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Coupling dark energy and dark matter through an effective fluid description is a very common procedure
in cosmology; however, it always remains in comoving coordinates in the special FLRW space. We
construct a consistent, general, and covariant formulation, where the interaction is a natural implication
of the imperfectness of the fluids. This imperfectness makes difficult the final step towards a robust
formulation of interacting fluids, namely the construction of a Lagrangian whose variation would give rise
to the interacting equations. Nevertheless, we present a formal solution to this problem for a single fluid,
through the introduction of an effective metric.
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I. INTRODUCTION

Dark energy and dark matter are the basic constituents of
theUniverse [1]. Although there are theories postulating that
they may correspond to a unified “dark sector” (for instance
in Chaplygin-gas-like theories [2]), detailed cosmological
observations, and especially the clustering properties of
dark matter [3–5] in contrast with the homogeneity of dark
energy, suggest with a great certainty that dark energy and
dark matter are two separate sectors. Hence, one could
construct scenarios inwhich the dark energy and darkmatter
sectors interact [6], since this interaction, apart from being
theoretically allowed, could have an important phenomeno-
logical implication, namely alleviating the coincidence
problem (i.e., why are the current dark energy and matter
densities of the same order although they evolve differently).
In the existing literature the interaction is described in

a very simple way, that is with the arbitrary modification
of the equations of motion. In particular, one handles
both dark energy and dark matter as perfect fluids in the
framework of General Relativity,1 whose total conservation
is arbitrarily split into nonconserved “interacting” parts,

∇bTðtotÞ
ab ¼ ∇bðTðDMÞ

ab þ TðDEÞ
ab Þ ¼ 0 ð1Þ

⇒

∇bTðDMÞ
ab ¼ Qa and ∇bTðDEÞ

ab ¼ −Qa; ð2Þ

where the quantityQa is introduced as a phenomenological
descriptor of the interaction, the form of which is assumed
arbitrarily, too. Although this arbitrary splitting is math-
ematically correct, there is not a procedure determining
how the system described in Eqs. (1) and (2) could
physically arise, and especially how to derive Qa (see,
however, Refs. [9]).
In principle, any fundamental theory should be charac-

terized by a Lagrangian whose variation gives rise to the
equations of motion. If the microscopic nature of dark
matter and especially of dark energy were known, one
could write down a Lagrangian with all possible interaction
terms, and then varying it one could obtain the complete
and exact interacting equations of motion and the corre-
sponding interaction terms, similarly to the interactions
within the Standard Model. Since such a microscopic
description is currently impossible, one could still hope
to describe the dark energy-dark matter interaction in an
effective way, writing an effective Lagrangian whose
variation could give rise to (2). There has been a recent
wealth of explorations of dark matter direct and indirect
detection, as well as collider production through the means
of the effective field theory approach (for a small sampling
of the field see for example [10–17]). Similarly there have
been forays into describing dark energy and modified
gravity via effective theories [18,19]. Nevertheless, in
the existing literature regarding the coupling of dark energy
and dark matter, neither the microscopic description nor
the effective field theory approach are employed, and the
relations given in (2) are imposed by hand.
Therefore the important question that arises naturally is

the following: Is this widespread formalism consistent? In
spite of being always presented only in comoving coor-
dinates in Friedmann-Lemaître-Robertson-Walker (FLRW)
geometry, can it be given a covariant formulation? And
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1We mention that in the framework of modified gravity one

can obtain interactions of dark matter with the extra degrees of
freedom of gravitational modification which play the role of an
effective dark energy, through the transformation to the Einstein
frame, but this is a completely different issue [7,8].
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ideally, can we write down (effective) Lagrangians, whose
variation would give rise to (2)? This is the field of interest
of the present work.

II. TWO FLUID INTERACTION: THE STANDARD
PROCEDURE

In the discussions of coupled dark energy and dark
matter in cosmology, one considers two coupled fluids in a
FLRW space. Let us restrict, for simplicity, to a spatially
flat FLRW geometry (which is anyway the one encountered
in the literature) described by the line element

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð3Þ
where aðtÞ is the scale factor. The two fluids commonly
considered in the literature are assumed to have energy
densities ρ1;2 and pressures P1;2 depending only on time, in
order to respect spatial homogeneity and isotropy, and apart
from the interaction they mimic perfect fluid behavior.
They are usually assumed to satisfy the equations of
motion,

