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Black holes are said to have no hair because all of their multipole moments can be expressed in terms of
just their mass, charge and spin angular momentum. The recent discovery of approximately equation-
of-state-independent relations among certain multipole moments in neutron stars suggests that they are also
approximately bald. We here explore the yet unknown origin for this universality. First, we investigate
which region of the neutron star’s interior and of the equation of state is most responsible for the
universality. We find that the universal relation between the moment of inertia and the quadrupole moment
is dominated by the star’s outer core, a shell of width 50%–95% of the total radius, which corresponds to
the density range 1014–1015 g=cm3. In this range, realistic neutron star equations of state are not
sufficiently similar to each other to explain the universality observed. Second, we study the impact on the
universality of approximating stellar isodensity contours as self-similar ellipsoids. An analytical calculation
in the nonrelativistic limit reveals that the shape of the ellipsoids per se does not affect the universal
relations much, but relaxing the self-similarity assumption can completely destroy it. Third, we investigate
the eccentricity profiles of rotating relativistic stars and find that the stellar eccentricity is roughly constant,
with variations of roughly 20%–30% in the region that matters to the universal relations. Fourth, we repeat
the above analysis for differentially rotating, noncompact, regular stars and find that this time the
eccentricity is not constant, with variations that easily exceed 100%, and moreover universality is lost.
These findings suggest that universality arises as an emergent approximate symmetry: as one flows in the
stellar-structure phase space from noncompact star region to the relativistic star region, the eccentricity
variation inside stars decreases, leading to approximate self-similarity in their isodensity contours, which
then leads to the universal behavior observed in their exterior multipole moments.
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I. INTRODUCTION

Astrophysical observations of neutron stars (NSs) may
reveal one of the most important “known unknowns”
of nuclear physics: the relation between density and
pressure, the so-called equation of state (EOS), of supra-
nuclear matter [1–3]. One can constrain the EOS by
measuring at least two NS observables that depend strongly
on the star’s internal structure. The most well-studied
observables are the NS mass and radius (see e.g. [4] and
references therein). Although the latter has not been
measured to better than 20% accuracy, a Bayesian analysis
has allowed some constraints on the EOS [5,6] and on
certain quantities in nuclear physics, such as the nuclear
symmetry energy [7,8].
Some relations among certain NS observables depend

very weakly on the EOS. Such approximate universality has
been found, for example, between the NS binding energy
and compactness [1,9,10], between the mass-shedding
(Keplerian) frequency for rotating configurations and com-
pactness for nonrotating configurations [11,12], among NS
oscillation modes [13–16], among certain tidal parameters

[17], among gravitational-wave (GW) observables from
NS binaries [18–23] and among the compactness, a dimen-
sionless spin parameter and the effective gravitational
acceleration on the surface of a rapidly rotating NSs [24].
A stronger, yet still approximate universality has been

recently found among the moment of inertia (I), the tidal
and rotational Love numbers (or tidal deformability for
the former) and the quadrupole moment (Q) of NSs
and quark stars (QSs) [25,26] (see also [1,27–30] for
universal relations among I, Q and the NS compactness).
The relations were confirmed by [7] through a detailed
study of different EOSs, by [31] for NS binary system that
are strongly and dynamically tidally deformed, and by
[32] for magnetized NSs, provided they are not slowly
spinning magnetars. These relations also hold for rapidly
rotating stars, as demonstrated numerically by [33–35]
and analytically in [36,37], with the latter in the
Newtonian limit.
The I-Love-Q relations have several important applica-

tions. First, a measurement of any one of these quantities
automatically allows for the determination of the other two,
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without having to know the EOS. Second, these relations
allow for model-independent and EOS-independent
strong-field test of General Relativity (GR). For example,
Refs. [25,26] showed that measuring the NS Love number
with GW observations and the moment of inertia from
binary pulsars can place very stringent constraints on parity
violations in gravity [38,39]. The relations were recently
studied in [40,41] for other classes of modified theories of
gravity. Third, the I-Love-Q relations break degeneracies
between certain parameters in astrophysical and GW
observations. For example, the Love-Q relation can be
used to break the degeneracy between Q and spins in GW
observations of spin-aligned binary NSs [25,26]. Moreover,
the I-Q relation can be used to break degeneracies in x-ray
pulse profile observations with NICER [42] and LOFT
[43,44], as shown in [45,46].
The approximately universal I-Love-Q relations resem-

ble the celebrated no-hair relations for black holes (BHs)
[47–53]. Astrophysical (uncharged) BHs are said to have
no hair because all of their multipole moments, i.e. the
coefficients in a multipolar expansion of the gravitational
field far from the source, can be written completely in terms
of just their mass and spin angular momentum [47–53].
Ordinary stars or compact stars need not be bald, and thus,
their multipole moments could depend strongly on the
star’s EOS.
Nonetheless, the approximate universal relations

between I and Q and a new relation between Q and the
current octupole [33] for compact stars suggest the exist-
ence of an approximate no-hair relation. Recently, in fact,
approximately universal no-hair relations were found for
lower multipole moments ðl ≤ 10Þ in terms of the first
three (the mass monopole, the current dipole and the mass
quadrupole), albeit in the nonrelativistic, Newtonian limit
[36] and with a certain elliptical isodensity approximation
[54] that models stellar isodensity contours as self-similar
ellipsoids. Some of these results have been recently
confirmed numerically and in full GR for the mass
hexadecapole and the mass quadrupole moments [35] of
compact stars.
But why does such approximate universality hold in the

