaches hk → iH=ðk3=2Mpl

ffiffiffiffi
F

p Þ so that we obtain
the primordial power spectrum

Pprim
T ≃ 2H2

π2M2
plF

����
k¼aH

: ð38Þ

The formula (38) has been derived under the condition that
the variations of H and F are negligible during inflation.
This is a good approximation for the perturbations relevant
to CMB anisotropies (50 ∼ 60 e-foldings before the end of
inflation), but it is not so for the modes associated with the
direct detection of gravitational waves (10 ∼ 20 e-foldings
before the end of inflation). For precise computations of the
spectrum of the gravitational wave background, we shall
numerically solve Eq. (31) under the initial condition (35)
without using the formula (38).

B. Scalar perturbations and the tensor-to-scalar ratio

For the study of scalar perturbations and the tensor-to-
scalar ratio, it is convenient to perform the so-called
conformal transformation ĝμν ¼ Ωgμν, where a hat is used
for quantities in the new frame and Ω is a conformal factor.
For the choice Ω ¼ FðϕÞ, the action (1) transforms to [46]

Ŝ ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

2
M2

plR̂ −
1

2
ĝμν∂μχ∂νχ −UðχÞ

�
; ð39Þ

where

U ¼ V
F2

; χ ≡
Z

BðϕÞdϕ;

BðϕÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
MplF;ϕ

F

�
2

þ 1

F

s
: ð40Þ

The perturbed metric in the Einstein frame (39) is given by
dŝ2 ¼ Fds2, where ds2 corresponds to the metric (28).
Decomposing the quantity F into the background and
perturbed components as FðtÞ þ δFðt; xÞ, we obtain the
following correspondence:

â ¼ a
ffiffiffiffi
F

p
; t̂ ¼

Z ffiffiffiffi
F

p
dt; Ĥ ¼ 1ffiffiffiffi

F
p

�
H þ

_F
2F

�
;

ð41Þ

Â ¼ Aþ δF
2F

; B̂ ¼ B; ψ̂ ¼ ψ þ δF
2F

; ĥij ¼ hij;

ð42Þ
so that the tensor perturbation is invariant under the
conformal transformation. On using the relations (41),
the power spectrum (38) reads

Pprim
T ≃ 2Ĥ2

π2M2
pl

����
k¼â Ĥ

; ð43Þ

at leading order in slow roll [under which the term _F=ð2FÞ
is negligible relative to H].
Using the correspondence (42), one can show that the

curvature perturbation R ¼ ψ −Hδϕ= _ϕ is invariant under
the conformal transformation [24,25]. In the Einstein frame
the power spectrum of R is equivalent to the one in
standard slow-roll inflation, so it is given by [7]

Pprim
R ≃ Ĥ2

8π2ϵUM2
pl

����
k¼â Ĥ

; ð44Þ

at leading order in slow roll, where ϵU ≡ ðM2
pl=2ÞðU;χ=UÞ2.

The scalar spectral index ns ≡ 1þ d lnPprim
R =d ln kjk¼â Ĥ

and the tensor-to-scalar ratio r ¼ Pprim
T =Pprim

R jk¼â Ĥ are

ns ¼ 1 − 6ϵU þ 2ηU; r ¼ −8nt ¼ 16ϵU; ð45Þ

where ηU ≡M2
plU;χχ=U and nt ≡ d lnPprim

T =d ln kjk¼â Ĥ is
the tensor spectral index. For a given inflaton potential,
these observables can be explicitly expressed as a function
of ϕ by using the relations (40).
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C. Observational implications from the
recent CMB data

We compute the CMB observables (45) for the models
(i)–(iii) to confront them with observations. We refer the
readers to Refs. [10] for detailed calculations of ns and r.
The number of e-foldings during inflation can be expressed
as the integrated form NðtÞ ¼ −

R
t
tf
Hð~tÞd~t in the Jordan

frame. With a proper choice of a reference length scale, the
number of e-foldings is a frame-independent quantity [47].
From the third relation of Eq. (41), it follows that

