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We investigate the implications for inflation of the detection of B-modes polarization in the cosmic
microwave background by BICEP2. We show that the hypothesis of the primordial origin of the
measurement is favored only by the first four band powers, while the others would prefer unreasonably
large values of the tensor-to-scalar ratio. Using only those four band powers, we carry out a complete
analysis in the cosmological and inflationary slow-roll parameter space using the BICEP2 polarization
measurements alone and extract the Bayesian evidences and complexities for all the Encyclopædia
Inflationaris models. This allows us to determine the most probable and simplest BICEP2 inflationary
scenarios. Although this list contains the simplest monomial potentials, it also includes many other
scenarios, suggesting that focusing model building efforts on large field models only is unjustified at this
stage. We demonstrate that the sets of inflationary models preferred by Planck alone and BICEP2 alone
are almost disjoint, indicating a clear tension between the two data sets. We address this tension with a
Bayesian measure of compatibility between BICEP2 and Planck. We find that for models favored by
Planck the two data sets tend to be incompatible, whereas there is moderate evidence of compatibility for
the BICEP2 preferred models. As a result, it would be premature to draw any conclusion on the best Planck
models, such as Starobinsky and/or Kähler moduli inflation. For the subset of scenarios not exhibiting data
sets incompatibility, we update the evidences and complexities using both data sets together.
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I. INTRODUCTION

The recent discovery of B-mode polarization in the
Cosmic Microwave Background (CMB) by BICEP2 [1],
if confirmed to be of primordial origin [2], would constitute
a breakthrough for our understanding of early universe
cosmology. In addition to lensing, Bmode can be generated
by either vector perturbations or tensor perturbations [3].
Vectors do not propagate in a Friedmann-Lemaître universe
(see, however, Ref. [4]) and can be a potential explanation
of the BICEP2 data only if they are incessantly generated
by active sources such as cosmic strings [5–7] or magnetic
fields [8]. These, however, are severely constrained by
other measurements [9,10].
Tensor modes are a natural and expected outcome of

cosmic inflation although the uncertainty on their ampli-
tude is huge (several orders of magnitude). In this context,
the BICEP2 result might represent the first detection of
primordial gravity waves produced in the early universe
[11,12] and, therefore, could give us precious information
about the physical conditions that prevailed at that time.

Of course, the BICEP2 result needs to be confirmed by
other measurements before one can be sure that primordial
B-modes have really been detected. In this paper, our
working hypothesis will be that this is indeed the case. On
general grounds, it is anyway always interesting to explore
the implications for inflation of a non-negligible level of
primordial gravity waves.
The claimed amplitude of the signal corresponds to a

tensor-to-scalar ratio of r ¼ 0.2þ0.07
−0.05 or r ¼ 0.16þ0.06

−0.05
depending on how polarized dust foregrounds are modeled
and/or subtracted. Recent works [13] have, however,
cast doubts on the modeling of the foreground dust, which
could potentially lead to the amplitude of the tensor modes
signal to be much lower, to the point of becoming
undetectable. In the following, we shall take the BICEP2
result at face value, pending further investigation, most
notably thanks to the recently released Planck dust maps
[14]. The BICEP2 measurement, if, as already mentioned,
interpreted as of primordial origin, has several important
physical consequences that we now discuss.
First, the energy scale of inflation [15–24] is fixed and

roughly given by
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i.e. around the grand unified theory (GUT) energy scale.
A more accurate determination of this energy scale and
the Hubble rate during inflation are given in Sec. III D.
Inflation is therefore a high energy phenomenon by particle
physics standard.
Second, this result would favor that single field slow-roll

scenarios achieve the best compromise between quality of
the fit and theoretical simplicity [25]. Indeed, in more
complicated models, the tensor-to-scalar ratio is generically
(but not necessarily) smaller than in the standard case.1 For
instance, for K inflation [28], one has r ¼ −8nTcs where
cs < 1 is the sound speed of the fluctuations [29]. For
two-field inflation, one can write r ¼ −8nT sin2 Θ ≤ −8nT,
where sinΘ is a term taking into account the possible
evolution of scalar modes on super Hubble scales [30].
For multiple field inflation, the above equality becomes an
inequality, namely r ≤ −8nT sin2Θ, thus strengthening
the argument presented before (up to the special case of
massive Nflation which inherits some of the properties of a
single m2ϕ2 model [31–34]). Of course, this certainly does
not mean that these more complicated models are ruled
out by BICEP2 (as a matter of fact, they are not), but
together with the absence of detection of isocurvature
modes and primordial non-Gaussianities, this reinforces
the fact that they are not needed in order to give a
satisfactory description of the data. Clearly, this argument
should be toned down given that multiple field models are
often well motivated from a high energy point of view and,
moreover, can predict a non-negligible r even if the field
excursion is smaller than the Planck mass [35] (see below).
Also notice that, for the simplest and preferred class
of inflationary models mentioned above, the non-
Gaussianities are characterized by flocNL ¼ 5ð1 − nSÞ=12≃
1.6 × 10−2 [36] since Planck [37,38] has measured
nS ¼ 0.9603� 0.0073. Therefore, unless one is able to
reach the 10−2 level, it seems impossible to measure VðϕÞ
using the precise shape of the three-point correlation
function. The 10−2 level appears to be extremely challeng-
ing given our present day capabilities and, as a conse-
quence, this reinforces the importance of a measurement of
r since this opens a realistic opportunity to identify the
correct inflationary scenario.
Third, in the framework of single field slow-roll scenar-

ios, the BICEP2 result implies a lower bound on the
first Hubble flow function, which is also given by
ϵ1 ≃M2

PlðVϕ=VÞ2=2. Therefore, the first derivative of the
inflaton potential can be constrained. Furthermore, since
the deviation from scale invariance nS − 1 depends on a
combination of the first and second derivatives of the
potential (at leading order in slow roll), this automatically
also provides a measurement of the second derivative of the

potential. It is also interesting to notice that a constraint
on ϵ1 does not modify our estimate of the importance of
the stochastic effects for CMB scales [39–41]. Indeed, ifΔq
is the typical quantum excursion of the inflaton field
during one e-fold and Δcl its classical excursion, then
Δq=Δcl ≃H=ðMPl

ffiffiffiffiffi
ϵ1

p Þ≃ ffiffiffiffiffiffi
Pζ

p ≃ 10−5. The point is that
Δq=Δcl does not depend on ϵ1 alone but on the combination
H=

ffiffiffiffiffi
ϵ1

p
which was already measured before BICEP2 since

it turns out to be exactly the amplitude of the scalar
modes. However, a measurement of r also gives indications
about the shape of the potential (see below) and, then,
Δq=Δcl > 1 may become possible but necessarily outside
the observable window. If r≃ 0.2 favors potentials for
which this systematically happens, one should still pay
attention to how measurements made on the CMB scales
should be extrapolated to the part of the inflaton’s potential
supporting a stochastic regime [42]. Therefore, observa-
tionally speaking, the question of knowing if nonperturba-
tive quantum effects can play an important role in the early
universe is still open [43–45].
Fourth, the model building problem is also impacted by

the BICEP2 result. Indeed, by definition of the first Hubble
flow function, one has Δϕ=MPl ¼ Oð1Þðr=0.2Þ1=2 [46,47]
which indicates that the excursion of the field during
inflation is necessarily super-Planckian. The single field
models discussed before are usually viewed as effective
models only, valid up to a cutoff Λ [48]. This scale should
be less thanMPl sinceMPl is the cutoff of general relativity
and larger than H since the model should be able to
describe what happens during inflation. In the framework
of effective field theories, when physical effects beyond
the cutoff are taken into account, the total Lagrangian
of a given inflationary model can be expressed as
L ¼ _ϕ2=2þ VðϕÞ þP

iciOi=Λni−4, where VðϕÞ contains
renormalizable terms only and Oi represents a higher order
operator of dimension ni > 4 (possibly a nonminimal
kinetic term) the amplitude of which is controlled by the
coefficient ci. When an inflationary model is designed,
it usually makes use of L ¼ _ϕ2=2þ VðϕÞ only and the
higher order operators are neglected. The validity of this
approximation is questionable because of the following two
problems. First, as mentioned above, a large value of r
implies a large value of Δϕ compared to the Planck mass
and the operatorsOi may no longer be negligible. Solutions
to these issues are either to fine-tune the couplings between
the light and heavy fields or to assume the existence of a
symmetry (typically the shift symmetry) to forbid the
dangerous higher order operators. But, then, this raises
the question of the origin of this symmetry in the full
theory, that is to say the question of the UV completion of
the model. For a nice and more complete discussion on
all these issues, see for instance Ref. [48]. Second, the
parameters of VðϕÞ usually get corrected by heavy field
loops. For instance, a mass term typically acquires the
following form: m2 → m2 þ gM2 lnðΛ=μÞ, where μ is a

1With the notable exception of G inflation [26,27] where
r ¼ 16csσ, with σ a complicated function of the inflaton field and
its derivative, possibly larger than 1 even in the slow-roll limit.
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renormalizable scale, M > Λ the mass of a heavy field and
g the coupling between ϕ and the heavy field.2 This means
that the mass of the inflaton becomes larger than the Hubble
rate and that the potential is no longer flat enough to
support inflation. Notice, however, that this issue is,
a priori, always present even in a model where r is small.
Fifth, the BICEP2 result exacerbates the problems of

inflationary magnetogenesis [50–52]. Recent observations
indicate the presence of magnetic fields of strength ranging
from 10−17 to 10−15 Gauss on megaparsec scales and such
a large coherence length suggests a cosmological origin
[53–56]. In order to produce a magnetic field during
inflation, one needs to break conformal invariance. For
instance, this can be achieved by considering a term
f2ðϕÞFμνFμν. A simple parametrization for the function
fðηÞ is given by f ∝ aα [52] since the choices α≃ 2 or
α≃ −3 both lead to a flat spectrum. For α ¼ 2 f is a
growing function of time, and since the gauge field Aμ is
also coupled to charged fermions with a coupling constant
geffðηÞ ∝ g=fðηÞ, this implies that the system is in a
nonperturbative regime during inflation [57] (for a possible
solution, see Refs. [58,59]). On the other hand, the solution
α ¼ −3 suffers from a backreaction problem. In order to
avoid a too important production of the electric field, the
only way out is then to lower the energy scale of inflation,
i.e. H=MPl ≲ 10−20 [52,60,61]. The BICEP2 result would
invalidate this solution and, therefore, one is left in a
situation where inflationary magnetogenesis appears to be
more problematic than before.
Sixth, the detection of a quite large value of r raises the

question of whether one can directly see the primordial
gravitational waves. With r≃0.2 and nT≃−r=8≃−0.025
[see Eq. (28)], one expects to have today Ωgw ≃ 10−15

and experiments such as VIRGO [62] and eLISA [63]
cannot detect such a tiny signal. However, Japan’s
DECIGO [64,65], Ultimate-DECIGO or NASA’s Big
Bang Observer [66] have a priori the sensitivity required
to directly probe the inflationary primordial gravity waves.
Notice that these experiments operate in the frequency
range f ∈ ½10−2 Hz; 10 Hz� and this could render the
measurements of the reheating parameters, such as the
reheating temperature and/or the equation of state
parameter, feasible [67,68].