_ρ1 þ 3HðP1 þ ρ1Þ ¼ Q; ð4Þ
_ρ2 þ 3HðP2 þ ρ2Þ ¼ −Q: ð5Þ

where H ≡ _a=a is the Hubble parameter and an overdot
denotes differentiation with respect to the comoving time t.
The quantity Q quantifies the interaction and its forms are
considered completely arbitrarily, with the obvious require-
ment to depend only on time due to homogeneity and
isotropy. The usual choices ofQ encountered in the literature
make this quantity proportional to ρ1;2 or to the Hubble
parameterH, and their powers [20], and one can additionally
use observations in order to constrain their forms [21].
The two equations (4) and (5) are concocted so that, by

adding them together, a “total fluid” of energy density

ρtot ¼ ρ1 þ ρ2 ð6Þ
and pressure

Ptot ¼ P1 þ P2 ð7Þ
satisfies the conservation equation

_ρtot þ 3HðPtot þ ρtotÞ ¼ 0: ð8Þ
Actually, as we discussed in the Introduction, the afore-
mentioned arbitrary splitting exactly arises from this con-
servation of the total fluid. The “total” fluid has effective
equation of state parameter

wtotðtÞ≡ Ptot

ρtot
¼ P1 þ P2

ρ1 þ ρ2
¼ w1ρ1 þ w2ρ2

ρ1 þ ρ2
; ð9Þ

namely it is an average of the equation of state parameters
of the individual fluids wi weighted by their energy

fractions (density parameters) ρi=ρtot. Although the indi-
vidual w1 and w2 may both be constant, the resulting wtot
is not, except for the trivial cases w1 ¼ w2 (in which
case there is a single fluid with density 2ρ and pressure 2P)
or constant ρ1 and ρ2. Based on this formulation, a
noninsignificant amount of literature (e.g., [20–24]) has
appeared.

III. TWO FLUID INTERACTION: A CONSISTENT
COVARIANT PICTURE

Equations (4) and (5) can be obtained in a consistently
covariant picture if the two fluids are described by the
stress-energy tensors

Tð1Þ
ab ¼ ðP1 þ ρ1Þuaub þ P1gab þ qaub þ qbua; ð10Þ

Tð2Þ
ab ¼ ðP2 þ ρ2Þuaub þ P2gab − qaub − qbua; ð11Þ

where ua is the common 4-velocity of the two fluids, a
timelike unit vector pointing in the time direction. The two
fluids are not tilted with respect to each other, that is, they
have the same 4-velocity ua and they “see” the same three-
space orthogonal to ua with three-metric hab ¼ gab þ uaub
(hab is the projection operator on this three-space). qc is a
current energy density, a timelike vector which describes
the transfer of energy between the two fluids. Due to spatial
isotropy, qc cannot have any spatial component and must
point in the time direction,

qc ¼ αðtÞuc; ð12Þ
where α is a function of time which must be non-negative
for qc to be future-oriented.
We mention here that the two fluids are imperfect fluids,

but not in the usual sense [25]. Usually, the term qaub þ
qbua in an imperfect fluid is associated with a purely spatial
energy current density (that is, one satisfying qcuc ¼ 0
[25]), but this is not the case here: the flux density of energy
must be parallel to uc in order not to violate spatial isotropy.
Because of this, and contrary to the standard textbook
imperfect fluid, the traces of TðiÞ

ab are not the same as those
of a perfect fluid, namely

TðiÞ ¼ −ρi þ 3Pi ∓ 2α: ð13Þ
Note that the “total” stress-energy tensor

TðtotÞ
ab ¼ Tð1Þ

ab þ Tð2Þ
ab ð14Þ

is covariantly conserved

∇bTðtotÞ
ab ¼ 0; ð15Þ

and the “total” energy density and pressure associated with
it are ρtot ¼ ρ1 þ ρ2 and Ptot ¼ P1 þ P2. On the other
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hand, the covariant divergence of the i-th fluid (i ¼ 1, 2)

stress-energy tensor TðiÞ
ab is

∇bTðiÞ
ab ¼ uaub∇bPi þ uaub∇bðρi � 2αÞ þ∇aPi

þ ðPi þ ρi � 2αÞub∇bua

þ ðPi þ ρi � 2αÞua∇bub; ð16Þ

where the upper sign corresponds to fluid 1 and the lower
one to fluid 2. Projection along the time direction ua gives