N ¼
Z

χ

χf

U
M2

plU;χ
dχ þ 1

2
ln

FðtÞ
FðtfÞ

; ð46Þ

where we have employed the slow-roll approximation in
the Einstein frame.
For the CMB likelihood analysis, we expand the

primordial power spectra Pprim
R and Pprim

T as a Taylor series
about a pivot wave number k�. We employ the consistency
relation r ¼ −8nt and set the scalar and tensor runnings to
be 0 in the likelihood analysis. The likelihood results are
derived with the CosmoMC code [48,49] by assuming the
flat ΛCDM model and Neff ¼ 3.046 relativistic degrees of
freedom with an instant reionization.
In Fig. 2, we plot the 68% C.L. and 95% C.L. regions

(plotted as the gray shaded color) in the ðns; rÞ plane
constrained by the joint data analysis of Planck [6], WP
[13], baryon acoustic oscillations (BAO) [50], and Atacama
Cosmology Telescope/South Pole Telescope temperature

data of high multipoles l (high-l) [51]. The tensor-to-scalar
ratio is constrained to be r < 0.15 at 95% C.L. We have
chosen the value k� ¼ 0.05 Mpc−1 in Fig. 2, but the results
are insensitive to the choice of k� as long as the pivot scale is
in the observed range of CMB. Hence, the likelihood
contours for different choices of k� are similar to those
given in Fig. 2. We also show the 68% C.L. and 95% C.L.
boundaries (dotted curves) constrained by adding the
BICEP2 data [12] to the PlanckþWPþ BAOþ high-l
data. In this case, r is bounded from below.
For the monomial potential VðϕÞ ¼ λϕn=n with ξ ¼ 0,

the observables (46) reduce to [7]

ns ¼ 1 −
2ðnþ 2Þ
4N þ n

; r ¼ 16n
4N þ n

: ð47Þ

From Eq. (23), the number of e-foldings for the quadratic
potential (n ¼ 2) depends on the reheating temperature
TRH and the wave number k. For the pivot scale k� ¼
0.05 Mpc−1 the number of e-foldings is in the range
48.7 < Nðk�Þ < 53.3 for 104 GeV < TRH < 1010 GeV.
If k� ¼ a0H0, then 54.1 < Nðk�Þ < 58.8 for 104 GeV <
TRH < 1010 GeV. In Fig. 2, we plot the theoretical curves
of the model (i) in the ðns; rÞ plane for N between 50 and
60. For N > 52 the quadratic potential is inside the
95% C.L. boundary constrained by the PlanckþWPþ
BAOþ high-l data.
In Fig. 2, we also show the theoretical prediction of the

model (ii) for N ¼ 50; 55; 60 with f between 5Mpl and
10Mpl. When N > 50, natural inflation is inside the
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FIG. 2. Two-dimensional observational constraints on the models (i) and (ii) (left), and the model (iii) (right) in the ðns; rÞ plane with
the pivot wave number k� ¼ 0.05 Mpc−1. The gray shaded regions represent the 68% C.L. (inside) and 95% C.L. (outside) parameter
spaces constrained by the joint data analysis of PlanckþWPþ BAO þ high-l. We also show the 68% C.L. (inside) and 95% C.L.
(outside) boundaries constrained by PlanckþWPþ BAOþ high-lþ BICEP2 with dotted ellipses. In the left panel, the three large
black points correspond to the theoretical prediction of the model (i) for N ¼ 50; 55; 60, whereas the small black points represent the
prediction of the model (ii) for f=Mpl ¼ 5; 6; 7; 8; 9; 10 with N ¼ 50; 55; 60. In the right panel, the theoretical curves are plotted for
N ¼ 55; 58; 63 with several different values of ξ between 0 and −10−2.
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95% C.L. boundary constrained the PlanckþWPþ
BAOþ high-l data for f > 5Mpl. In the f → ∞ limit,
inflation occurs in the region around the potential minimum
(ϕ ¼ πf), in which case ns and r approach the values (47)
with n ¼ 2.
In the model (iii) with jξj ≪ 1, the number of e-foldings