Seventh, it has been claimed [69–71] that the BICEP2
results would represent the first experimental evidence for
quantum gravity since, in the framework of inflation, the
transverse and traceless component of the perturbed metric
is a quantum operator. This has indeed been known for 40
years [11,12] and more than 20 years in the context of
inflation [72–74]. However, this was already the case for
scalar modes [23,72–74]. Indeed, their equation of motion
derives from the perturbed quantum Einstein equations,
δĜμν ¼ 8πGδT̂μν. To put it differently, the Mukhanov-
Sasaki quantum operator v̂, which characterizes the ampli-
tude of scalar modes, is expressed in terms of the perturbed
inflaton field δϕ̂ and the Bardeen potential Φ̂, concretely
v̂≡ δϕ̂þ ðϕ0=HÞψ̂ ¼ δϕ̂ðgiÞ þ ðϕ0=HÞΦ̂ (where δϕ̂ðgiÞ is
the gauge invariant perturbed field and ψ̂ is the scalar
component of the perturbed metric proportional to δij). We
see that the perturbed metric is also a quantum operator
in the scalar sector and is directly related to the CMB
anisotropies. Notice that a semiclassical formulation of the
problem, namely δGμν ¼ 8πGhδT̂μνi, does not help since
δT̂μν, being by definition linear in δϕ̂, satisfies hδT̂μνi ¼ 0.
One might argue that the scalar sector suffers from a gauge
problem but this question has been discussed and solved
with the help of the gauge-invariant formalism [75]. There
exists a gauge (the spatially flat or uniform curvature gauge
[76]) for which ψ ¼ 0 and, therefore, v ¼ δϕ. However,
this cannot be used as an argument that only field
fluctuations must be quantized. Indeed, there is another
gauge (comoving orthogonal gauge [76]) where δϕ ¼ 0
and, hence, v ¼ ðϕ0=HÞψ . As a consequence, the same
logic leading to the above argument could also be used
to reach an opposite conclusion, namely that only metric
fluctuations (and not field perturbations) must be quan-
tized. In fact, as it is clear from the definition of the
Mukhanov-Sasaki variable, field and metric perturbations
cannot be disentangled [77] and the scalar modes are
therefore already a genuine signature of the quantum-
mechanical nature of the gravitational field. On the other
hand, it is true that there still exist open issues related to
the quantum to classical transition of these quantum
fluctuations [78–86].
Eighth, it is worth recalling that BICEP2 data do not only

concern the B-mode polarization but also the E modes
(CTT;obs

l and CTE;obs
l are not yet publicly available). The

fact that the polarization spectrum CEE;obs
l has also been

measured is fortunate since it allows us to constrain scalar
perturbations, and cosmology, with the BICEP2 data alone
[87]. This is discussed further in the following. Although
not public, the BICEP2 team reports a CTB;obs

l consistent
with zero, and this is relevant for models containing a
gravitational Chern-Simons term [88–90]. This term is
necessarily present since it is generated by quantum
corrections and is generic in string theory. This implies
that the two polarization states of a gravitational wave

2Notice that regularizing the loop integral with a cutoff
would have produced a correction proportional to Λ2, namely
m2 → m2 þ gΛ2. However, this approach is not consistent as can
be nicely illustrated on the example of the regularization of the
cosmological constant. Indeed, if one regularizes ρvac with a
cutoff, one obtains that ρvac → ρvac þ Λ4. However, this method
breaks Lorentz invariance and, as a consequence, one obtains the
wrong equation of state, w ¼ pvac=ρvac ¼ 1=3 instead ofw ¼ −1.
If, on the contrary, the loop integral is regularized with a method
that respects Lorentz invariance (for instance dimensional
regularization), then one obtains ρvac → ρvac þM4 lnðΛ=μÞ and
w ¼ −1; see Ref. [49]. In other words, if there is no new physics
beyond the standard model, there is no hierarchy problem.

COMPATIBILITY OF PLANCK AND BICEP2 RESULTS IN … PHYSICAL REVIEW D 90, 063501 (2014)

063501-3



behave differently. As a consequence, the tensor-to-scalar
ratio is modified and can even be enhanced [89] (to be fair,
a calculation of r in a regime where the enhancement is
large remains very challenging).
Another question which arises after BICEP2 is the

implications of these new data with regards to the shape
of the inflaton potential VðϕÞ and whether these implica-
tions are compatible with the conclusions reached previ-
ously, and notably from Planck data [25,91–93]. Let us
recall that, given Planck data, the best models in terms of
evidences and complexities are such that their potential is
of the plateau type, the prototypical example being the
Starobinsky model [15]. In more quantitative terms, if one
uses the Jeffreys scale [94,95] and counts the number of
models in the “inconclusive,” “weak evidence,” “moderate
evidence,” and “strong evidence” zones with respect to the
best, one finds 26% in the first category (corresponding to
17 different shapes of the potential), 21% in the second,
17% in the third, and, finally, 34% in the fourth and last
one. These numbers can be further improved by another
statistical indicator. If we restrict ourselves to models
having a number of unconstrained parameters between
0 and 1, then only 9% of the scenarios are preferred,
corresponding this time to 9 different potentials. And these
9 potentials are all of the plateau type. On the other hand,
the Jeffreys scale has to be taken as indicative, and it is
usually considered that only the models belonging to the
strong evidence category (here, 34%) can really be con-
sidered as robustly “ruled out.” Therefore, we see that the
Planck data have been able to narrow down our theoretical
uncertainties efficiently and to point to a particular type of
potentials. As a consequence, an important question is
whether the BICEP2 measurements are in agreement with
these conclusions and, more generally, whether BICEP2 is
compatible with Planck in the framework of single field
slow-roll inflation.
The present article aims at discussing the issues pre-

sented above. As many inflationary models genuinely
produce a small amount of tensor modes, one would expect
the BICEP2 data to severely cut a large volume of the
model space, thereby improving our knowledge of inflation
compared to what has already been established with Planck
data. However, one has first to address and quantify the
compatibility between BICEP2 and Planck data. For this, it
is required to first investigate both data sets independently.
This may seem problematic for BICEP2 as B modes alone
do not give constraints on the scalar perturbations. But, as
we show below, using both the E and Bmodes polarization
measurements in only four band powers already gives
nontrivial constraints on both the standard cosmological
parameters and the primordial ones (see also Ref. [87]).
This allows us to derive the evidences and complexities of
all the Encyclopædia Inflationaris models using BICEP2
data alone and thoroughly discuss the compatibility of
Planck and BICEP2 using the so-called R factors

[96–102]. These are the Bayes factors giving the ratio
between the probability of compatibility to the probability
of incompatibility assuming a given model. By evaluating
R for slow-roll inflation and for each Encyclopædia
Inflationaris scenarios, one can determine the subset of
models for which Planck and BICEP2 data can be mean-
ingfully combined to obtain evidences and complexities
from the joint data sets.
This article is organized as follows. In the next section,

we briefly describe the method used to compute the
Bayesian evidence of any slow-roll inflationary model.
In particular, our method is based on the determination of
an effective likelihood for inflation which requires a slow-
roll analysis of the Planck and BICEP2 data. The results of
the analysis for Planck can be found in Ref. [25], and we
present in Sec. III new results for BICEP2 alone and
BICEP2 combined with Planck. In particular, we discuss
the compatibility of the data sets under the hypothesis
of slow roll. In Sec. IV, we present the evidences and
complexities for all the Encyclopædia Inflationaris models
stemming from the BICEP2 data alone and discuss what
are the inflaton potential shapes favored and how they
differ from the Planck results. We then move on to the
compatibility of Planck and BICEP2 model by model and
present joint evidences and complexities for the scenarios
under which both data sets are not incompatible. Finally,
in Sec. V, we summarize our findings and present our
conclusions.