ua∇bTðiÞ
ab ¼ ð_ρi � 2_αÞ þ 3HðPi þ ρi � 2αÞ; ð17Þ

where _ρi ≡ ua∇aρi, etc. By imposing that ua∇bTðiÞ
ab ¼ 0,

the two fluids are conserved separately, but their perfect-
fluid components ðPi þ ρiÞuaub þ Pigab are not, having
nonzero covariant divergences which satisfy

ua∇b½ðPi þ ρiÞuaub þ Pigab� ¼ �2ð _αþ α∇bubÞ: ð18Þ

In an FLRW background this equation becomes

_ρi þ 3HðPi þ ρiÞ ¼∓ 2ð _αþ 3HαÞ: ð19Þ

Hence, one can clearly see that imposing the right hand side
of this equation to be equal to �Q, Eqs. (4) and (5) are
reproduced. In this case α and Q satisfy the relation

_αþ 3HαþQðtÞ
2

¼ 0: ð20Þ

This equation can be rewritten as

1

a3
d
dt

ðαa3Þ þQðtÞ
2

¼ 0; ð21Þ

which integrates to

αðtÞ ¼ −
1

2a3ðtÞ
Z

dta3ðtÞQðtÞ: ð22Þ

Note that in the case α ¼ 0 the two fluids become perfect
and noninteracting, that is, Q ¼ 0.
A possible physical interpretation is the following. Fluid

1, described by Tð1Þ
ab , is not a perfect fluid and its effective

energy density is not ρ1 but

Tð1Þ
ab u

aub ¼ ρ1 þ 2α; ð23Þ
while its effective pressure is still

1

3
Tð1Þ
ab h

ab ¼ P1: ð24Þ

Fluid 2, instead, has effective energy density and pressure

Tð2Þ
ab u

aub ¼ ρ2 − 2α; ð25Þ

1

3
Tð2Þ
ab h

ab ¼ P2; ð26Þ

respectively. In this picture, it would be incorrect to
think of these two fluids as perfect fluids. The terms

�ðqaub þ qbuaÞ in TðiÞ
ab describe an energy transfer which

happens simultaneously at all points of space, without
transfer of three-dimensional momentum, and spoil the
perfect fluid nature of these fluids. The amount of energy
lost by fluid 1 per unit time and per unit volume is
instantaneously gained by fluid 2, and vice versa. This
picture provides the underlying explanation for the splitting
(4)–(5) in the standard approach, where an energy transfer
occurring simultaneously at all points of space is intro-
duced by hand.
Alternatively, one could describe our situation as fol-

lows: when α > 0, the correction 2ð _αþ 3HαÞ to the perfect
fluid part of fluid 1 can be visualized as a dust with zero
pressure and energy density 2α which supplies energy to
fluid 1, while taking it from fluid 2 through an immediate
transfer. From the point of view of fluid 2, one can think of
a perfect fluid from which a dust with negative energy
density −2α removes energy to transfer it to fluid 1.
Clearly, this second dust would violate the weak energy
condition, but this is not a significant problem since a
similar case occurs in the standard imperfect fluid, where a
purely spatial heat flux density qc describes a spacelike,
instantaneous transfer of energy which violates the energy
conditions and is clearly unphysical, but is still useful as
a toy model for a consistent relativistic theory without all
its complications. In this sense, the model described by
Eqs. (4) and (5) may indeed be acceptable as a phenom-
enological toy model.
Finally, note that the usual quantity QðtÞ introduced in

the literature is related to αðtÞ through (21) as

QðtÞ ¼ −
2ðαa3Þ_
a3

: ð27Þ

The physical meaning becomes apparent if we consider a
region of three-dimensional space with unit comoving
volume and physical volume a3. Then −2αa3 is just the
energy transferred between the two fluids in this volume,
−ð2αa3Þ_ is the rate at which this energy transfer occurs,
and QðtÞ is the rate at which this energy is transferred per
unit volume.

IV. A LAGRANGIAN DESCRIPTION

Having constructed a consistent covariant description of
the two-fluid interaction, the question that arises naturally
is whether these equations can arise from a Lagrangian.
The disadvantage is that the two fluids are not perfect and
thus, as it is well known, there is not a robust Lagrangian
formulation for imperfect fluids. Additionally, there is not
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even a consensus on how one should proceed in order to
approach it. If such a Lagrangian density is found, it could
be possible to give a Lagrangian and covariant description
of two interacting fluids.
Given the high degree of symmetry of FLRW geometry,

for inspiration one can proceed along the lines of a less-
known treatment of the classical dissipative oscillator [26],
in which the oscillating position xðtÞ of a point particle is
ruled by the usual equation