(27) does not depend on TRH. For given k�, the value ofN is
fixed, e.g., N ¼ 58 for k� ¼ 0.05 Mpc−1. In the right panel
of Fig. 2, we plot the theoretical values of ns and r for
N ¼ 55; 58; 60 with several different values of ξ. For jξj of
the order of 10−3, the presence of nonminimal couplings
allows a possibility of reducing the values of r to be
compatible with the upper bound derived from the Planckþ
WPþ BAOþ high-l data. In the jξj → ∞ limit, we obtain
the same values of ns and r as those in the Starobinsky fðRÞ
model [52], i.e., ns ¼ 1 − 2=N and r ¼ 12=N2 [25].

IV. THE INTENSITY OF THE GRAVITATIONAL
WAVE BACKGROUND

In this section, we calculate the spectrum of the
gravitational wave background generated in large-field
inflationary models discussed in Sec. III. From the sec-
ond-order action (29), the energy density ρGW of gravita-
tional waves corresponds to the (00) component of its
energy-momentum tensor Tμν, i.e.,

ρGW ¼ M2
plF

8a2
½ðh0ijÞ2 þ ð∂hijÞ2�: ð48Þ

After the perturbations enter the Hubble radius during the
radiation or matter era, the WKB solution to Eq. (31) is
given by

hμk ∝ a−1e�ikτ; ð49Þ

where we have neglected the variation of F relative to
that of a. Substituting Eq. (30) with the solution (49)
into Eq. (48) and taking the spatial average, the energy
density reads

ρGW ¼ M2
plF

2

Z
d3k
ð2πÞ3

k2

a2
X
μ¼þ;×

jhμkj2: ð50Þ

We define the intensity of the gravitational wave back-
ground as

ΩGW ≡ 1

ρc

dρGW
d ln k

¼ 1

12

�
k
aH

�
2

PT; ð51Þ

where ρc ≡ 3FH2M2
pl is the critical density of the Universe,

and PT is the tensor spectrum defined in Eq. (37). In the
second equality of Eq. (51), we have substituted the energy
density (50).
In order to compute the spectrum (51) today, we need to

solve Eq. (31) from the onset of inflation to the present
epoch. As we have already studied in Sec. II, the back-
ground dynamics during inflation and reheating are known
by solving Eqs. (7)–(9) numerically. To discuss the cos-
mological dynamics after the radiation era, we need to take
into account the contribution of relativistic particles, non-
relativistic particles (dark matter and baryons), and dark
energy to the Friedmann equation.
The entropy density of relativistic particles at temper-

ature T is given by sðTÞ ¼ ð2π2=45ÞgsðTÞT3. Due to
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FIG. 3 (color online). Today’s intensity ΩGW of the gravitational wave background versus the frequency f ¼ k=ð2πÞ for the four
models: (i) VðϕÞ ¼ m2ϕ2=2 with ξ ¼ 0, (ii) VðϕÞ ¼ Λ4½1þ cosðϕ=fÞ� with ξ ¼ 0 and f ¼ 7Mpl, the potential VðϕÞ ¼ λϕ4=4 with
ξ ¼ 0, and (iii) VðϕÞ ¼ λϕ4=4 and ξ ¼ −5.0 × 10−3. We also show the sensitivity curves for DECIGO, upgraded DECIGO, and BBO.
Each panel corresponds to the spectra around the detection sensitivity with TRH ¼ 107 GeV (left) and the spectra in the wide range of
frequencies with TRH ¼ 109 GeV (right).
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the entropy conservation sa3 ¼ constant, the radiation
energy density ρrðTÞ ¼ ðπ2=30Þg�ðTÞT4 evolves as ρr ∝
g�g