II. METHODOLOGY

A. Bayesian evidence and complexity

In this section, we briefly present the statistical meth-
odology adopted here to compute the Bayesian evidence
and complexity for each of the Encyclopædia Inflationaris
models that, in the following, we denote by Mi.
The Bayesian evidence, given data D, is defined by [95]

PðDjMiÞ≡ EðDjMiÞ ¼
Z

dθijLðθijÞπðθijjMiÞ; ð2Þ

where θij represents the parameters characterizing the
model Mi, L is the likelihood function (to be discussed
below), and πðθijjMiÞ is the prior distribution for the
parameter θij. As usual in Bayesian analysis, the choice of
the priors plays a crucial role, and a complete study of the
πðθijjMiÞ for all the Encyclopædia Inflationaris models
can be found in Ref. [25]. Here, we adopt the same choices.
The Bayesian complexity can be expressed as [103]

Ci ¼ h−2 logLðθijÞi þ 2 logLðθML
ij Þ; ð3Þ

where h·i means averaging over the posteriors and θML
ij

represents the maximum likelihood estimate of the model’s
parameters.
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The Bayesian evidences are often normalized to a
reference model MREF, and one defines Bi

REF≡
EðDjMiÞ=EðDjMREFÞ. They give us information about
the posterior probability of the model Mi (for noncom-
mittal model priors),

PðMijDÞ ¼ Bi
REFP
jB

j
REF

: ð4Þ

On the other hand, the Bayesian complexities tell us
something about the number of unconstrained parameters

Nuc
i ≡ Ni − Ci; ð5Þ

where Ni is the total number of parameters of the model
under scrutiny. The above considerations show that, given a
data set D, the performance of a model can be described by
the numbers ðNuc; BREFÞ.

B. Compatibility of data sets

Although the previous discussion is readily applicable
for either the Planck (Dp) or BICEP2 data (Db) separately,
computing a joint evidence from BICEP2 and Planck,
namely using D ¼ fDp; Dbg, requires some precaution.
Indeed, it is crucial to determine whether a small value of
PðDjMiÞ is the consequence of Mi being a poor explan-
ation of the data, or whether this results from the tension
between Planck and BICEP2.
As detailed below, there is a tension between the two

data sets, when interpreted in terms of tensor modes
amplitude. Combining the two data sets blindly could
potentially lead to a joint likelihood function that peaks
in a region of parameter space that is not favored by either
experiment—an obviously undesirable situation.
In order to study the compatibility of BICEP2 and

Planck, we resort to a Bayesian measure defined as
follows [96–102,104]:

Ri ≡ PðDp; DbjMi;HcÞ
PðDpjMi;HicÞPðDbjMi;HicÞ

: ð6Þ

This quantity represents the posterior between the hypoth-
esis that the two data sets are compatible (Hc, when
Ri > 1) versus the hypothesis that they are not (Hic and
thus described by different sets of parameters, when
Ri < 1), assuming the inflationary model Mi and non-
committal priors between the two hypotheses, PðHcÞ ¼
PðHicÞ ¼ 1=2. Various prototypical situations illustrating
the behavior or R are presented in the Appendix (see
Sec. A 1), where one can gain some insight on why R
measures compatibility. The R factor can also be reex-
pressed in terms of the conditional predictive probability
for BICEP2 data, by noting that

PðDp; DbjMiÞ ¼ PðDbjDp;MiÞPðDpjMiÞ: ð7Þ

Using Eq. (7), we obtain the simpler expression

Ri ¼
PðDbjDp;MiÞ
PðDbjMiÞ

; ð8Þ

which shows that Ri is large if the probability of obtaining
data Db, given the Planck data Dp, is large.

C. Likelihood functions

The likelihoods considered in the following have been
provided by the Planck Collaboration [105] and the
BICEP2 team [1,106,107]. Concerning the Planck like-
lihood, we have used the “CamSpec” likelihood for the
temperature power spectrum in the multipole range 50 <
l < 2500 complemented with the “Commander” likeli-
hood for 2 < l < 49. Moreover, following the data
analysis method of Refs. [37,108], we have also used
the WMAP polarization data for l ≤ 32 [109–111]. These
data sets are the same as the ones used in Ref. [25].
Concerning the BICEP2 likelihood, we have written a
FORTRAN code from scratch based on the approximation of
Ref. [106] and as implemented by the BICEP2 team (see
Ref. [112]). Our results are identical to the ones obtained
with the latest version of COSMOMC [113] in which the
BICEP2 likelihood has also been implemented. The
BICEP2 measurements are publicly available.3

As discussed in Ref. [1], when assuming primordial
power law power spectra, the BICEP2 likelihood for the
tensor-to-scalar ratio r peaks at a value around 0.2, which is
significantly larger than those favored by the Planck data.
In Figs. 1 and 2, we have represented the BICEP2 like-
lihood profile along r, in each band power, when the
ΛCDM cosmological parameters are fixed to their mean
values obtained from the Planck data alone [37]. Let us
notice that the likelihood has been estimated using CAMB

[114] to provide the expected CBB;th
l for each value of r

while including the lensing effects which convert E modes
into B modes. This figure shows that over the nine band
powers provided by the BICEP2 team, the second bin
carries most of the statistical weight and, moreover, only
four bins are reasonable with the hypothesis that the
measured CBB;obs

l are sourced by tensor modes of infla-
tionary origin. Indeed, already for the band power five, the
likelihood peaks at a value r > 0.5. The band powers six to
nine would even favor a tensor-to-scalar ratio larger than 1.
Those band powers do not significantly weigh in the total
likelihood as their associated errors are relatively large (see
Fig. 1). However, as they seem to suffer from a systematic
excess, the origin of which not being inflation or lensing,
we have decided to perform our data analysis using only the
first four band powers of the BICEP2 data hoping that they
are not too much affected by such systematics. In fact, we

3See http://bicepkeck.org.
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have also checked that including all the bins in the analysis
does not modify in a substantial way our conclusions.

D. Fast evidence computation

Given our likelihood function, we briefly summarize
in this section how the Bayesian evidence of a given
Encyclopædia Inflationaris model can be fast computed.
Any inflationary model is characterized by the parameters

θinf describing the shape of the potential [for instance, for
large field inflation where VðϕÞ ¼ M4ðϕ=MPlÞp, one has
θinf ¼ ðM;pÞ] and by the priors’ choice on those parameters
[25]. We also need parameters describing the reheating
phase, θreh, such as the reheating temperature and the
equation of state. In fact, one can show that only one
parameter is sufficient, the so-called rescaled reheating
parameter R [115–119]. In the present paper, following
Ref. [25], a Jeffreys prior is assumed such that
θreh ¼ lnR ∈ ½−46; 15�. Finally, the parameters describing
the postinflationary phase are the standard cosmological
parameters associated with a ΛCDM model, plus the
astrophysical parameters entering the likelihood function.
Those are referred to as θs in the following. As a

consequence, the evidence in Eq. (2), for a model Mi,
becomes

EðDjMiÞ ¼
Z

dθsdθrehdθinfLðθs; θreh; θinfÞ

× πðθsÞπðθrehÞπðθinfÞ; ð9Þ

where π represent the priors. The key remark here is to notice
that, as opposed to the cosmological and astrophysics
parameters, θreh and θinf affect the likelihood by modifying
only the scalar PζðkÞ and tensor PhðkÞ primordial power
spectra. As a consequence, one possibility would be to
numerically evaluate, for each inflationary model,Pζ andPh
[38,119,120]. This is, however, very time consuming.
Here, we rather choose to use the method developed in

Ref. [121]. The main idea of this article is to bypass any
mode integration by modeling through a small number of
parameters the shape of the primordial spectra. Since we are
only focused on slow-roll inflation, we consider the second
order slow-roll expansion of the scalar and tensor primor-
dial spectra around a pivot scale k� [122–133], namely

Pζ ¼
H2

8π2M2
Plϵ1

�
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�
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FIG. 2 (color online). BICEP2 likelihood function over the
tensor-to-scalar ratio r, assuming power law primordial spectra
and with the ΛCDM parameters fixed to their mean value
obtained from the Planck data alone. B modes from lensing
are included, and we have presented the contribution of each of
the nine BICEP2 band powers. Only the first four band powers
favor the hypothesis of primordial tensor modes of inflationary
origin, whereas the others exhibit a likelihood maximal at
problematic large values of r.

FIG. 1 (color online). B-mode angular power spectrum in the
nine band powers measured by the BICEP2 experiment. Figure
extracted from Ref. [1].
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and

Ph ¼
2H2

π2M2
Pl

�
1 − 2ð1þ CÞϵ1 þ

�
π2

2
− 3þ 2Cþ 2C2

�
ϵ21

þ
�
π2
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− 2 − 2C − C2

�
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− 2ð1þ CÞϵ1ϵ2� ln
�
k
k�

�
þ ð2ϵ21 − ϵ1ϵ2Þln2

�
k
k�

��
;

ð11Þ

where C ¼ γ þ ln 2 − 2≃ −0.72, γ being the Euler con-
stant. The quantities ϵn are the Hubble-flow parameters
evaluated at the pivot Hubble exit, i.e. at the conformal
time η� solution of k�η� ¼ −1. The Hubble parameter H
entering the normalization is also evaluated at η�. Let us
notice that, by definition, P� ≡ Pζðk�Þ is a well-measured
quantity which fixes the amplitude of the CMB anisotro-
pies. Let us also remark that, a priori, P� is not directly
proportional toCTT;obs

l since, when the tensor-to-scalar ratio
does not vanish, part of the signal also comes from Phðk�Þ.
However, for our choice of pivot scale, k� ¼ 0.05 Mpc−1,
the gravity waves contribution is already very small.
The inflationary model dependence now only appears

through the explicit functionals ϵnðθreh; θinfÞ. These are
explicitly derived for all models of the Encyclopædia
Inflationaris in Ref. [91] and can be computed using the
public library ASPIC.4 In other words, the power spectra
obtained in this way differ for different models because the
functionals ϵnðθreh; θinfÞ depend on the inflationary model
considered. Then, the Bayesian evidence can be obtained
from Eq. (9) by marginalizing over all parameters, i.e.

EðDjMiÞ ¼
Z

Leff ½P�ðθreh; θinfÞ; ϵnðθreh; θinfÞ�

× πðθrehÞπðθinfÞdθrehdθinf ; ð12Þ

where we have defined the effective likelihood by

LeffðP�; ϵnÞ≡
Z

Lðθs; P�; ϵnÞπðθsÞdθs: ð13Þ

The effective likelihood for inflation Leff is the full like-
lihood L marginalized over all the cosmological and
astrophysics parameters. Its estimation therefore requires
a complete data analysis that we present in the following
section. However, this has to be done once and for all as the
evidences of all the inflationary models can be computed
afterwards from Eq. (12). In practice, the functional shape
of LeffðP�; ϵnÞ is fitted using a neural network interpolator
allowing its very fast evaluation.