ẍþ 2γ _xþ ω2
0x ¼ 0; ð28Þ

where γ and ω0 are positive constants. The change of
variable xðtÞ ¼ e−γtqðtÞ transforms the equation of motion
(28) into the new equation,

q̈þ ω2q ¼ 0; ð29Þ
where ω≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
0 − γ2

p
, which is dissipationless [26]. The

change of variable xðtÞ → qðtÞ is a canonical transforma-
tion which makes the system Lagrangian, with Lagrangian
function

Lðq; _qÞ ¼ _q2

2
−
ω2q2

2
; ð30Þ

which does not depend explicitly on time. The momentum
conjugated to q is

p≡ dL
d _q

¼ eγtð_xþ γxÞ; ð31Þ

and the associated Hamiltonian is

H ¼ p _q − L ¼ p2

2
þ ω2q2

2
: ð32Þ

Much has been written on this way of removing dissipation
from the oscillator, the physical interpretation of this pro-
cedure and of the new Hamiltonian variables ðq; pÞ, and on
possible quantizations of the dissipative oscillator [26].
Let us now be inspired by the above treatment, and try to

follow the general idea of removing dissipation from the
physical system by changing the variables which describe
the motion. In particular, since we desire to remove the
combination qaub þ qbua from the stress-energy tensor
(10), we should redefine the spacetime variables them-
selves, that is redefine the metric. Since qc ¼ αuc, we
can transform the metric gab → ḡab according to the
Kerr-Schild transformation [27,28],

ḡab ¼ gab þ 2λαuaub; ð33Þ
where λ is a constant with the dimensions of an inverse
density, thus making the product λα and the metric ḡab
dimensionless (the condition λ ≥ 0 guarantees that the
metric ḡab has the same signature as gab). The inverse
metric straightforwardly reads

ḡab ¼ gab þ 2λα

2λα − 1
uaub ð34Þ

and is defined for α ≠ 1
2λ. We restrict ourselves to this case:

in the pathological situation α ¼ 1
2λ the metric ḡab degen-

erates into the three-dimensional metric hab ≡ gab þ uaub
with Euclidean signature, which cannot describe the full
spacetime metric.
For the spatially flat FLRW spacetime, the line element

would become

ds̄2 ¼ −½1 − 2λαðtÞ�dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ: ð35Þ

It can then be transformed back to the form ds̄2 ¼ −dt̄2 þ
a2ðtÞd~x2 by the redefinition of the time coordinate

t̄ðtÞ ¼
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2λαðtÞ

p
: ð36Þ

The stress-energy tensor becomes

Tab ¼ ðPþ ρÞuaub þ Pgab þ qaub þ qbua ð37Þ

¼ ðP − 2λαPþ ρþ 2αÞuaub þ Pḡab: ð38Þ

This expression formally describes the stress-energy tensor
of a perfect fluid with energy density

ρ̄ ¼ ρþ 2α − 2λαP ð39Þ

and pressure P̄ ¼ P in the spacetime metric ḡab. Therefore,
this stress energy tensor will be covariantly conserved
according to the covariant derivative ∇̄c of the metric ḡab
[29], namely,

∇̄bTab ¼ 0: ð40Þ

Thus, since in the metric ḡab the fluid is perfect, and having
in mind the well-known result that the Lagrangian density
of a perfect fluid is just

ffiffiffiffiffiffi−gp
P [30–32], we can write down

the Lagrangian density associated with the stress-energy
tensor Tab as

L ¼ ffiffiffiffiffiffi
−ḡ

p
P; ð41Þ

where ḡ is the determinant of ḡab. In summary, the
“dissipative” term qaub þ qbua has indeed been eliminated
from the stress-energy tensor and a Lagrangian description
has been found for this fluid, but at the price of introducing
a fictitious metric that depends on that particular fluid.
The metric ḡab, in which the imperfect fluid becomes

perfect, is not universal: if two different fluids are consid-

ered simultaneously, there will be two different metrics ḡð1Þab

and ḡð2Þab and one cannot give a consistent description of the
two fluids in the same “effective spacetime.” In the case of
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the two fluids (4) and (5), the metrics ḡð1Þab and ḡð2Þab given by
Eq. (33) with α and −α, respectively, are different.
The situation is similar to that occurring in the classical

mechanics of point particles, in which one can eliminate the
(conservative) forces acting on a particle, by introducing a
fictitious space such that the particle follows geodesics of
an effective metric in this fictitious space2—the Jacobi form
of the least action principle [35]. More generally, one can
remove forces acting on a particle, or self-interaction terms
in the equation for a field, by introducing a fictitious metric3

in a fictitious space [34,36–38]. However, there is a
different effective space for each particle or field consid-
ered, and one cannot consider two (or more) particles or
fields simultaneously in this kind of approach, but only
self-interactions (this statement is true also for test fluids,
see Appendix A). Nevertheless, the formal result of this
section may still be useful for a single fluid.