−4=3
s a−4. The explicit forms of g�ðTÞ and gsðTÞ are given

in Ref. [53]. The energy density of nonrelativistic particles
decreases as ρm ∝ a−3. For dark energy, we assume that its
energy density ρDE is given by the cosmological constantΛ.
We can consider some other sources for dark energy, but it
hardly affects the resulting gravitational wave spectrum
unless Eq. (31) is subject to change under some modifi-
cation of gravity. The term F is very close to 1 around
today, so the effect of nonminimal couplings is negligibly
small at the late cosmological epoch.
Defining today’s density parameters as Ωj0 ¼ ρj0=

ð3F0H2
0M

2
plÞ, where j ¼ r;m;Λ and the subscript “0”

represents the present values, the Friedmann equation after
the end of reheating can be expressed as

H2

H2
0

¼ F0

F

��
g�
g�0

��
gs
gs0

�
−4=3

Ωr0

�
a
a0

�
−4

þΩm0

�
a
a0

�
−3

þ ΩΛ0

�
: ð52Þ

For numerical simulations, we take the present radiation
density to be Ωr0h2 ¼ 4.15 × 10−5 and use the mean
likelihood values derived from the PlanckþWPþ BAOþ
high-l data [6]: the nonrelativistic matter density Ωm0h2 ¼
0.141, the dark energy density ΩΛ0 ¼ 0.692, the amplitude
of primordial curvature perturbations Pprim

R ¼ 2.2 × 10−9,
and the normalized Hubble constant h ¼ 0.678. For the
calculation of relativistic degrees of freedom, we only
include particles in the standard model of particle physics,
where the maximum values of g� and gs are 106.75.
Since the primordial tensor perturbation is frozen by the

second horizon crossing characterized by k ¼ ahcHhc,
today’s power spectrum PT0 is related to the primordial
one Pprim

T via PT0 ¼ Pprim
T ðahc=a0Þ2. If the scale factor

evolves as a ∝ tp, where p is a constant, the Hubble
parameterH is proportional to a−1=p, so that ahc ∝ kp=ðp−1Þ.
Then, today’s gravitational wave intensity (51) has the
momentum dependence

ΩGW ∝ kntþ2ð2p−1Þ=ðp−1Þ; ð53Þ
where nt is the primordial tensor spectral index.
During the radiation era (p ¼ 1=2) and the matter era

(p ¼ 2=3), we have ΩGW ∝ knt and ΩGW ∝ knt−2, respec-
tively. The nearly scale-invariant property of the primordial
tensor perturbation is imprinted for the modes that reen-
tered the Hubble radius during the radiation-dominated
epoch. This is the case for the frequencies f ¼ k=ð2πÞ
associated with the direct detection of gravitational waves
by DECIGO or BBO (∼1 Hz). For the perturbations that
reentered the Hubble radius during the matter era, the
intensity ΩGW has a highly red-tilted spectrum.

For the inflationary models like (i) and (ii), the reheating
stage corresponds to a temporal matter-dominated epoch
driven by a massive inflation field. Then, there is a
suppression of ΩGW at high frequencies. This suppression
occurs for [54]

f > fRH ≡ 0.26

�
TRH

107 GeV

��
g�;RH
100

�
1=2

�
gs;RH
100

�
−1=3

Hz:

ð54Þ
For increasing Γ, the critical frequency fRH becomes larger.
In the model (iii) with jξj ≪ 1, the evolution of the scale
factor during reheating is given by a ∝ t1=2, so the
suppression of ΩGW mentioned above is absent. As we
explained in Sec. II, we compute the reheating temperature
numerically at the time when the field energy density ρϕ
drops below the radiation energy density ρr.
Under the slow-roll approximation the primordial spec-

tral index is given by nt ¼ −2ϵU. Note, however, that this
formula overestimates the amplitude of the gravitational
wave spectrum at f ∼ 1 Hz by 20% for chaotic inflation
models [53]. Therefore, we compute the intensity ΩGW for
three inflationary models (i)–(iii) without employing the
slow-roll approximation. We numerically solve Eq. (31) for
each wave number k together with the background equa-
tions of motion (7)–(9) during inflation/reheating and
Eq. (52) after the end of reheating.
In Fig. 3, we show today’s gravitational wave intensity