III. DATA ANALYSIS

In order to determine Leff , we have performed a Markov
chain–Monte Carlo (MCMC) exploration of the slow-roll
parameter space using the BICEP2 and Planck likelihoods
described above.

A. Constraints from BICEP2

In this first section, we derive constraints on the
cosmological parameters using the BICEP2 data alone.
The postinflationary universe, assumed to be a flat ΛCDM
model, is described by the parameters θs:

θs ¼ ðΩbh2;Ωch2; τ; 100θMCÞ: ð14Þ

The cosmological parameters are the baryons energy
density (normalized to the critical energy density) Ωb,
the cold dark matter energy density Ωc, the reduced Hubble
parameter today h, the optical depth τ to last scattering, and
an angle, θMC, related to the angular size of the sound
horizon on the last scattering surface [113]. The MCMC
analysis was done by means of the public code COSMOMC

[113] and a modified version of the CAMB code [114] taking
into account that the initial power spectra are not simple
power laws but are given by the expressions (10) and (11).
The priors on the standard parameters are chosen in
accordance with Ref. [105]. For the primordial parameters,
we take a Jeffreys prior for ln ð1010P�Þ ∈ ½2.7; 4.0� and for
ϵ1, namely logðϵ1Þ ∈ ½−5;−0.7�. For the other slow-roll
parameters, we choose flat priors on ϵ2 and ϵ3 in ½−0.2; 0.2�.
As already mentioned, the pivot scale is chosen at
k� ¼ 0.05 Mpc−1. These priors are the most uninformative
within slow-roll inflation. Indeed, the order of magnitude
of ϵ1 (which is always positive) is a priori unknown as
many models produce a level of tensor modes that can
be extremely small. This prior was the one assumed
in Ref. [25].
In Fig. 3, we have represented the one-dimensional

marginalized posterior probability distributions for the
standard and slow-roll parameters obtained with BICEP2
data alone (solid black lines) compared with the distribu-
tions inferred from Planck (dashed red lines). It does not
come as a surprise to see that, as long as the θs’s are
concerned, BICEP2 is much less constraining than Planck.
Concerning the primordial parameters, we see that BICEP2
measures ϵ1 (or r) since it is sensitive to both the amplitude
of the tensor power spectrum through CBB;obs

l and the
amplitude of the scalar power spectrum through CEE;obs

l .
The quantity P�, that is to say Pðk�Þ, is indeed constrained
as can be seen on the figure. On the other hand, the second
and third slow-roll parameters ϵ2 and ϵ3 are not constrained
at all.
Figure 4 shows the two-dimensional posterior proba-

bility distributions in the primordial parameter space from
BICEP2 alone (solid black contours) and from Planck4http://theory.physics.unige.ch/ringeval/aspic.html.
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alone (red dashed contours). The upper and lower left
panels are especially interesting since they illustrate the
existing tension between the BICEP2 and Planck data in the
sense that the one-sigma contours do not overlap (while
the two-sigma contours do). Unsurprisingly, the first slow-
roll parameter is well determined by BICEP2 while the
second is well constrained by Planck.

B. Constraints from BICEP2 and Planck

We now turn to the joint analysis where the BICEP2 and
Planck data are simultaneously considered. The postinfla-
tionary universe is, as before, a flat ΛCDM model and is
now described by a larger set of parameters θs:

θs ¼ ðΩbh2;Ωch2; τ; 100θMC; APS
100; A

PS
143; A

PS
217; r

PS
143×217;

× ACIB
143 ; A

CIB
217 ; r

CIB
143×217; γ

CIB; AtSZ;

× AkSZ; ξtSZ×CIB; c100; c217; β11Þ: ð15Þ

The cosmological parameters are the ones already consid-
ered in the previous section,Ωb,Ωc, h, τ, and θMC, and their
priors are the same. The remaining parameters are related to
astrophysics, foregrounds, and the instrumental systematics
associated with the Planck satellite. A complete description
of their meaning, and priors, can be found in Ref. [105].
In order to test the robustness against prior choices, we

have also performed the same slow-roll analysis but starting
from a flat prior on ϵ1 ∈ ½0.00001; 0.2�. Such a prior
implicitly favors models producing a larger tensor to scalar
ratio.
In Fig. 5, we have represented the marginalized poste-

riors for all the cosmological, astrophysics, and nuisance
parameters obtained from either the Planck likelihood
alone or the Planck and BICEP2 likelihoods combined.
This figure also shows these posteriors in the case of our

FIG. 3 (color online). One-dimensional marginalized posterior
probability distributions for the cosmological and primordial
slow-roll parameters obtained with BICEP2 data alone (solid
black lines) compared to the corresponding Planck’s posteriors
(dashed red lines).

FIG. 4 (color online). Two-dimensional marginalized posterior
probability distributions for the primordial slow-roll parameters
obtained from BICEP2 data alone (solid black lines) compared
to the corresponding Planck’s posteriors (dashed red lines). The
blue shading density traces the mean likelihood values for
BICEP2 (Jeffreys prior on ϵ1).
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FIG. 5 (color online). One-dimensional marginalized posterior probability distributions on cosmological and astrophysics parameters
associated with primordial power spectra having a second order slow-roll functional shape. These posteriors are robust against the four
cases represented: Planck data alone, Planck and BICEP2 data combined, Jeffreys prior on ϵ1, or flat prior on ϵ1.
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two prior choices on ϵ1. All of the θs posteriors are robust
with respect to the prior choices and the combination of
data used.
In Figs. 6 and 7, the one- and two-dimensional posteriors

in the slow-roll parameter space have been represented
for the same four combinations of prior choices and data
sets. The tension between Planck and BICEP2 is particu-
larly visible on the posterior for logðϵ1Þ (Jeffreys prior on
ϵ1). As visible on the lower panels of Fig. 6, choosing a flat
prior for ϵ1 slightly reduces the tension but, as explained
above, would implicitly favor models having a large tensor-
to-scalar ratio. As expected, Planck and BICEP2 data
together completely determine the first two Hubble flow
functions, and one obtains the two-sigma confidence
intervals

0.0054 < ϵ1 < 0.013; 0.00013 < ϵ2 < 0.041; ð16Þ

for a Jeffreys prior on ϵ1 and

0.0056 < ϵ1 < 0.014; −0.0011 < ϵ2 < 0.039; ð17Þ

for a flat prior on ϵ1. Because the spectral index is well
constrained by Planck alone (see the discussion in
Sec. III E), Figs. 6 and 7 show that combining Planck
and BICEP2 also induces a one-sigma shift of the posterior
for the second Hubble flow function toward vanishing

values. On the contrary, the third Hubble flow function ϵ3
remains unconstrained and unaffected by the inclusion of
BICEP2.
In order to assess how much of these results come from

the tension between the Planck and BICEP2 data sets, we
now estimate the Bayes factor RSR defined as the ratio

FIG. 6 (color online). One-dimensional marginalized posterior
probability distributions for the primordial slow-roll parameters
obtained with Planck and Planck plus BICEP2 data; with a
Jeffreys prior on ϵ1 or a flat prior on ϵ1. Notice the one-sigma shift
of the ϵ2 posterior toward smaller values when the BICEP2 data
are included.

FIG. 7 (color online). One- and two-sigma contours of the
marginalized posterior probability distributions for the primordial
slow-roll parameters obtained with Planck and Planck+BICEP2
data. The blue shading density traces the mean likelihood values
for Planck+BICEP2 (Jeffreys prior on ϵ1). The tension between
Planck and Planckþ BICEP2 data induces a 1.5-sigma shift of
the logðϵ1Þ posterior toward higher values while shifting by one
sigma the posterior of ϵ2 toward zero.
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between the probability of compatibility and the probability
of incompatibility.

C. Compatibility for the slow-roll model

As discussed in Sec. II B, the compatibility between
BICEP2 and Planck can be evaluated from the Bayesian
measure

RSR ¼ EðDp; DbjSRÞ
EðDpjSRÞEðDbjSRÞ

; ð18Þ

where SR refers to the model under scrutiny, namely
slow-roll. Here, we have not focused yet on a particular
inflationary potential as we have sampled the whole slow-
roll parameter space (in addition to the cosmological
parameters). Nonetheless, this can still be interpreted as
having chosen phenomenological inflationary priors that
we refer to as the slow-roll model, SR. These priors
have been mentioned earlier and are lnð1010P�Þ ∈
½2.4; 4.0�, logðϵ1Þ ∈ ½−5;−0.7�, ϵ2 ∈ ½−0.2; 0.2�, and
ϵ3 ∈ ½−0.2; 0.2�, plus the standard priors for the cosmo-
logical and astrophysical parameters (see Sec. III A).
Evaluating Eq. (18) requires the computation of the three
integrals given by Eq. (2) for Dp (Planck), Db (BICEP2),
and fDp; Dbg (combined) which are eight-dimensional for
BICEP2 and 22-dimensional for the others. This is tech-
nically nontrivial as evaluating the likelihood at each point
of the parameter space requires a complete integration of
the cosmological perturbations with CAMB. In order to
minimize the number of likelihood evaluations and maxi-
mize convergence speed, we have used the nested sampling
algorithm as implemented in MULTINEST to estimate each
evidence [100,134,135]. A target accuracy of 1% has been
used together with a number of live points ranging from
1000 to 20000, depending on the dimensionality of space.
Moreover, for each evidence, we have performed a few runs
having half the number of live points in order to estimate
any systematic uncertainties. The resulting numerical
estimate is

lnðRSRÞ ¼ −0.01� 0.4; ð19Þ

where the quoted error is a systematic evaluated over the
various runs. In Appendix A 2, we discuss a semianalytic
method to calculate RSR that requires only one integration
over the BICEP2 likelihood. The result quoted in Eq. (A11)
matches the above numerical value.
Such a value for RSR is very close to unity and