first place? When discovering the I-Love-Q relations,
Refs. [25,26] suggested two nonexcluding hypothesis.
One of them was that universality holds because all EOSs
are somewhat similar in the NS region that dominates the
I-Love-Q calculation, i.e. in the outer core. Indeed, our
ignorance of the EOS is smaller toward the crust than toward
the inner core of NSs. The other hypothesis was that
universality holds because the I-Love-Q relations must
approach the BH limit as the stellar compactness increases,
and of course, for BHs these relations must be universal.
These explanations are not quite satisfactory, however,
because the EOS does vary in the outer core and NSs are
not nearly as compact as BHs; in fact, there is no continuous
limit from a NS sequence to a BH.

A. Methodology and executive summary

The purpose of this paper is to gain a better under-
standing of why approximate universal relations among
multipole moments, in particular between I andQ, hold for
NSs. Since rotational Love numbers are directly related to I
and Q [26], such reasoning will also explain the origin of
the universal relation between the rotational Love number
and I or Q. We achieve this goal by investigating the
universal relations in detail and addressing the following
questions:

(i) Which part of the EOS and NS interior region is
most responsible for the universality? Are the
realistic EOSs similar to each other in this region?

(ii) Which assumption in the elliptical isodensity
approximation is most important in the universality?

(iii) Does the elliptical isodensity approximation hold for
realistic relativistic stars? What do the eccentricity
radial profiles of such stars look like?

(iv) Does the elliptical isodensity approximation hold for
realistic noncompact stars? Are there universal
relations for such stars?

The first question is tackled as follows. We consider
slowly rotating NSs and QSs in the Hartle-Thorne approxi-
mation [55,56] with an extended piecewise polytropic EOS
[57], characterized by five free parameters: ðp1;Γ1;Γ2;
Γ3; ρ1Þ: p1 changes the overall normalization of the EOS,
Γ1 affects both the inner and outer core regions, Γ2 and Γ3

only modify the inner core region, and ρ1 determines the
transition density between the Γ1 and Γ2 regions. A version
of such a piecewise polytropic EOS has been shown to
recover realistic EOSs for suitable choices of the free
parameters [57]. We vary ðp1;Γ1;Γ2;Γ3; ρ1Þ from a fiducial
set that recovers the realistic SLy EOS [58] to study how
each parameter affects the universal I-Q relation, the radial
profiles of the energy density and (the integrand of) the
moment of inertia and quadrupole moment.
We find that, although all parameters have a large effect

on the mass-radius relation, p1, Γ3 and ρ1 hardly affect the
relation at all, while Γ1 and Γ2 affect the I-Q relation the
most for low- and high-compactness stars, respectively, and
in a linear fashion. These results are confirmed by comput-
ing the radial profile of the integrand of the moment of
inertia and quadrupole moment, which are most affected
when we vary Γ1 and Γ2. We find that the moment of inertia
and quadrupole moment are dominated by contributions
within a shell inside the star of size 50%–95% of the total
radius.
Figure 1 presents the radial profile of the energy density

for nonrotating NS configurations with two different
choices of dimensionless moment of inertia Ī ¼ I=M3,
where M is the stellar mass. We vary each piecewise
polytrope parameter by 30% from the corresponding value
of the fiducial SLy EOS. The 90% contribution to the
moment of inertia and the quadrupole moment comes from
the radial region in vertical dashed lines. One sees that the
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I-Q universality is mostly affected by the energy densities
in the range 1014–1015 g=cm3. Although the NS EOSs all
have a similar slope within such a region, they can differ by
as much as ∼17%, and hence this fact alone cannot explain
the Oð1Þ% universality in the I-Q relation.
Since the region that matters the most for the universal

relations is quite far from the NS inner core, we suspect that
a Newtonian analysis might suffice to understand the
reasons behind the universality. To determine if this is
the case, we construct rapidly rotating NS solutions using
the RNS code [59]. These solutions confirm that although
relativistic and rotational effects make stars more centrally-
condensed, the energy density profiles are not modified
much in the region that matters. Thus, an analysis carried
out in the nonrelativistic limit should be sufficient to
understand why universality holds, which then brings us
to the second question.
This question is tackled by studying the universal

relations in the nonrelativistic, Newtonian limit, extending
the work in [36] by relaxing the elliptical isodensity
approximation. This approximation consists of three main
conditions [54]: (i) that constant density contours are self-
similar surfaces; (ii) that such surfaces are ellipsoids; and
(iii) that the isodensity profile in terms of the isodensity
radius is identical to that of a nonrotating star of the same
volume. We relax each of these, one by one, and find that
condition (ii) does not affect the universal relations at all,
but conditions (i) and (iii) can destroy them. In particular, if
one allows the stellar eccentricity to depend on the radial

coordinate rather than being a constant, the EOS univer-
sality can be lost. This suggests that the self-similarity of
the elliptical isodensity approximation plays an important
role in the universality.
But are the isodensity contours of realistic NSs approx-