versus the frequency f for the three large-field inflationary
models (i)–(iii) with TRH ¼ 107 GeV (left) and TRH ¼
109 GeV (right). Recall that the reheating temperatures
for the models (i) and (ii) are related to the number of
e-foldings N, as shown in Fig. 1. In the left panel, we see
that the anisotropic stress due to neutrino free streaming
[36,53,55] at f < 10−9 Hz does not affect the amplitude of
the gravitational waves at the direct detection scales
(∼10−1 Hz). Since the primordial tensor-to-scalar ratio in
the model (i) is greater than that in the model (ii) (see
Fig. 2), the amplitude of ΩGW in the former is larger than
that in the latter at the CMB scale (∼10−18 Hz). In Fig. 3,
the suppression of ΩGW due to the presence of the temporal
matter era after inflation is clearly seen for large frequen-
cies. As estimated by Eq. (54), the critical frequency fRH
becomes larger for increasing TRH.
In the model (iii) with jξj ≪ 1, the reheating stage is

characterized by the oscillation of a massless inflaton, so
the suppression of ΩGW mentioned above is not present.
However, due to the steepness of the potential, the
evolution of the inflaton is faster than that in the models
(i) and (ii) around the end of inflation. As we see in the right
panel of Fig. 3, this leads to the mild decrease of the power
spectrum around the frequencies f ≳ 104 Hz.
In Fig. 3, we also plot the sensitivity curves for

DECIGO, upgraded DECIGO, and BBO. In particular,
the sensitivity of upgraded DECIGO is improved
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over DECIGO to cover a wider range of frequencies. In the
model (i), BBO and upgraded DECIGO can
potentially measure inflationary gravitational waves for
TRH ≳ 106 GeV and TRH ≳ 107 GeV, respectively. In the
model (ii), the intensity ΩGW becomes smaller for decreas-
ing f, but the detection is still possible for f ≳ 4Mpl. The
model (iii) allows the possible detection in the frequency
range 0.1 Hz≲ f ≲ 1 Hz, irrespective of the reheating
temperature. In the next section, we shall discuss this issue
in more detail by taking into account the noise associated
with the interferometric detectors.

V. DETECTABILITY OF INFLATIONARY
GRAVITATIONAL WAVES

In order to discuss the detectability of inflationary
gravitational waves, we compute the signal-to-noise ratio
(SNR) by two interferometric detectors. Here the SNR is
expressed in terms of ΩGWðfÞ given by Eq. (51) and the
functions related to the experimental design, such as the
noise spectrum NI;JðfÞ and the overlap reduction function
γIJðfÞ, as [56]

½SNR�2 ¼ 2

�
3H2

0

10π2

�
2

Tobs

X
ðI;JÞ

Z
∞

0

df
jγIJðfÞj2Ω2

GWðfÞ
f6NIðfÞNJðfÞ

;

ð55Þ
where Tobs is the duration of observations, and the sub-
scripts I and J refer to independent signals obtained at each
detector, or observables generated by combining the
detector signals. The overlap reduction function γIJðfÞ
can be calculated with information about relative locations
and orientations of detectors [57,58]. In the following, we
present explicit forms of the noise spectra for DECIGO,
upgraded DECIGO, and BBO.

(i) DECIGO
DECIGO is planned to be a Fabry-Perot Michel-

son interferometer with an arm length of L ¼ 1.0 ×
106 m [28]. The noise spectral density is given
by [57]

N1ðfÞ ¼ N2ðfÞ ¼ S2shot þ S2accel þ S2rad; ð56Þ

where Sshot ¼ 2.3 × 10−24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f2=f2cÞ

p
Hz−1=2 is

the shot noise,1 Saccel ¼ 2.0×10−26=ðf=HzÞ2 Hz−1=2
is the acceleration noise, and Srad ¼ 6.0 ×
10−26=½ðf=HzÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2=f2c

p
� Hz−1=2 is the radia-

tion pressure noise, with fc ¼ 7.36 Hz being the
cutoff frequency.