signals equal probability of Planck and BICEP2 data to
be compatible or incompatible. Let us emphasize that, on
the Jeffreys’ scale, strong compatibility would have
required lnðRSRÞ > 5 while strong incompatibility would
have been lnðRSRÞ < −5. With values of j lnðRSRÞj < 1,
we are in the inconclusive region; namely no conclusion
can be drawn on the compatibility of the two data sets. As

we illustrate in Appendix A 1, the fact that we find
j lnðRSRÞj < 1 is a nontrivial result. The tension between
the Planck and BICEP2 posteriors on ϵ1 (or r) visible in
Fig. 3 ends up being compensated by the agreement
between the informative posteriors for P� and θMC (see
Fig. 3). Let us stress that discussing the compatibility of
two data sets by estimating how much the likelihoods
overlap in one direction only, without specifying any prior
and without marginalizing over the other parameters, is
misleading [136]. As can be seen in Fig. 9, even after
marginalization, the amount of overlapping between the r
posteriors is by nature prior dependent. For this reason, in
the following, we will discuss the compatibility between
Planck and BICEP2 by using the well defined Bayesian
measureR. In particular, even though all the Encyclopædia
Inflationaris models belong to the slow-roll class, their
prior spaces are completely different and their respectiveR
values will accordingly be modified (see Fig. 15).
Since there is no evidence for incompatibility for the

slow-roll model, we now derive various results applicable
to the slow-roll class in general and obtained by combining
Planck and BICEP2.

D. Energy scale of inflation

The correct Bayesian way to determine the energy scale
of inflation is to compute the posterior distribution of the
Hubble scale at the pivot crossing time, namely for the
quantity H appearing in Eqs. (10) and (11). This can be
done by importance sampling from the posteriors already
obtained on P�, ϵ1, ϵ2, and ϵ3 [113]. From Eq. (10), one has
at second order in slow roll

H2

M2
Pl

¼ 8π2ϵ1P�½1þ 2ð1þ CÞϵ1 þ Cϵ2�; ð20Þ

and we have plotted its posterior in Fig. 8. Assuming a
Jeffreys prior on ϵ1, Planck and BICEP2 data combined
give the two-sigma confidence interval

FIG. 8 (color online). Marginalized posterior distribution for
the inflationary Hubble parameter at the time of pivot crossing.
BICEP2 measures the energy scale of inflation.
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1.1 < ln

�
105

H
MPl

�
< 1.6; ð21Þ

with a mean value at lnð105H=MPlÞ ¼ 1.36, namely
H ≃ 9.5 × 1013 GeV. Starting from a flat prior on ϵ1,
one obtains instead

3.1 < 105
H
MPl

< 4.9; ð22Þ

and a mean value at 105H=MPl ¼ 4.02, giving H≃
9.8 × 1013 GeV. Those values can be converted into
gravitating energy scales through the Friedmann-
Lemaître equation, i.e.

ρ1=4� ¼ 31=4
ffiffiffiffiffiffiffiffiffiffiffiffi
HMPl

p
: ð23Þ

One finds the correspondingvaluesρ1=4� ≃ 2.00 × 1016 GeV
(Jeffreys prior on ϵ1) and ρ1=4� ≃ 2.03 × 1016 GeV (flat
prior on ϵ1).

E. Power law derived parameters

Similarly, as it is explicit from Eqs. (10) and (11), the
spectral indices nS and nT, the tensor-to-scalar ratio r and
the runnings αS and αT are completely given in terms of
the Hubble flow functions. At second order in slow roll, the
spectral indices read [132,133]

nS ¼ 1 − ð2ϵ1 þ ϵ2Þ − 2ϵ21 − ð3þ 2CÞϵ1ϵ2 − Cϵ2ϵ3;

nT ¼ −2ϵ1 − 2ϵ21 − 2ð1þ CÞϵ1ϵ2; ð24Þ

while the tensor-to-scalar ratio can be expressed as

r ¼ 16ϵ1ð1þ Cϵ2Þ: ð25Þ

The scalar and tensor running are given by

αS ¼ −2ϵ1ϵ2 − ϵ2ϵ3; αT ¼ −2ϵ1ϵ2; ð26Þ

respectively. Finally, let us mention that the running of the
running for the tensor mode is also completely specified by
the first three Hubble flow functions and reads

βT ¼ −2ϵ1ϵ2ðϵ2 þ ϵ3Þ: ð27Þ

At leading order in slow roll, those equations can be recast
into the so-called consistency relations

r≃ −8nT;

αT ≃ r
8

�
r
8
þ ðnS − 1Þ

�
;

βT ≃ αTð1 − nSÞ þ
r
8
ðαS − 2αTÞ: ð28Þ

Using again importance sampling, the posterior distribu-
tions for nS, nT, r, αS, αT, and βT have been represented in
Figs. 9 and 10. In particular, let us stress that, within slow-
roll inflation, a running spectral index for the scalar modes
cannot help to alleviate the tension between Planck and
BICEP2 data. On the contrary, we see that the posterior of
αS is more restricted around vanishing values by adding
the BICEP2 data. As it is explicit in Eq. (26), αS is a small
quantity which is proportional to ϵ2, the posterior of which
is being shifted toward 0 when the BICEP2 data are
considered (see Sec. III B). From this equation one has

jαSjmax ≃ jϵ2jmaxð2jϵ1jmax þ jϵ3jmaxÞ≃ jϵ2jmaxjϵ3jmax;

ð29Þ

the third Hubble flow function ϵ3 being the largest term
since it is unconstrained [max ðjϵ3jÞ ¼ 0.2]. Therefore,

FIG. 9 (color online). Marginalized posterior distribution for
the derived power law parameters nS, r, nT, αS, αT, and βT
obtained by importance sampling from the second order slow-roll
parameters. Within slow-roll inflation, the running αS is more
tightly constrained when the BICEP2 data are included.
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shifting ϵ2 toward small values implies the same for αS.
This effect could have been expected as Planck alone
strongly constrains the spectral index, which is given by
Eq. (24). Increasing ϵ1 at fixed nS imposes to decrease ϵ2
by twice the amount. Therefore, Eq. (29) implies that the
maximal values of jαSj will be accordingly reduced.
From the posteriors represented in Fig. 9, Planck and

BICEP2 data combined yield the following 95% confi-
dence intervals

0.947 < nS < 0.978; − 0.0074 < αS < 0.0025;

−1.07 < logðrÞ < −0.67; −0.027 < nT < −0.011;

ð30Þ

and

−7.1 × 10−4 < αT < −3.1 × 10−6;

−1.3 × 10−4 < βT < 5.0 × 10−5; ð31Þ

when a Jeffreys prior is assumed on ϵ1. These bounds are
relatively robust against the prior choices. Indeed, assum-
ing instead a flat prior on ϵ1 gives

0.947 < nS < 0.978; −0.0071 < αS < 0.0027;

0.088 < r < 0.22; − 0.028 < nT < −0.011; ð32Þ

and

−7.1 × 10−4 < αT < 2.7 × 10−5;

−1.3 × 10−4 < βT < 5.0 × 10−5: ð33Þ

To conclude this section, let us stress that although
there is a tension between the Planck and BICEP2 data on
the tensor-to-scalar ratio, it does not affect the posterior
values of the cosmological and astrophysics parameters,
those being already strongly constrained by the Planck data
alone. Concerning the shape of the primordial power
spectra, nS remains also unaffected while the tensor-to-
scalar ratio tension induces a drastic modification of the ϵ1
posterior distribution and a one- to two-sigma shift of the ϵ2
distribution compared to the Planck data alone. Moreover,
as we have just discussed, the running of the scalar power
spectrum cannot be used within slow-roll inflation to
alleviate the above-mentioned tension, precisely because
it cannot take large enough values. Solely in slow-roll
violating models of inflation, such an explanation may be
relevant [137–141].
Concerning the implications for inflation, BICEP2

results provide, for the first time, a measure of the energy
scale of inflation which ends up being at GUT scale [see
Eqs. (22) and (23)], a major result indeed if confirmed. The
mean value of r ¼ 0.15 is slightly lower than what was
inferred by the BICEP2 team, but this is expected as we
are here considering slow-roll inflation and have added the
Planck data which disfavor larger tensor-to-scalar ratio
values. As for the evidences, one should therefore expect all
models predicting a very small tensor-to-scalar ratio to be
now strongly penalized evidence-wise. That is why, if the
BICEP2 measurements stand the test of time, this situation
would be a pivotal moment for cosmic inflation models.
In the following, we use the multidimensional posterior

on P� and ϵi, derived under the Jeffreys prior on ϵ1, coming
from the BICEP2 data as our effective likelihood Leff .

IV. RESULTS AND DISCUSSION

In this section, we apply the method described previ-
ously in order to derive the Bayesian evidences and
complexities for the Nmod ¼ 193 models of the
Encyclopædia Inflationaris. The complete list of models
as well as a careful discussion and justification of the priors
on the free parameters θinf can be found in Ref. [25]. In the
present article, we use the same terminology and the same
choices for the priors.