V. SCALAR FIELD FLUIDS

In this section we desire to go one step further, and
investigate the case where the fluid is the effective
description of a scalar field (see [39] and references
therein). Scalars are the simplest fundamental physical
fields, and since there is no shortage of scalar fields in high
energy theories, a scalar field is often used in the cosmol-
ogy of the early and late universe. In principle, a scalar field
can be coupled to a fluid or to another field. Thus, in this
section we briefly discuss a covariant description of this
possible coupling.

A. A fluid and a scalar field

We begin by considering two coupled fluids in an FLRW
universe, the first being an ordinary fluid with energy
density ρ1 and pressure P1, and the second fluid arising
from a canonical scalar field ϕ minimally coupled to the
curvature (which, when decoupled from the dust fluid, is
equivalent to an effective perfect fluid). We would like to
offer a theoretical justification of the interaction form

_ρ1 þ 3HðP1 þ ρ1Þ ¼ Q; ð42Þ

_ρϕ þ 3HðPϕ þ ρϕÞ ¼ −Q: ð43Þ

The effective energy density and pressure of a fluid
arising from a scalar field in an FLRW space are given
by the well-known formulas,

ρϕ ¼
_ϕ2

2
þ VðϕÞ; ð44Þ

Pϕ ¼
_ϕ2

2
− VðϕÞ: ð45Þ

Finally, addingEqs. (42) and (43) one obtains a conservation
equation for the “total perfect fluid” characterized by energy
density ρtot ¼ ρ1 þ ρϕ and pressure Ptot ¼ P1 þ Pϕ.
In order to provide a theoretically justified form of the

fluid-field interaction term, we are inspired by the large
amount of research devoted in the 1980’s literature on
inflation reheating. In particular, one should find an
interaction term as a phenomenological way to describe
the decay of the inflaton due to its coupling to other
particles, a term that would excite the production of this
particle in order to end inflation after the number of e-folds
of expansion needed to solve the horizon and flatness
problems [40]. Later on, the scenarios for ending inflation
took a more definite shape in the various works on
reheating and preheating. Thus, inspired by the inflaton
phenomenological interaction we consider

Q ¼ Γ _ϕ2; ð46Þ
with Γ a positive constant. Then, using Eqs. (44) and (45),
the equation of motion (43) for the scalar field becomes

_ϕ

�
ϕ̈þ 3H _ϕþ Γ _ϕþ dV

dϕ

�
¼ 0 ð47Þ

and, unless ϕ is a constant ϕ0 (in which case the scalar field
fluid reduces to a pure cosmological constant Λ ¼ Vðϕ0Þ
and decouples from the first fluid), we have a Klein-Gordon
equation with a potential and an extra source of “friction”
with strength described by Γ and proportional to the
“speed” _ϕ of the scalar, namely,

ϕ̈þ 3H _ϕþ Γ _ϕþ dV
dϕ

¼ 0: ð48Þ

Correspondingly, the perfect fluid part of fluid 1 enjoys a
source Γ _ϕ in the right-hand side of Eq. (42),

_ρ1 þ 3HðP1 þ ρ1Þ ¼ Γ _ϕ: ð49Þ
The quantity α introduced in the previous section is

αðtÞ ¼ −
Γ
2a3

Z
dta3 _ϕ2; ð50Þ

and it involves only the kinetic energy _ϕ2=2 of the field ϕ.
The decay of the field ϕ into the fluid is due to its kinetic
energy and stops if ϕ becomes static. Thus, we can apply
the procedure of the previous section, with the above α
quantifying the imperfectness, obtaining a covariant for-
mulation of the fluid-field interaction.

2If there are a finite number of centers of attraction or repulsion
for a particle, its motion under these forces can be reduced to a
geodesic flow, as mentioned in [33] and proved in [34].