(ii) Upgraded DECIGO
In order to resolve all foreground gravitational

waves coming from neutron star binaries, it is

necessary to improve the sensitivity of DECIGO
by a factor of 3 [59]. We consider the following
noise spectrum as an example of an upgraded
version of DECIGO: Sshot ¼ 3.3 × 10−25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f2=f2cÞ

p
Hz−1=2 and Saccel ¼ 8.0 × 10−26=

ðf=HzÞ2 Hz−1=2 with the cutoff frequency fc ¼
3.57 Hz, which would be possible by upgrading

FIG. 4 (color online). The SNR versus the reheating temper-
ature computed for the model (i), the model (ii) with f ¼ 7Mpl,
the potential VðϕÞ ¼ λϕ4=4 with ξ ¼ 0, and the model (iii) with
ξ ¼ −5.0 × 10−3. Each panel corresponds to the SNR for
DECIGO (top), upgraded DECIGO (middle), and BBO (bottom),
respectively. The gray region shows the 1σ uncertainty in the
amplitude of primordial curvature perturbations Pprim

R ¼
ð2.200þ0.056

−0.054 Þ × 10−9 constrained from Planck [6]. For observa-
tion time of the gravitational wave, we assume Tobs ¼ 10 year.
The SNR scales as ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs=10 year

p
.

1Here we have fixed a typo in Ref. [57] as already done in
[37,39].

KUROYANAGI et al. PHYSICAL REVIEW D 90, 063513 (2014)

063513-10



the arm length from 106 m to 1.5 × 106 m, the laser
power from 10 W to 30 W and mirror radius from
0.5 m to 0.75 m. For radiation pressure, we adopt the
same noise spectrum as that of DECIGO, which is
negligible compared to the acceleration noise.

(iii) BBO
BBO adopts a technique called time-delay inter-

ferometry (TDI), in which new variables (I ¼ A;
E; T) are constructed to cancel the laser frequency
noise. The noise transfer functions for the TDI
variables are given by [60]

NAðfÞ ¼ NEðfÞ ¼ 8sin2ðf̂=2Þfð2þ cos f̂ÞNshot

þ 2½3þ 2 cos f̂ þ cosð2f̂Þ�Naccelg; ð57Þ

NTðfÞ ¼ 2ð1þ 2 cos f̂Þ2½Nshot þ 4 sin2ðf̂=2ÞNaccel�;
ð58Þ

where f̂ ¼ 2πLf. In the case of BBO, the arm
length is L ¼ 5.0 × 107 m and the noise functions
are Nshot ¼ 2.0 × 10−34=ðL=mÞ2 Hz−1 and Naccel¼
9.0×10−34=½ð2πf=HzÞ4 ·ð2L=mÞ2�Hz−1.

In Fig. 4, we show the SNR versus the reheating
temperature TRH for the cross-correlation analysis expected
with 10-year observations by DECIGO, upgraded
DECIGO, and BBO.2 For the models (i) and (ii), the
SNR decreases significantly for TRH lower than 107 GeV
because of the suppression due to the presence of the
temporal matter era after inflation. The SNR of the model
(ii) is smaller than that of the model (i) for the same

reheating temperature. As we see in the left panel of Fig. 5,
the SNR of natural inflation increases for larger f to
approach that of the model (i) in the f → ∞ limit. This
tendency is also seen in Table I, in which the SNR as well
as r and ΩGW are given for TRH ¼ 109 GeV.
In Fig. 4, we find that the SNR of the model (iii) is