A. BICEP2 evidences

In Fig. 11, we show the (logarithm) of the Bayes factors,
Bi
SR, normalized to the slow-roll model, and computed with

the BICEP2 data only. The value of lnBi
SR is represented by

a horizontal bar on the left if lnBi
SR < 0 (the model Mi is

disfavored with respect to the slow-roll model) and by a
horizontal bar on the right if lnBi

SR > 0 (the model Mi is
favored with respect to the slow-roll model), the length of

FIG. 10 (color online). Two-dimensional posterior distribution
for some of the derived power law parameters. The blue shading
density traces the mean likelihood values for Planckþ BICEP2
(Jeffreys prior on ϵ1).
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FIG. 11 (color online). Bayes factors and absolute upper bounds to the Bayes factors obtained from the BICEP2 data alone. The
reference model is the slow-roll model (SR), here viewed as a scenario in itself having three parameters lnð1010P�Þ, logðϵ1Þ, and ϵ2 and
whose priors are reported in the text. The vertical dotted lines refer to the Jeffreys scale with respect to the best model, here LFI3.
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the bar being directly proportional to lnBi
SR. There is also a

color code which indicates the Schwarz Terrero–Escalante
classification [142]. Let us briefly recall that, according
to this classification, category one (“green” models) cor-
responds to models for which the kinetic energy and the
kinetic to total energy ratio increases during inflation.
Typically, this region contains models having a plateau
shape potential. As shown in Ref. [25], this class of models
is favored by the Planck data (see below). Category two
(“red” models) contains models for which the kinetic
energy decreases but the kinetic to total energy ratio
increases during inflation. Large field models belongs to
this region. Finally, category three (“purple” models) refers
to models having a decreasing kinetic and kinetic to total
energy ratio. Valley hybrid inflation is an example of a
model belonging to this category; for a more detailed
explanation of this classification and its meaning, see
Ref. [25]. We have also computed the maximum value
of the evidences obtained when all the parameters have a
Dirac function prior peaked at the best fit. This is indicated
by the small black arrows. They can be interpreted as upper
bounds on the evidences regardless of the priors. Finally the
vertical dotted black lines refer to the Jeffreys scale with
respect to the best model and represent the four different
categories, “inconclusive” (models between the first and
the second vertical lines, starting from the right), “weakly
disfavored” (between the second and the third vertical
lines), “moderately disfavored” (between the third and the
fourth vertical lines), and “strongly disfavored” (left to the
fourth vertical line); see Table 1 in Ref. [25].
As can be seen in Fig. 11, the best model according

to BICEP2 is LFI3, for which VðϕÞ ∝ ϕ3. We see that there
are in fact 52 models in the inconclusive zone (this
one being defined with respect to the best model), namely
LFI3, GLMFI2;1, HF1I, GMLFI3;1, LFI2, LPI22, MLFI,
GMSSMIp, SSBI1, LPI24, SSBI6f , DWI, LFI4, SSBI6,
LPI14;2, SSBI1f , GMLFI1;2, RCMI, LPI14;1, SSBI3, OI,
NCKIβ>0, LPI14;3, LPI32, GMLFI1;3, LPI1, GMLFI3;2,
LFI, LPI34, OSTI, RCQI, GMLFI2;3, GMLFI1;1, LPI36,
NI, LIα<0, CNAI, CNBI, GMLFI2=3;4=3, GRIPIsugra,
RIPIsugra, GMLFI3;3, LMI1p, LFI1, SFI1, LPI26, MHI1,
GMLFI, WRIg, RGI1, SSBI3f and LMI1o, where we have
ordered the list in decreasing values of the evidences.
Let us now discuss these potentials and the physical

context in which they arise. CNAI, CNBI, HF1I, LMI1o,
and MHI1 are phenomenological and, therefore, difficult to
embed in high energy physics. LFI is just the general family
of monomial potentials VðϕÞ ∝ ϕp, and, in the inconclu-
sive zone, one finds LFI3, LFI2, LFI4, and LFI1. The
GMLFIp;q potentials (this includes MLFI for which
p ¼ q ¼ 2) are of the form VðϕÞ ∝ ðϕ=MPlÞp
½1þ αðϕ=MPlÞq�, where α is a parameter controlling the
amplitude of the second term. Physically, they could
represent LFI modified by some quantum corrections
[143–145]. The following potentials can also be viewed

as large field corrected models: RCMI, VðϕÞ ∝ ðϕ=MPlÞ2
½1 − 2αðϕ=MPlÞ2 lnðϕ=MPlÞ� and RCQI, VðϕÞ ∝ ðϕ=MPlÞ4
½1 − α lnðϕ=MPlÞ�. DWI has a VðϕÞ ∝ ½ðϕ=ϕ0Þ − 1�2 which
is the sum of three monomials but was mainly used in the
context of topological inflation. In the inconclusive zone,
one also finds the SSBI potentials which are given by
VðϕÞ ∝ 1þ αðϕ=MPlÞ2 þ βðϕ=MPlÞ4 and can be viewed as
models where the vacuum energy part of the potential is
corrected by higher order monomial terms. This is also the
case for NCKIβ>0, VðϕÞ ∝ 1þ α lnðϕ=MPlÞ þ βðϕ=MPlÞ2
where the corrections are also of radiative origin and loop
inflation LIα<0, VðϕÞ ¼∝ ½1þ α lnðϕ=MPlÞ� with α < 0.
Another class of models that are among the BICEP2
winners is LPI’s, VðϕÞ ∝ ðϕ=ϕ0Þp½lnðϕ=ϕ0Þ�q. These
scenarios are based on super Yang-Mills theories and are
also known as glueball inflation. Notice, however, that
the value of ϕ0 must be super-Planckian. The model OI,
VðϕÞ ∝ ðϕ=ϕ0Þ4½ln2ðϕ=ϕ0Þ − α�, possesses a similar
potential as well as OSTI, VðϕÞ ∝ ðϕ=ϕ0Þ2 ln ½ðϕ=ϕ0Þ2�.
This last scenario is physically well motivated in the
context of string theory. Unfortunately, it is used outside
its natural domain of validity since Ref. [146] showed that
it has severe problems in matching the amplitude of the
CMB anisotropies. In the inconclusive zone, one also finds
inflection point models such as GMSSMIp, RIPIsugra, and
GRIPIsugra. Some of them are also used in a nonphysical
region. For instance, this is the case for GMSSMIp,
VðϕÞ∝ ðϕ=ϕ0Þ2−2α=3ðϕ=ϕ0Þ6þα=5ðϕ=ϕ0Þ5. The model
is based on the minimal supersymmetric standard model
(MSSM) where the inflaton field evolves along a flat
direction and is, therefore, well justified from a high energy
point of view. However, in order to be a satisfactory
inflationary model, ϕ0 must have a vacuum expectation
value that is outside the natural MSSM values. RGI1 refers
to radion gauge inflation and has a potential given by
VðϕÞ ∝ ðϕ=MPlÞ2=½αþ ðϕ=MPlÞ2�. SFI1 is nothing but
small field inflation, VðϕÞ ∝ 1 − ðϕ=μÞp, with p ¼ 1.
Finally, natural inflation (NI), for which VðϕÞ ∝
1þ cosðϕ=fÞ is also a good model but must be used in
a domain where the scale f is super-Planckian.
We have also computed the Bayesian complexities [see

Eq. (3)] for all the Encyclopædia Inflationaris models, so
that the performance of a model can be described by two
numbers, its evidence and its complexity or equivalently
see Eq. (5), its evidence and its number of unconstrained
parameters. We have represented the corresponding result
in the space ½Nuc; ln ðE=EbestÞ� in Fig. 12. If one restricts
oneself to models in the “inconclusive zone” with a
minimal number of unconstrained parameters, i.e.
0 < Nuc

i < 1, then one finds only 17 models, namely
LFI3, LFI2, DWI, LFI4, RCMI, OSTI, RCQI, GMLFI1;1,
NI, LIα<0, CNBI, GMLFI2=3;4=3, RIPIsugra, SFI1, MHI1,
WRIg, and RGI1. It is interesting to notice that the VðϕÞ ¼
m2ϕ2=2 model (i.e. LFI2) is among the models favored by
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BICEP2 but is not the only one. At this stage, it would
therefore be unjustified to focus model building efforts on
this scenario only.
In order to compare the above results with what has been

obtained by Planck, we have reproduced in Fig. 13 the
values of the evidences, normalized to the slow-roll model,
obtained with the Planck data in Ref. [25]. This figure is
identical to Fig. 2 of Ref. [25] except that the reference
model is now different (being HI in [25]). The best Planck
model is KMIII and the 52 models that end up being in the

inconclusive zone (with respect to the best) are KMIII,
ESI ffiffi

2
p , BI6s, MHIs, BIs, ESI, BI5s, KKLTIs, KMIIV>0, BI4s,

ESIo, ESI ffiffiffiffiffiffi
2=3

p , KMII, HI, BI3s, BI2s, RGIs, RGI1=16, BIph,
AI, BI1s, MHI, SFI1, SFI, KKLTIstg, BIstg, KKLTI, SBI,
RGI, SFIs, PSNIoA, SFI4l, PSNIft2, PSNIoB, PSNIft1,
PSNIoC, LIα>0, SFI4, ESI1, SSBI2, PSNIft3, PSNIepA,
SSBI4, TWIϕ0, RGI1, SFI4s, MHI1, PSNIepB, TWIrϕ0,
SBIαmin

, LI, SFI3l.
Two remarks are in order here. First, the number of

models favored is exactly the same for BICEP2 and Planck,

FIG. 12 (color online). Model performance assessed with both Bayesian evidence and number of unconstrained parameters for the
BICEP2 data. The four panels represent different zooms in the models’ space. They are to be read from the left to the right and from the
top to the bottom—in this order, the black dashed rectangles frame the region comprised in the next panel.
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FIG. 13 (color online). Bayes factors and absolute upper bounds to the Bayes factors obtained from the Planck data as in Ref. [25]. The
reference model is the same slow-roll model as in Fig. 11, and the vertical dotted lines refer to the Jeffreys scale with respect to the best
model, here KMIII.
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namely 52. This probably illustrates the fact that r is an
observable which is able to discriminate among the infla-
tionary models much more efficiently that nS. Indeed, as
mentioned above, we have used only four band powers for
the BICEP2 data, and this already singles out the same
number of scenarios in the inconclusive zone. Second, there
are only two models belonging to the two lists: MHI1 and
RGI1. In particular, the fact that the Starobinsky (or Higgs)
inflationary model was among the winners according to
Planck is not recovered by BICEP2. On the contrary, this
one becomes (almost) strongly disfavored compared
to LFI3.
In Ref. [25], the complexity was also calculated; see

Fig. 3 of that article. We found that, among the models in
the Planck inconclusive zone, those with a minimal number
of unconstrained parameters, i.e. 0 < Nuc

i < 1, are ESI ffiffi
2

p ,
ESI ffiffiffiffiffiffi

2=3
p , HI, BI2s, RGIs, AI, BI1s, MHI, RGI, SFI4l, LIα>0,

SFI4, ESI1, RGI1, MHI1, SBIαmin
, and SFI3l. Again, two

models remain in the two lists, the same as above, namely
MHI1 and RGI1.
Finally, we can summarize the data constraining power

in a histogram for the four Jeffreys categories as repre-
sented in Fig. 14. We have also represented the same
histogram obtained from the Planck data. Noticing again
that the BICEP2 data used here consist only of four band
powers for E and Bmodes, this plot illustrates the power of
measuring r for inflationary physics. However, as discussed
earlier, the models lying in these four categories weakly
overlap between Planck and BICEP2 thereby showing
some tension between the data sets. Since compatibility
between data sets is a model dependent statement, we now
move on to the determination of the R factors for all the
Encyclopædia Inflationaris models.