imately self-similar? This is the focus of the third question
we tackle, which we answer by constructing both slowly
rotating and rapidly rotating NS solutions and extracting
the stellar eccentricity in terms of the radial coordinate.
Figure 2 shows the eccentricity profile for slowly rotating
NSs with various EOSs. One sees that in the region that
matters [i.e. r ∈ ð50%; 95%ÞR, with R the stellar radius],
the eccentricity only changes by ∼10% for slowly rotating
stars. For rapidly rotating NSs, we find that the eccentricity
variation inside the star is always below 20%–30%. We
extend the Newtonian analysis described in the previous
paragraph by using such realistic eccentricity profiles to
correct the elliptical isodensity approximation. We find that
this leads to changes of ∼10% at most relative to the
universal relations obtained with constant eccentricity, e.g.
if the Ī–Q̄ relations are universal to roughly 1%, the
variations in the eccentricity correct these relations to
0.1%. This supports the validity of the approximation for
realistic NSs.
Finally, we study whether noncompact stars are also

approximately elliptically self-similar and whether the
universal relations hold in this case. This is the basis of
the fourth question described earlier, which we tackle by
constructing realistic, differentially-rotating, noncompact
stellar solutions with the publicly-available ESTER code
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FIG. 1 (color online). Energy-density profile ϵ of nonrotating
NSs with the dimensionless moment of inertia of Ī ¼ 7
(M ≈ 1.8M⊙) (top) and Ī ¼ 17 (M ≈ 1.1M⊙) (bottom) for the
fiducial SLy EOS, and with 30% variations of piecewise polytrope
parameters p1, Γ1, Γ2, Γ3 and ρ1. R in the horizontal axis refers to
the NS radius for nonrotating configurations. The region in
between the vertical dashed lines corresponds to the one that
contributes the most to the calculation of I andQ. Observe that Ī is
mostly affected by the EOS in the range ϵ ¼ ð1014–1015Þ g=cm3.

1.1

1.2

1.3

e/
χ

fiducial
p

1
Γ

1
Γ

2
Γ

3
ρ

1

0 0.2 0.4 0.6 0.8 1
r/R

1

1.1

1.2

1.3

e/
χ

I=7

I=17

FIG. 2 (color online). Radial profile of the stellar eccentricity
(normalized by the dimensionless spin parameter χ) for slowly
rotating NSs with Ī ¼ 7 (top) and Ī ¼ 17 (bottom) for the SLy
EOS, and with 30% variations of p1, Γ1, Γ2, Γ3 and ρ1. The
meaning of vertical lines are the same as in Fig. 1. Notice that
since we are working within the slow-rotation approximation,
e=χ does not depend on the NS spin. Observe that the eccentricity
varies by ∼10% within the region that matters to the universality.
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[60,61] and extracting the eccentricity profile. We find that
the eccentricity variation easily exceeds 100% inside the
star, varying much more than in the relativistic, compact-
star case. If the elliptical isodensity approximation is (at
least in part) responsible for the universality, then we would
expect universality to be lost in such stars. We find that this
is indeed the case: the I-Q relation is highly sensitive to
variations in the opacity law, which we use as a proxy for
EOS variation.

B. A phenomenological picture for universality

These findings suggest that the EOS universality in NSs
and QSs arises due to an (approximate) emergent symmetry.
Emergent symmetries are common in quantum field theory
and condensed matter physics, for example in the study of
chiral spin liquids [62]. The main idea here is that as some
set of parameters (usually the energy or temperature of the
system) are tuned beyond a given threshold, the description
of the system acquires an approximate symmetry that is not
present in general.
Consider a phase space with coordinates that represent a

quantity that characterizes a star, such as its compactness,
temperature, magnetic field strength, etc. Consider now a
two-dimensional subspace, with one coordinate being the
stellar compactness and the other the EOS polytropic index
n. NSs live in the large compactness and small n region,
while regular, noncompact stars live in the smaller compact-
ness and larger n region, as depicted in Fig. 3. As one flows
from the noncompact to the relativistic, compact star region

in this projected two-dimensional subspace, eccentricity
radial profiles become less variable and nearly constant
throughout the star, i.e. a radial remapping leaves the
eccentricity profile approximately invariant. This suggests
the emergence of an approximate symmetry associated with
this isodensity self-similar invariance, which in turn, leads to
the universality in the multipole relations for relativistic stars.
As one further increases the compactness, one approaches
the BH region in phase space, where the universality
becomes exact, as expressed by the no-hair theorems.

C. Organizations and conventions

The remainder of this paper describes the main results
presented above in much more detail. Section II answers
the first question. Focusing mainly on slowly rotating NSs
and QSs, we investigate how each piecewise EOS param-
eter affects the universal I-Q relation. We determine which
radial region contributes to I and Q the most and compare
the result to the radial profile of the energy density to
determine which part of the EOS matters the most. We then
compare how similar NS EOSs are within this region. We
also construct rapidly rotating NS solutions and see how the
rotational and relativistic effects affect the density profile.
Section III answers the second question. We relax each of
the conditions in the elliptical isodensity approximation
and see how they affect the universality for uniformly
rotating Newtonian polytropes. Section IV answers the
third question. We extract the eccentricity profile of both
slowly and rapidly rotating NSs and study the validity of
the elliptical isodensity approximation. Section V answers
the fourth question. We construct a realistic, differentially-
rotating, noncompact star and investigate the universality
on the multipole relations. We also look at the eccentricity
profile and compare it with that of realistic relativistic stars.
We conclude in Sec. VI by combining these findings into
one picture that proposes an emergent approximate sym-
metry as a possible explanation for the universality.
Section VII suggests a few possible directions for future
work. All throughout, we use geometric units: c ¼ 1 ¼ G.