3The fictitious metric is obtained by means of a conformal
transformation in [36–38].
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B. Two scalar field fluids

Now let the first fluid be also a scalar field ψ with self-

interaction potentialUðψÞ. In this case ρ1 ¼ _ψ2

2
þ UðψÞ and

P1 ¼ _ψ2

2
−UðψÞ and the equation of motion for ψ becomes

ψ̈ þ 3H _ψ − Γ
_ϕ2

_ψ
þ dU

dψ
¼ 0 ð51Þ

(we assume that _ψ ≠ 0 and Γ > 0). Thus, when j _ψ j is large
(that is, a “fast-moving” ψ) and increasing, there is a

comparatively small extra term −Γ _ϕ2

_ψ which enhances the
motion of ψ and could perhaps be interpreted as a sort of
“antifriction” for this field, a force which depends on the
velocities of both ψ and ϕ. However, when ψ is decreasing,
this term turns into friction opposing the motion of ψ . Thus,
one can also apply the formulation of the previous section,
with α given by (50) quantifying the imperfectness.

VI. DISCUSSION

The increasing amount of literature on mutually coupled
dark energy and dark matter, and of a scalar field explicitly
coupled to other forms of matter in cosmology [20,22–24],
raises the problem of finding a covariant description of
the widely used formulation of energy exchange between
two fluids. In the present work we have constructed such
a covariant formulation, where the interaction is a natural
implication of the imperfectness of the fluids.
This imperfectness makes difficult the final step towards

a robust formulation of interacting fluids, namely the
construction of a Lagrangian, whose variation would give
rise to the interacting equations, since we need to face the
issue of finding Lagrangian descriptions of dissipative
systems, which is notoriously difficult. We have presented
a formal solution to this problem for a single fluid, entailing
the introduction of an effective metric which depends on
this particular fluid. However, its applicability beyond one
fluid is limited, since each fluid sees a different effective
metric.
In summary, we have constructed a covariant description

for an otherwise ad hoc, coordinate-dependent formalism
widely used in cosmology, introducing imperfectness.
Whether imperfectness is a necessary (apart from suffi-
cient) condition for interaction is still an open question;
however, this seems reasonable from the microscopic point
of view since in general one cannot easily imagine an
effective sector to be simultaneously “perfect” and “inter-
acting.” If this is the case, then it will be very hard, if not
impossible, to construct a Lagrangian formulation in the
usual way, for the dark energy–dark matter interaction. And
vice versa, if the microscopic nature of dark matter and dark
energy is some day understood, their possible interacting
terms in the fundamental Lagrangian will probably give
rise to a different effective interacting behavior than the one
used in the current literature.
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APPENDIX

Consider a single test fluid which is not isolated but
interacts with another system in FLRW geometry according
to Eq. (4). The effective equation of state parameter of this
fluid is defined by w≡ P=ρ, and Eq. (4) takes the form

_ρþ 3ðwþ 1ÞHρ ¼ QðtÞ: ðA1Þ

We search for a solution of this equation in the form

ρðtÞ ¼ CðtÞ
a3ðwþ1ÞðtÞ : ðA2Þ

Inserting this ansatz in Eq. (A1) we acquire

_C ¼ QðtÞa3ðwþ1ÞðtÞ; ðA3Þ

which is immediately integrated to yield

ρðtÞ ¼ CðtÞ
a3ðwþ1ÞðtÞ ¼

C0 þ
R
t
0 dt

0Qðt0Þa3ðwþ1Þðt0Þ
a3ðwþ1Þ ; ðA4Þ

where C0 is an integration constant.
However, note that if two fluids with equation of state

parameters w1 and w2 interact according to Eqs. (4) and (5),
the solution (A4) does not apply because then, adding these
equations term to term, one would obtain

_ρ1 þ _ρ2 þ 3ðwtot þ 1ÞHρtot ¼ 0; ðA5Þ

and the test fluid solutions would be

ρ1 ¼
C1 þ

R
t
0 dt

0Qðt0Þa3ðw1þ1Þðt0Þ
a3ðw1þ1Þ ; ðA6Þ

ρ2 ¼
C2 þ

R
t
0 dt

0Qðt0Þa3ðw2þ1Þðt0Þ
a3ðw2þ1Þ : ðA7Þ

In this case ρtot ¼ ρ1 þ ρ2 has a complicated form that does
not correspond to the “total fluid” being a perfect fluid
(unless w1 ¼ w2, which is the trivial case of a fluid
interacting with itself, therefore, of a single fluid). A total
perfect fluid should instead have ρtot ¼ ρ1 þ ρ2 scaling
with one well-defined power of a equal to −3ðwtot þ 1Þ.
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