B. Compatibility of Planck and BICEP2

In Fig. 15 we have represented the values of lnðRÞ for all
the Encyclopædia Inflationaris models. These have been
obtained using the fast likelihood method described in
Sec. II. In this plot, one notices that the data sets are
compatible with certainty [i.e. at the “strong” level,
lnðRÞ > 5] for 36 models only. They are GMSSMIopA,
GMSSMIopB, GMSSMIep, TIe, TIeα>1=2, TI

e
α<1=2, IIβ, IIf,

IIλ, PLI, PLIp, BSUSYBIf, BSUSYBIl, CSI, DSI, DSI2,
DSI2, DSIo, IMI, IMI1, IMI2, IMI3, IMI4, IMI5, IMI6,
RMI4, RMI4l, VHI, VHI1, VHI1=2, VHI2, VHI3, VHI4,
VHIp<1, GMSSMIem, GMSSMIomA, and GMSSMIomB. As
one can check in Figs. 11 and 13, these models are
disfavored by both Planck and BICEP2 separately; the
ones exhibiting maximum compatibility are even ruled out.
This is not surprising as R is a combined measure of both
the reduction of prior volume brought about by the like-
lihood as well as their overlap (see Appendix A 1). The
statistical interpretation of these results is that both data sets
agree in disfavoring those models.
On the other hand, one may be more interested in

answering the question whether the data sets are compatible
assuming the best Planck’s scenarios. In Fig. 16, we have
represented the same R factors of Fig. 15 plotted against
the Bayes factor derived from the Planck data alone (the
ones of Fig. 13). The shaded rectangles (yellow) trace the
overlapping regions of maximal evidence and maximal
compatibility over two units in the Jeffreys scale: incon-
clusive plus weak zones along the evidence direction and
strong plus moderate zones along the compatibility direc-
tion. There is no model in these regions showing that,
insofar the best inflationary models from Planck data
alone are concerned, the two data sets are in tension. In
fact, only a weak compatibility is reached for models which
are already weakly disfavored by the Planck data alone.
Many of these models belong to the ones listed earlier that
were favored by BICEP2 alone (as NI; SSBI3;RIPIp;…).
For the Planck best models, the BICEP2 data cannot be

brought into compatibility with Planck, and hence the two
data sets cannot be combined to obtain meaningful updated
inferences on these scenarios. In particular, this is the
conclusion for Starobinsky inflation (HI), and, therefore, it
is premature to conclude about its viability before compat-
ibility is addressed. As we have just showed, both data
sets can be meaningfully combined only if one focuses on
scenarios which are, at least, weakly disfavored by Planck.
It is also informative to assess the compatibility of the

two data sets from the perspective of the BICEP2 best
models. In Fig. 17 we have plotted the analog of
Fig. 16 for BICEP2, namely the R factors against the
Bayes factors obtained from BICEP2 data alone (see
Fig. 11). The BICEP2 best scenarios now spread into
the region of moderate compatibility although there is again
no model in the strong compatibility region. Nonetheless,

FIG. 14 (color online). Number of models within each Jeffreys
category (with respect to the best model) for Planck data alone
and BICEP2 data alone.
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for the BICEP2 best scenarios, Planck and BICEP2 data
can be combined to get more information for these
scenarios.
In the light of the above considerations, in Fig. 18 we

have represented the Bayes factors obtained by combining

Planck and BICEP2 together, but only for models having
R > 1 since combining models with R < 1 is meaning-
less. Our chosen threshold of R is conservative (i.e. we are
not requiring R ≫ 1), and it includes scenarios under
which, in the present situation, one cannot conclude about

FIG. 15 (color online). Compatibility between the Planck and BICEP2 data for each model as measured by the R factors. Positive
values correspond to compatibility, negative values to incompatibility.
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compatibility according to the Jeffreys scale (i.e. models
having 0 < lnR ≪ 5). The two best models are now HF1I
and LFI2. Then, in the inconclusive zone (with respect
to the new best model) one has LPI22, GMSSMIp,
DWI, GLMFI2;1, RCMI, SSBI3, OSTI, GMLFI1;1, NI,

GMLFI2=3;4=3, LIα<0, NCKIβ>0, GMLFI1;2, LFI3, CNBI,
LPI34, MLFI, CNAI, LFI, MHI, LPI32, LPI36, LMI1p,
LFI1, and SFI1. It is interesting to notice that, among the
previous models, none of them is in the strongly compatible

FIG. 16 (color online). Planckþ BICEP2 compatibility mea-
sure, R, versus Planck’s evidences normalized to slow roll. The
yellow rectangle in the top right encompasses the “strongly com-
patible” models that lie in the Planck-alone “inconclusive” zone
(with respect to Planck’s best model); the light yellow rectangles
encompass the “strongly compatible”models that lie in the “weakly
disfavored” zone (top left) and the “moderately compatible”models
that lie in the “inconclusive” zone (bottom right). One can see that
these rectangles are empty. The bottom panel is a zoom into the
neighborhoodoftheseregions.AmongthemodelsfavoredbyPlanck
data alone, there are only a few for which Planck and BICEP2 data
are, at most, weakly compatible [1 < lnðRÞ < 2.5].

FIG. 17 (color online). Planckþ BICEP2 compatibility mea-
sure, R, versus BICEP2 evidences normalized to slow roll. The
yellow rectangle in the top right encompasses the “strongly
compatible” models that lie in the BICEP2-alone “inconclusive”
zone (with respect to BICEP2’s best model); the light yellow
rectangles encompass the “strongly compatible” models that lie
in the “weakly disfavored” zone (top left) and the “moderately
compatible” models that lie in the “inconclusive” zone (bottom
right). The bottom panel is a zoom into the neighborhood of these
regions. The models favored by BICEP2 data alone are found in
the region where Planck and BICEP2 are moderately compatible.
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zone. This is yet another consequence of the tension between
Planck and BICEP2 under an inflationary prior assumption.
We also notice that all the models in the Planckþ BICEP2
inconclusive zone are in the BICEP2 inconclusive zonewhile
only one (i.e. MHI1) is in the Planck inconclusive zone. On
the other hand, the LFI4 scenario which was in the list of

inconclusive models for BICEP2 becomes moderately dis-
favored when adding Planck.

V. CONCLUSIONS

Let us now summarize our main conclusions. If the
BICEP2 data stand the test of time and are confirmed as a

FIG. 18 (color online). Evidences (Bayes factor) and absolute upper bounds to the Bayes factors, from Planck and BICEP2 data
combined, for the models such thatR > 1 only. The reference model is the same slow-roll model as in Figs. 11 and 13, and the vertical
dotted lines refer to the Jeffreys scale with respect to the best model, here HF1I.
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signature of tensor modes of inflationary origin, they do
represent a major advance in our understanding of inflation
and primordial cosmology. Indeed, for the first time,
we would now have a measurement of the energy scale
of inflation: the GUT scale. Other important consequences
were also discussed in the Introduction.
The main issue addressed in the present article was the

compatibility of the Planck data with the BICEP2 data
assuming an inflationary prior. Several indicators have been
used to quantify the tension between these two measure-
ments. First, assuming slow roll, we have shown that our
posterior odds measure of compatibility gives RSR ≃ 1.
This means that we are not in a position to establish that
Planck and BICEP2 are compatible at a statistically
significant level assuming a slow-roll model. But, clearly,
we cannot either prove that the two data sets are incom-
patible (again, assuming slow roll): we are precisely in a
regime where one cannot conclude. Second, we have
also computed the R factor for all the Encyclopædia
Inflationaris scenarios and shown that the undecided
situation just described is changed. We have found that
the zone of strongly compatible models contain no “good”
Planck or BICEP2 models (i.e. “good” models are defined
to be models in the inconclusive zone with respect to the
best models of each data set alone). Moreover, all the
models for which we can be sure that Planck and BICEP2
are compatible (lnR > 5) are either strongly or moderately
disfavored by Planck (except three models that are only
weakly disfavored, i.e. BSUSYBI1, GMSSMIomB, and
GMSSMIem). Third, for models such that R > 1, we have
derived the updated value of the Bayesian evidence.
We have found that, for all the best Planckþ BICEP2
models (those which are in the inconclusive zone with
respect to the best Planckþ BICEP2 model LFI3), we have
1 < lnR < 5; i.e. for none of them Planck and BICEP2
appear compatible at a strong evidence level. Fourth, as was
established in Ref. [25], the Planck data favor category 1
models, namely models with a potential having a plateau
shape (the best model was KMIII but the inconclusive zone
contained other scenarios, for instance the Starobinsky
model). However, these models are disfavored by the
BICEP2 data for which the best model is LFI3 (a category
2 model) and haveR factors less than unity. Therefore, we
face a situation where Planck and BICEP2 are not strongly
compatible. Moreover, as discussed above, several hints
all indicate that the two measurements could in fact be
incompatible although, in the present situation, it is too
early to make a final judgment.
Another important message of this work is that, assum-