II. THE REGION THAT MATTERS

What part of the NS interior and what part of the NS
EOS contributes the most to the multipole moments of the
star, and thus, affects the three-hair relations the most
[25,26,33,36]? In this section, we address this question by
studying the multipole moments of NSs characterized be a
piecewise EOS. We vary each piece of the EOS and find
that the multipole moments are most affected by what is
going on in the so-called outer core, i.e. in a shell with
inner radius of roughly 0.5R and outer radius 0.95R, with
R the stellar radius for nonrotating configurations. This
region corresponds to densities in roughly the interval
ð1014–1015Þ g=cm3. In this section, we will provide
evidence for these results, mainly focusing on slowly

FIG. 3 (color online). Schematic diagram of the stellar phase
space. Compact stars live in one corner of this space, while
noncompact stars live in another corner. As one flows from the
latter to the former along a particular two-dimensional subspace,
spanned by compactness C and polytropic index n, an approxi-
mate symmetry arises: isodensity contours become approxi-
mately self-similar. This approximate symmetry is then
responsible for the universality in the exterior multipole moments
of compact stars.
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rotating NSs and QSs. In the last subsection, we construct
rapidly rotating NS solutions and see how the rotational and
relativistic effects change the stellar energy density profile.

A. Piecewise polytropic EOSs

Let us divide the pressure (p)–rest mass density (ρ)
phase space into three regions: the crust, the outer core and
the inner core. Figure 4 shows a schematic diagram of this
classification. The lowest density region corresponds to the
crust, which transitions into the outer core at a density of
roughly 1014 g=cm3. The inner and outer cores have higher
densities and pressures than the crust, where the transition
point is roughly at 1014.7 g=cm3.
Although there is no precise definition of these regions,

the choices made above make physical sense. The crust-
outer core transition is where roughly the lattice of neutron-
rich nuclei become superfluid neutrons that coexist with
type II superconducting protons [2,63,64]. The outer and
inner core transition, which may or may not exist in some
stars depending on their mass, is where the superfluid
neutrons condense into pions or transition to a neutron solid
or quark matter, or some other phase distinct from a neutron
superfluid [2,63,64]. The inner core is the region least well-
understood from nuclear physics experiments, since it is so
far-removed from the scales we can probe in the laboratory.
In each of these regions, we model the EOS through

polytropic equations. In the crust we will use four poly-
tropes, in the outer and inner core three polytropes. The full
EOS is then a piecewise function with 7 polytropes of the
form

pðρÞ ¼

8>>>>><
>>>>>:

pcrustðρÞ; ðρ < ρ0Þ;
ðp1=ρ

Γ1

1 ÞρΓ1 ; ðρ0 < ρ < ρ1Þ;
ðp1=ρ

Γ2

1 ÞρΓ2 ; ðρ1 < ρ < ρ2Þ;
ðρ2=ρ1ÞΓ2ðp1=ρ

Γ3

2 ÞρΓ3 ; ðρ2 < ρÞ;

ð1Þ

where ðΓi; p1; ρ1Þ are free constants, ρ2 ¼ 1015 g=cm3, ρ0
is the solution to pcrustðρ0Þ ¼ p1ðρ0=ρ1ÞΓ1 , with pcrustðρÞ
given in [57]. Such a piecewise EOS depends on 5 free
constants ðp1;Γ1;Γ2;Γ3; ρ1Þ, where Γ1 mainly affects the
EOS slope in the outer core, Γ2 and Γ3 mainly affect the
EOS slope in the inner core, p1 is an overall scaling factor
that corresponds to the pressure at ρ ¼ ρ1 and ρ1 changes
the transition density of the first two regions. Equation (1)
with a fixed log10ρ1 ¼ 14.7 has been shown to reproduce a
great number of realistic EOSs [57], e.g. the SLy EOS [58]
is reproduced with ðlog10p1;Γ1;Γ2;Γ3Þ ¼ ð34.384; 3.005;
2.988; 2.851Þ to 1% accuracy.1 The range of values of ðp1;
Γ1;Γ2;Γ3Þ that reproduce all known realistic EOSs is, in
fact, within approximately 30% from those of the SLy EOS
[57], which is why we choose the latter as our fiducial EOS.
We here enlarged the model of [57] by introducing an
additional parameter (ρ1) to increase the degrees of freedom
in the variability of the EOS.
For future convenience, let us relate the rest-mass density

ρ to the energy density ϵ. From the first law of thermo-
dynamics, the latter is given by [57]

ϵiðρÞ ¼ ð1þ aiÞρþ
Ki

Γi − 1
ρΓi ð2Þ

in the ith region, where the coefficients ai are given below
Eq. (4) of [57]. Notice that it is ϵ that sources the Einstein
equations, while it is ρ that enters the nonrelativistic,
Newtonian definition of the multipole moments.