practically independent of the reheating temperature for
jξj ≪ 1. The primordial tensor-to-scalar ratio r gets smaller
for increasing jξj. As we see in the right panel of Fig. 5,
the SNR starts to decrease for ξ≲ −2 × 10−3. This is inside
the 95% C.L. region constrained by the PlanckþWPþ
BAOþ high-l data (see Fig. 2).
If the SNR is larger than 3, the primordial gravitational

waves could be directly measured at 3σ (under the
assumption of Gaussian noise). For the model (i), the
detections by DECIGO, upgraded DECIGO, and BBO at
3σ would be possible if the reheating temperature is larger
than 7.8 × 106 GeV, 7.9 × 106 GeV, and 1.8 × 106 GeV,
respectively. The detections by upgraded DECIGO
(BBO) are also feasible at 5σ if TRH > 1.5 × 107 GeV
(2.8 × 106 GeV).
The situation in the model (ii) is similar to that in the

model (i). For f ¼ 7Mpl, DECIGO, upgraded DECIGO,
and BBO could measure the primordial gravitational waves
at 3σ if TRH > 6.8 × 107 GeV, TRH > 9.9 × 106 GeV, and
TRH > 2.2 × 106 GeV, respectively. The detections would
be possible at 5σ for TRH > 2.2 × 107 GeV (upgraded
DECIGO) and TRH > 2.2 × 107 GeV (BBO). The SNR
increases for larger f and converges to that of the model (i).
For TRH > 108 GeV the SNR is insensitive to the reheating
temperature. The detections by upgraded DECIGO (BBO)
would be possible for f > 4.2Mpl (f > 3.6Mpl) at 3σ and
for f > 5.3Mpl (f > 4.0Mpl) at 5σ.
The SNR in the model (iii) is independent of TRH, but it

depends on nonminimal couplings ξ. From the right panel of
Fig. 5, we find that the detections at 3σ by DECIGO,
upgraded DECIGO, and BBO would be feasible for
ξ > −5.4 × 10−3, ξ > −0.035, and ξ > −0.1, respectively.
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FIG. 5 (color online). (Left) Dependence of the SNR on the parameter f=Mpl for the model (ii). (Right) Dependence of the SNR on the
nonminimal coupling ξ for the model (iii). Each line is the SNR calculated with noise curves of DECIGO, upgraded DECIGO, and
BBO, respectively, with Tobs ¼ 10 year. In both cases, we assume TRH ¼ 109 GeV.

2These SNRs are slightly larger than those computed in
Ref. [39] by a factor ð220=106.75Þ1=3 ≃ 1.3 because we consider
the standard model particles alone and take g�;RH ¼ 106.75 rather
than g�;RH ¼ 220 used in Ref. [39].
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The 5σ detections by upgraded DECIGO (BBO) would
require ξ > −0.013 (−0.043). This corresponds to the
regime in which the tensor-to-scalar ratio is larger than
0.05. If the B-mode polarization measurements convincingly
confirm the existence of primordial gravitational waves with
r larger than 0.05, its direct detection by upgraded DECIGO
and BBO could be also possible in the future.

VI. SUMMARY

In this paper, we have discussed the possibility of the
direct measurement of primordial gravitational waves by
next generation interferometric detectors. The prospects
for the direct detection depend on the ratio r between
tensor and scalar perturbations generated during inflation.
If the B-mode polarization measurements of the CMB
really confirm the presence of primordial tensor modes
with r of the order of 0.1, it is expected that the
interferometric detectors like DECIGO and BBO will
be able to detect inflationary gravitational waves in the
future.
We have focused on the three large-field inflationary

models: quadratic chaotic, natural, and quartic chaotic with
nonminimal couplings. The tensor-to-scalar ratio in the
model (i) is larger than that in the model (ii) for a given
number of e-foldings during inflation. We have studied the
background dynamics after inflation, including the dis-
cussion of the inflaton decay associated with the reheating
temperature. The model (iii) with jξj ≪ 1 can be distin-
guished from the models (i) and (ii), in that the reheating
dynamics in the former is driven by a massless inflaton field
rather than the massive field. This difference affects the
resulting spectrum of the gravitational wave background.
We have also precisely estimated the number of e-foldings
relevant to the CMB anisotropies, which is important to
place accurate constraints on inflationary models from
the CMB.
We illustrated theoretical predictions (Sec. III) for the