ing BICEP2 alone or Planckþ BICEP2 when possible (i.e.
for lnR > 1) does not single out a particular model, for
instance m2ϕ2. From a theoretical point of view, m2ϕ2

may seem a priori quite attractive. However, given either
BICEP2 or Planckþ BICEP2, it is not the only winner, and
other types of models are still performing as well as this

simple potential. As a consequence, in the present situation,
it seems meaningless to focus the model building efforts
only on large field models.
In view of our result, the most important next step is to

confirm that the B-mode polarization detection by BICEP2
is truly of primordial origin. Hopefully, this will help to
resolve the tension between the two data sets and thus their
incompatibility for the Planck best scenarios.
Once done, if the detection of a nonvanishing r is

confirmed, one will have to measure the tensor spectral
index nT. The sign of nT already carries very important
information and has the potential to confirm or exclude
different challengers to inflation. Indeed, inflation generi-
cally predicts a red spectrum, namely nT < 0; see Eq. (24).
If one finds a blue spectrum nT > 0, this would certainly
be difficult (and/or contrived) to explain in this framework
and alternatives such as, for instance, string gas cosmology
[147], which predicts a blue spectrum, would be a natural
solution.
For a red spectrum, the next-to-next pressing question

will be to verify the simplest consistency relation of
Eq. (28), namely [148,149]

r
nT

≃ −8; ð34Þ

which is independent of the shape of the potential (but not
of the inflationary classes of models).
Only after these three steps have been completed, would

one be in a position to claim that inflation has been
really seen in the sky. It should be clear from the above
considerations that this is not yet the case.
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Note added.—On the same day this paper was made public,
Ref. [150] appeared and suggested that B modes emission
by polarized dust foregrounds could have been under-
estimated in the BICEP2 measurements. If confirmed,
such a contribution from foregrounds could indeed help
to alleviate the tension reported here between Planck and
BICEP2 for various inflationary models.

APPENDIX: BAYESIAN COMPATIBILITY
BETWEEN DATA SETS

In this section we illustrate how the R factor measures
the degree of compatibility/incompatibility between two
data sets given a model M.
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1. Toy example

We consider a toy model M described by a single
parameter θ, the prior of which is uniform in the interval
½α; β� and has a density V−1

π ≡ ðβ − αÞ−1. Let us evaluateR
associated with two data sets DA and DB in various
idealized cases as sketched in Fig. 19. Their respective
likelihoods are assumed to be Heaviside functions having a
maximum value Lmax

i over a support δθi (i being A or B).
For “case 1” represented in Fig. 19, one gets

R ¼
R
LAðθÞLBðθÞπðθÞdθR

LAðθÞπðθÞdθ
R
LBðθÞπðθÞdθ

¼ VπδθAB
δθAδθB

¼ δθAB
minðδθA; δθBÞ

×
1

maxðδθA; δθBÞ=Vπ
: ðA1Þ

The quantity δθAB stands for the overlapping range of θ
values between the two likelihoods. We point out that
the maximum likelihood values cancel out and have no
influence on R. In the second line of Eq. (A1), we have
highlighted a first factor which is always less than unity
since δθAB ≤ minðδθA; δθBÞ. The second term is the
inverse of the factor by which the prior volume has been
reduced by the less constraining data set. Provided the less

constraining data set (i.e. the one with the largest support
of the likelihood) remains informative, namely
maxðδθA; δθBÞ < Vπ , this second term in Eq. (A1) is
always greater than unity. As expected for a Bayesian
quantity, R measures how much the likelihoods of the
two data sets overlap balanced by how much information
has been gained with respect to the initial prior volume.
For instance, “case 2” in Fig. 19 yields δθAB ¼
minðδθA; δθBÞ ¼ δθB and R ¼ Vπ=δθA > 1, so long as
DA is informative (δθA < Vπ). Notice that one would get
exactly the same result for δθAB ¼ δθA ¼ δθB. “Case 4”
represents a situation in which the worse data set, here DA,
becomes uninformative as the likelihood support encom-
passes the whole prior volume (δθA ¼ Vπ) and R ¼ 1. In
other words, even though the likelihoods perfectly overlap,
R ¼ 1 indicates that one cannot conclude on the compat-
ibility of the two data sets precisely because one of them is
uninformative. Finally, “case 3” is the worse case scenario
δθAB ¼ 0 and R ¼ 0 signaling a complete incompatibility
between DA and DB under the model M.
In view of the marginalized distributions represented

in Fig. 3, the posterior of ϵ1 exhibits a situation typical of
case 1. For all the other parameters, the BICEP2 posteriors
are always encompassing those associated with Planck,

FIG. 19 (color online). Four prototypical situations when combining two data sets DA and DB. Their respective likelihoods may
overlap, or not, within the prior volume, or not. As seen in Fig. 3, Planck and BICEP2 under the slow-roll model prior (SR) could be
idealized as “case 2” for the cosmological parameters which ends up being constrained by BICEP2 alone (R > 1), as “case 4” for those
not constrained at all (R ¼ 1) and as “case 1” over the ϵ1 direction (R < 1).
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some being informative and others uninformative.
Therefore, some directions in the parameter space are
typical of case 4 (as for instance ϵ2 and ϵ3) while others
are typical of case 2 (as for instance θMC and P�). As a
result, one may expect the RSR factor between Planck and
BICEP2 for the model M ¼ SR to be pushed toward
unity by all the uninformative posteriors from BICEP2, less
than unity by the ϵ1 posterior and more than unity by the
compatible posteriors, a situation more complex than what
is advocated in Ref. [136]. In the following, we provide a
semianalytic calculation confirming the numerical calcu-
lation of Sec. III C and showing that those effects roughly
compensate to give RSR close to unity.

2. Semianalytic approach

In the following, we split the cosmological, astrophysi-
cal, and instrumental parameters associated with the Planck
likelihood into two sets θs ¼ ðθlcdm; θnÞ with

θlcdm ≡ ðΩbh2;Ωch2; τ; 100θMCÞ;
θn ≡ ðAPS

100; A
PS
143; A

PS
217; r

PS
143×217; A

CIB
143 ; A

CIB
217 ; r

CIB
143×217;

× γCIB; AtSZ; AkSZ; ξtSZ×CIB; c100; c217; β11Þ; ðA2Þ

noticing that the BICEP2 likelihood only involves the θlcdm
set. In order to simplify notation we denote by ε the set of
primordial parameters lnð1010P�Þ, logðϵ1Þ, ϵ2, and ϵ3 and
by Dp and Db the Planck and BICEP2 data sets. From the
definition of RSR one has

RSR ¼ EðDp; DbjSRÞ
EðDpjSRÞEðDbjSRÞ

¼ RREF

EðDp;DbjSRÞ
EðDp;DbjMREFÞ

EðDpjSRÞ
EðDpjMREFÞ

EðDbjSRÞ
EðDbjMREFÞ

: ðA3Þ

Here we have introduced a reference model MREF such
that the last term in the above equation is a ratio of Bayes
factors that can be computed quickly from the effective
likelihood method discussed in Sec. II. The difficulty has
been moved into estimating RREF, i.e. the compatibility
factor between Planck and BICEP2 under some reference
model. However, the arbitrariness in choosing MREF
allows us to define it with a very convenient prior, namely

πðεÞ ¼ δðε − εfÞ; ðA4Þ
where εf are some fixed values of the primordial param-
eters. The evidence of MREF using Planck data alone is
given by

EðDpjMREFÞ ¼
Z

L̄pðεf ; θlcdmÞπðθlcdmÞdθlcdm; ðA5Þ

where we have defined

L̄pðεf ; θlcdmÞ≡
Z

Lpðεf ; θlcdm; θnÞπðθnÞdθn: ðA6Þ

Similarly, for Planck and BICEP2 data combined, one has

EðDp; DbjMREFÞ ¼
Z

L̄pðεf ; θlcdmÞLbðεf ; θlcdmÞ

× πðθlcdmÞdθlcdm; ðA7Þ

and for the BICEP2 data alone the evidence reads

EðDbjMREFÞ ¼
Z

Lbðεf ; θlcdmÞπðθlcdmÞdθlcdm: ðA8Þ

These expressions are exact, and we now make some
approximations. From the posteriors of Fig. 3, one sees
that, over all the cosmological parameters θlcdm, the
marginalized Planck likelihood L̄pðεf ; θlcdmÞ is strongly
peaked inside the support of Lbðεf ; θlcdmÞ. Therefore,
Eq. (A7) can be approximated by

EðDp; DbjMREFÞ≃ Lbðεf ; θmax
lcdmÞ

×
Z

L̄pðεf ; θlcdmÞπðθlcdmÞdθlcdm;
ðA9Þ

where θmax
lcdm are the cosmological parameters at which L̄p

is maximal given εf . From this expression, together with
Eqs. (A5) and (A8), one gets

RREF ≃ Lbðεf ; θmax
lcdmÞR

Lbðεf ; θlcdmÞπðθlcdmÞdθlcdm
; ðA10Þ

which, apart from the location θmax
lcdm, depends on the

BICEP2 likelihood only. The evidence appearing in the
denominator is a four-dimensional integral over θlcdm (or
five-dimensional if one marginalizes over ϵ3), as opposed
to a 19-dimensional integral for the bare Planck likelihood.
In practice, we have chosen εf as the primordial parameters
associated with the best fit model of Planck and BICEP2
combined and have evaluated Eq. (A10) using the
MULTINEST algorithm [134,135]. This method yields

lnðRSRÞ≃ −0.01� 0.3; ðA11Þ

where the quoted interval is a systematic error estimated
by performing various nested integrations having a number
of live points between 500 and 1000. This value is
compatible with the full numerical integration presented
in Sec. III C.
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