B. Mass-radius and Ī−Q̄ relations

We will study the universal relations between the NS
moment of inertia and quadrupole moment in slowly and
uniformly rotating, nonmagnetized NSs. We construct
these stars by solving the Einstein equations perturbatively
in a slow-rotation expansion to quadratic order in spin,
following Hartle and Thorne [55,56]. At zeroth order in
spin, we calculate the stellar mass M and radius R of the
nonrotating configuration. At first order in spin, we extract
the moment of inertia

I ¼ S1
Ω

; ð3Þ

where S1 and Ω are the spin angular momentum and the
angular velocity, respectively. At second order in spin, we
calculate the quadrupole moment Q [55,56].
Before looking at I and Q, let us investigate how the

nonrotating configurations are affected by modifying the
piecewise EOS coefficients. Let us then vary these coef-
ficients individually by 30% from the fiducial SLy values,
i.e. we separately set log10p1 ¼ 34.2291, or Γ1 ¼ 2.1035,
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or Γ2 ¼ 3.8844, or Γ3 ¼ 3.7063, or log10ρ1 ¼ 14.8139,
while keeping the other parameters equal to their SLy
values. These variations are consistent with the range of
variability associated with the different EOSs [57]. Figure 5
shows the mass-radius relation for various modified SLy
EOSs, together with the mass-radius relation for the APR
[65], LS220 [66] and Shen [67,68] EOSs. We impose a
neutrino-less, beta-equilibrium condition for the latter two
EOSs. Observe that Γ3 and Γ2 only affect the relation for
M > 1.7M⊙ and M > 0.6M⊙, respectively, while Γ1 has a
larger effect on the lower mass region. Since p1 and ρ1

affect the overall magnitude of the EOS, they scale the
mass-radius relation rather than change its shape.
Let us now study how the Ī–Q̄ universal relations are

affected by changing the piecewise polytropic coefficients.
We work with the dimensionless quantities

Ī ≡ I
M3

; Q̄≡ −
Q

M3χ2
; ð4Þ

where the dimensionless spin parameter is defined to be

χ ≡ S1
M2

: ð5Þ

For reference, a value of Q̄ ¼ 1 and 10 roughly correspond
to a nonrotating star mass of 2M⊙ and 1M⊙, respectively,
using the SLy EOS.
The left panel of Fig. 6 shows the fractional difference on

the Ī–Q̄ relation relative to the fiducial EOS due to
changing the piecewise polytrope coefficients. For stars
with M > 1.8M⊙, Γ2 affects the Ī–Q̄ relation the most,
whereas when M < 1.8M⊙, Γ1 affects the relation the
most, in both cases to Oð1%Þ. Such a small fractional
difference is precisely why the universality is approximate
and it is consistent with that reported in [25,26].
Modifications to p1, Γ3 and ρ1 affect the Ī–Q̄ relations
the least, by only 0.1%. In particular, p1 and ρ1 essentially
scale the EOS, which does not affect Ī and Q̄ as a function
of C [26]; the Ī–Q̄ relation is insensitive to variations of
these parameters.
The right panel of Fig. 6 presents the fractional differ-

ence of the Ī–Q̄ relation at Q̄ ¼ 2.5 (top) and Q̄ ¼ 8
(bottom) from the fiducial SLy EOS against various
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p1, Γ1, Γ2, Γ3 and ρ1 by 30%. Right: (Top) Fractional difference of the Ī–Q̄ relation at Q̄ ¼ 2.5 with varied piecewise EOS parameters from
those of the fiducial SLy EOS. The horizontal axis represents the fractional deviation of Ai ¼ ðp1;Γ1;Γ2;Γ3; ρ1Þ. Observe that the fractional
difference scales almost linearly with the piecewise EOS parameters. (Bottom) Same as the top panel, but for Q̄ ¼ 8.
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piecewise EOS parameters, Ai ¼ ðp1;Γ1;Γ2;Γ3; ρ1Þ.
Observe that the fractional difference scales almost linearly
with the EOS parameters. This figure shows that changing
the EOS parameters by 10% only modifies the relation by
∼0.2% at most. We have checked that the fractional differ-
ence in the relation when varying Γ1 and Γ2 simultaneously
(the two most important parameters regarding universality)
is essentially the same as varying Γ1 and Γ2 separately and
then adding their fractional difference linearly.
The right panel of Fig. 6 also shows that decreasing the

EOS slopes Γi from the fiducial values affects the univer-
sality more than if we increase the slopes. Increasing Γi
corresponds to decreasing the polytropic index n, since
Γ ¼ 1þ 1=n. For example, the SLy values of ðΓ1;Γ2;
Γ3Þ ¼ ð3.005; 2.988; 2.851Þ correspond to ðn1; n2; n3Þ ¼
ð0.499; 0.503; 0.540Þ, and thus, decreasing Γi corresponds
to increasing n above 0.5, and vice-versa. Strange quark
stars are well-modeled by polytropes with index n ∼ 0,
while white dwarfs are well modeled with polytropes of
index n > 2. Thus, as we increase Γi we make the star look
more like a QS, while when we decrease Γi, it looks more
like a white dwarf. Notice, interestingly, that the univer-
sality is affected more as we approach the white-dwarf
branch than as we approach the QS branch. We think this is
because as we approach this branch, the elliptical isoden-
sity approximation becomes less valid, which significantly
affects the universality, as we will see later in this paper.