CMB observables in each inflationary model as well as the
likelihood contours constrained from the joint data analysis

of PlanckþWPþ BAOþ high-l without employing the
slow-roll approximation. Adding the recent BICEP2 data
in the analysis leads to the bound: 0.07 < r < 0.25
(95% C.L.). Since there is a tension between the Planck
and BICEP2 data, we have not literally used the constraints
derived from the BICEP2 data. The future independent
B-mode polarization measurements will provide us with
more convincing bounds on r.
We have computed the spectra of the gravitational wave

background ΩGW for the parameter space inside the
95% C.L. boundary constrained by PlanckþWPþ
BAOþ high-l. For the models (i) and (ii) there is a
suppression of ΩGW for the frequencies satisfying (54).
In this case, the critical frequency fRH depends on the
reheating temperature TRH. Provided that TRH is larger than
the order of 106 GeV, the models (i) and (ii) can reach the
detection sensitivity of gravitational waves by DECIGO
and BBO for 0.1 Hz < f < 1 Hz (see Fig. 4). When
jξj ≪ 1, the model (iii) is not plagued by the sharp
suppression of ΩGW due to the absence of a temporal
matter era after inflation, so the direct detection is possible
regardless of the value of TRH.
We have calculated the signal-to-noise ratio of DECIGO,

upgraded DECIGO, and BBO for the models (i)–(iii).
Compared to the SNR of DECIGO computed in Ref. [39],
we considered the upgraded version of DECIGO that
improves the sensitivity of measurements. For the model
(i) the direct detections by upgraded DECIGO and BBO
are possible for TRH > 1.5 × 107 GeV and TRH > 2.8 ×
106 GeV at 5σ, respectively. For the model (ii) the
upgraded DECIGO and BBO could detect the primordial
gravitational waves at 5σ for f > 5.3Mpl and f > 4.0Mpl,
respectively, provided that TRH ≳ 108 GeV. For the model
(iii) the direct detections would be feasible for ξ > −0.013
(upgraded DECIGO) and ξ > −0.043 (BBO).
We have thus shown that the large-field inflationary

models with r larger than the order of 0.01 leave
interesting observational signatures in the gravitational
wave background. In particular, the models in which

TABLE I. The tensor-to-scalar ratio r for the pivot wave number k� ¼ 0.05 Mpc−1, the intensity of the
gravitational wave ΩGW at the frequency f ¼ 0.2 Hz, and the SNR in DECIGO, upgraded DECIGO, and BBO for
the three inflationary models listed in (2)–(4). The reheating temperature is set as TRH ¼ 109 GeV.

Model r ΩGW

SNR
(DECIGO)

SNR (Upgraded
DECIGO)

SNR
(BBO)

Model (i) 0.153 1.55 × 10−16 3.90 8.67 17.2
Model (ii) (f ¼ 10MPl) 0.117 1.40 × 10−16 3.52 7.87 15.6
Model (ii) (f ¼ 7MPl) 0.086 1.21 × 10−16 3.03 6.81 13.4
VðϕÞ ¼ λϕ4=4 (ξ ¼ 0) 0.275 1.27 × 10−16 3.24 6.94 14.2
Model (iii) (ξ ¼ −0.002) 0.144 1.36 × 10−16 3.43 7.56 15.1
Model (iii) (ξ ¼ −0.005) 0.085 1.22 × 10−16 3.06 6.90 13.6
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reheating is driven by an effective massless inflaton field
can be distinguished from the massive models with a
temporal matter era after inflation. We hope that, in
addition to the indirect detection of tensor perturbations
from the B-mode polarization, the measurements by
interferometric detectors will shed new light on the nature
of primordial gravitational waves in the foreseeable
future.
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