C. Radial integrand of the NS and QS moment of
inertia and quadrupole moment

In order to understand which part of the stellar interior
region affects the universal relations the most, let us look at
the radial profile of the integrand of the moment of inertia
for a fixed Ī. For slowly rotating stars in full GR, I is given
in integral form as [55]

I ¼
Z

R

0

ΔIðrÞdr; ΔIðrÞ≡ −
2

3
r3

dj
dr

ωðrÞ
Ω

; ð6Þ

where R is the stellar radius for a nonrotating configuration,

jðrÞ≡ e−½νðrÞþΛðrÞ�=2; ð7Þ

and ν, Λ and ω are metric functions related to the linear-
in-spin line element via

ds2 ¼ −eνðrÞdt2 þ eΛðrÞdr2

þ r2fdθ2 þ sin2θ½dϕ − ½Ω − ωðrÞ�dt�2g: ð8Þ

Equation (6) reduces to [55]

IN ¼ 8π

3

Z
R

0

r4ρðrÞdr ð9Þ

in the Newtonian limit.
Figure 7 shows ΔI as a function of fractional radius for

NSs (left) with the fiducial SLy EOS and EOS parameters
that deviate by 10% from the fiducial EOS, and for QSs
(right) with three different QS EOSs, with Ī ¼ 7 and Ī ¼ 17
held fixed. We normalized the integrands such that the area
in Fig. 7 is unity. Observe that the integrand is dominated
by the region within 50%–95% of the total radius. Observe
also that the integrands are almost unaffected by the
variation of the EOS parameters for a fixed Ī. These results
extend and confirm those found in [26], where a related
integrand was investigated in the Newtonian limit for a
fixed NS compactness.
In order to quantify which part of the stellar interior

contributes the most to the integrand, we identify the
region, delimited by rmin and rmax, inside which the
integrand integrates to 90% of the total I:
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FIG. 7 (color online). The radial profile of the normalized integrand of I at Ī ¼ 7 and Ī ¼ 17 for NSs with the fiducial SLy EOS and
QSs with three different QS EOSs [69] (right). The other curves in the left panel correspond to varying the EOS parameters by 10% from
the fiducial ones. Observe that the integrands are not very sensitive to the variation of the EOS.
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Z
rmax

rmin

ΔIðrÞdr ¼ 0.9
Z

R

0

ΔIðrÞdr; ð10Þ

with the symmetry constraint that ΔIðrminÞ ¼ ΔIðrmaxÞ. In
the NS case with the fiducial SLy EOS, we find
ðrmin; rmaxÞ ¼ ð0.54; 0.96ÞR and ð0.50; 0.91ÞR for Ī ¼ 7
and Ī ¼ 17, respectively. In the QS case, ðrmin; rmaxÞ ¼
ð0.58; 1ÞR and ðrmin; rmaxÞ ¼ ð0.62; 1ÞR for Ī ¼ 7 and
Ī ¼ 17, respectively. In the latter case, the integrand
increases monotonically as a function of r=R because
the density does not drop to zero at the stellar surface,
as shown in Fig. 8. QSs correspond to nearly constant
density stars, especially when Ī is large, where the stellar
compactness is relatively small. These results confirm that Ī
is mostly affected by the region in the approximate range
50%–95% and 60%–100% of the stellar radius in the NS
and QS cases, respectively.
One can also consider the radial profile of the integrand

of Q. When the stellar eccentricity is constant throughout
the star, Q is given by Q ∝ e2

R
ρr4dr (see Eqs. (5) and (7)

in [36]) for Newtonian, slowly rotating polytropes. In
reality, eccentricity is a function of radius and one has
to include eðrÞ2 in the radial integral. Therefore, the
integrand of Q is ΔQ ∼ ρðrÞr4eðrÞ2, modulo an overall
constant. We checked that the radial profile of such
integrand is almost identical to the one of ΔIðrÞ in
Fig. 7. This means that both Ī and Q̄ are mostly affected
by the region in the range 50%–95% of the radius.
That the Ī–Q̄ relations are dominated by the EOS in the

region roughly between 50% and 95% of the NS’s total
radius was first pointed out in [25,26]. Unfortunately, that
paper referred to this region as the “outer-layers” of the
NSs, which has recently been taken to mean the NS crust.

Clearly the region r=R ∈ ð0.50; 0.95Þ does not comprise
the NS crust, but rather the outer core and the very outer
part of the inner core.
With this at hand, we can now determine the ðp; ϵÞ

region of the EOS that dominates the universal relations.
Figures 1 and 8 show the energy density profile of NSs and
QSs, respectively, with Ī ¼ 7 (top) and Ī ¼ 17 (bottom) for
various modified EOSs, together with rmin=R and rmax=R
plotted as vertical dashed lines. Recall that larger values of
Ī correspond to smaller stellar compactnesses C ¼ M=R.
The figure shows that Ī and Q̄ are most affected by the
EOS in the range ϵ ¼ ð1014–1015Þ g=cm3 and ϵ ¼ ð4 ×
1014–1.5 × 1015Þ g=cm3 in the NS and QS cases,
respectively.
One possible explanation for the approximate EOS

universality is that all EOSs are approximately the same
in this density region. We found in Sec. II B that the EOS
slope is more important than the overall EOS magnitude.
Therefore, one needs to look at the variation in the EOS
slope in the density region that matters, as shown in Fig. 9. In
order to quantify this variation, we fitted a polytrope of the
form p ¼ K̄ϵΓ̄ to several tabulated NS EOSs in this region
(see Table I for the best-fit values of Γ̄ and the estimated
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FIG. 8 (color online). Energy density profile (same as Fig. 1)
but for QSs. Observe that the density is almost constant
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The region above the vertical dashed line gives a 90% contri-
bution to the QS moment of inertia and quadrupole
moment.
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FIG. 9 (color online). EOS in the ðp; ϵÞ region that dominates
the calculation of the moment of inertia.

TABLE I. Best-fit value of the EOS slope Γ̄ for various realistic
NS EOSs in the energy density range 1014–1015 g=cm3, where
the moment of inertia and quadrupole moment are affected the
most.

EOS hΓ̄i
APR [65] 2.79� 0.016
SLy [58] 2.70� 0.037
LS220 [66] 2.77� 0.0086
Shen [67,68] 2.62� 0.0064
PS [70] 2.35� 0.076
PCL2 [69] 2.57� 0.064
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errors). Observe that the variation in the slope can be as high
as ∼17%, but it would increase significantly if one included
QSs. Thus, the approximate similarity of the EOS (or its
slope) in the density region that matters cannot be the direct
explanation for the approximate EOS universality we
observe. As we will see in Sec. IV, such Oð10%Þ variation
in the EOS slope produces a very small variation in the
stellar eccentricity profile, which we propose as the main
origin of the approximate universality.

D. Relativistic and rotational effects
on the density profiles

Do the conclusions derived in the previous subsection
continue to hold for relativistic stars with a rapid rotation?
In this subsection, we tackle this question, but to keep it
simple, we parameterize the EOS through the following
polytrope:

p ¼ K̄ϵ1þ1=n̄; ð11Þ
where we recall that ϵ is the stellar energy density. K̄ and n̄
are the overall constant and polytropic index, respectively.
Notice that n̄ is different from n introduced at the end of
Sec. II B as the former is the power index for ϵ while the
latter is the one for ρ. With this EOS, we now calculate the
rotational corrections to the energy density radial profile to
see if such effects limit the validity of the arguments posed
in the previous subsection. We also study the relativistic
effects to see the validity of Newtonian calculations that we
will present in the next section.
Let us first concentrate on relativistic modifications to

nonrotating configurations. In GR, the equation of hydro-
static equilibrium in spherical symmetry is modified from
its Newtonian form to the Tolman-Oppenheimer-Volkov
(TOV) equation:

dp
dr

¼ −
mϵ

r2

�
1þ p

ϵ

��
1þ 4πr3p

m

��
1 −

2m
r

�
−1
: ð12Þ

Relativistic corrections arise because all energy densities
gravitate (the first two terms) and the geometry is modified
(the last term).mðrÞ in the above equation is related to ΛðrÞ
in Eq. (8) via

e−ΛðrÞ ¼ 1 −
2mðrÞ

r
; ð13Þ

where we use Schwarzschild-like coordinates.
The TOV equation can be written in a dimensionless

form if one makes the following substitutions: ϵ ¼ ϵcϑ̄
n̄,

r ¼ αξ, p ¼ K̄ϵ1þ1=n̄
c ϑ̄n̄þ1 and m ¼ ϵcα

3m̄, where pc and
ϵc are the pressure and energy density at the stellar center
and α2 ≡ ðn̄þ 1ÞK̄ϵ1=n̄−1c . The new dimensionless equation
has the form,2

dϑ̄
dξ

¼ −
m̄
ξ2

ð1þ λϑ̄Þ
�
1þ λ

4πϑ̄n̄þ1ξ3

m̄

�

×

�
1 − 2ðn̄þ 1Þλ m̄

ξ

�
−1
; ð14Þ

where λ≡ pc=ϵc is a measure of how relativistic a
particular configuration is, and thus, it parametrizes the
deviations from the Newtonian approximation. One recov-
ers the (Newtonian) Lane-Emden (LE) equation when
λ ¼ 0, with only a difference in scales by a factor offfiffiffiffiffiffi
4π

p
due to different definitions of α.

Figure 10 shows the energy density profiles for
Newtonian models (λ ¼ 0) and relativistic models with λ ¼
½0; 0.5� in increments of 0.1, for EOSs with polytropic
index n̄ ¼ 0.5, 1, and 1.5. The λ ¼ 0.5 case corresponds
approximately to the maximum mass model for these
polytropes. Observe that as relativistic effects become
stronger, the density profiles become more centrally con-
densed. This effect is more pronounced for higher n̄ values,
which is consistent with [71].
Let us now study rotational modifications to the energy

density profile. To do so, we construct sequences of
rotating models using the RNS code [59]. Calculations
are performed in quasi-isotropic coordinates, but we will
present the results in Schwarzschild-like coordinates so that
one can compare them to the slow-rotation results pre-
sented earlier. Specifically, for different central densities,
starting from values which correspond to Newtonian stars
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FIG. 10 (color online). Energy density profile for nonrotating
polytropes in the Newtonian limit (λ ¼ 0) and with relativistic
corrections using λ ¼ ½0; 0.5� in increments of 0.1 from top
to bottom and various polytropic indices n̄. Observe how
relativistic effects make the profiles more centrally-condensed.2An equivalent equation is found in [71].
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up to values that correspond to the relativistic models of
maximum mass, we construct sequences of rotating poly-
tropes with rotation rates up to the Kepler (mass-
shedding) limit.
Figure 11 shows the energy density profile for n̄ ¼ 0.5

(top panels) and 1 (bottom panels) with various rotation
rates. Rotation can change density profiles of nonrotating
configurations at most by ∼30%. Observe that rotation
creates more centrally-condensed configurations. This
effect is not very strong for Newtonian models but becomes
more prominent for relativistic ones. One might think that
the centrifugal force arising from rotation would make
objects less centrally condensed, rather than more centrally
condensed. However, the profiles we are studying here are
normalized density as a function of normalized equatorial
radius, rEq=REq. Along the equatorial plane, all points are
pushed outward by rotation. The amount by which they are
pushed out increases with radius, in agreement with the
eccentricity increasing with radius. Thus, the denominator
REq increases faster than the numerator rEq, so in terms of
the ratio rEq=REq, a value of given normalized density

moves inwards, i.e. the profile becomes more centrally
condensed.
We have then seen that relativistic corrections and

rotational corrections do modify the density profiles of
stellar configurations. These modifications, however, are of
Oð10%Þ relative to the results obtained in the Newtonian,
nonrelativistic limit. Thus, these corrections do not alter the
reasoning presented in the previous subsection. For exam-
ple, in Fig. 1 and 8 we presented the density profile of
slowly rotating NSs and QSs. For rapidly rotating models,
these profiles would change by a relative factor ofOð10%Þ,
but the boundaries of the radial and density regions that
matter the most for the existence of approximate univer-
sality would essentially not be modified.

III. RELAXING THE ELLIPTICAL
ISODENSITY APPROXIMATION

In the previous section, we established that the region
that matters the most regarding universality is the outer core
of the star. With this knowledge at hand, let us try to
understand what approximate symmetries are present that
could be responsible for the universality observed. To do
so, we will work in the nonrelativistic, Newtonian limit, as
then we can do all calculations analytically and understand
the symmetries more clearly. Relativistic corrections were
already studied in Sec. II D and in [35].
One of the key approximations used to derive the no-

hair-like relations for NSs and QSs in the nonrelativistic
limit [36] was the elliptical isodensity approximation [54].
This approximation has three main ingredients:
(1) Self-similar isodensity condition. That the density

profile is a sequence of self-similar surfaceswith the
same, constant stellar eccentricity

e ¼ e0 ¼ const: ð15Þ

This implies that the radius- and polar angle-
dependent density profile can be approximated as
a function of a single radial variable, ~r, i.e.
ρðr; θÞ ¼ ρð~rÞ. Although we have introduced an
eccentricity here, we have not yet restricted the
isodensity contours to ellipsoids.

(2) Elliptical condition. That the shape of the isodensity
surfaces is an ellipsoid. This implies that there exists
a change of coordinates, from spherical to elliptical,
such that the moment-integrals separate:

Rellip
� ðθÞ ¼

�
sin2θ
a21

þ cos2θ
a23

�−1=2
; ð16Þ

where Rellip
� denotes the elliptical stellar surface and

a1 and a3 are the semi-major and semi-minor axis of
the ellipsoid. This condition, in particular, excludes
triaxial surfaces.
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FIG. 11 (color online). The energy density profile for poly-
tropes with an index n̄ ¼ 0.5 (top panels) and 1 (bottom panels),
for two extreme values of λ and various rotation rates. The blue
and black curves are the Newtonian Lane-Emden and relativistic
TOV models of nonrotating configurations, respectively. Five red
curves present the relativistic rotating models with rotation of
χ ¼ 4.19, 7.52, 10.05, 12.25, 14.21 (Newtonian stars have large
radius, and hence have large (dimensionless) angular momentum
that can easily exceed unity.) for λ ¼ 0 (top, left), χ ¼ 0.25, 0.45,
0.58, 0.69, 0.76 for λ ¼ 0.473 (top, right), χ ¼ 0.49, 0.87, 1.15,
1.38, 1.56 for λ ¼ 0.009 (bottom, left) and χ ¼ 0.2, 0.35, 0.46,
0.54, 0.59 for λ ¼ 0.322 (bottom, right) from top to bottom.
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(3) Spherical Density Profile Condition. That once we
have transformed to the radial coordinate ~r, the
rescaled density ϑ ¼ ðρ=ρcÞ1=n, where ρc is the
central density, is a LE function, i.e. the rescaled
density for the nonrotating Newtonian polytropes:

ϑð~rÞ ¼ ϑLEð~rÞ: ð17Þ
In order to understand which condition is responsible for

the approximate EOS universality observed in [36], we
systematically relax each of them and assess their relative
importance. We find that the particular shape of the self-
similar surfaces [condition (2)] does not impact the
universality at all. On the other hand, the self-similar
assumption [condition (1)] and the spherical density
approximation [condition (3)] do affect the universality
dramatically. We will see below that breaking either of
these conditions can destroy the approximate EOS
universality.

A. Universal relations with the elliptical
isodensity approximation

Before we begin to break the conditions of the elliptical
isodensity approximation, let us review how the approxi-
mate EOS universal no-hair relations are derived in the
Newtonian limit. Consider a uniformly rotating, unmagne-
tized and cold Newtonian star with a polytropic EOS,
given by

p ¼ Kρ1þ1=n: ð18Þ

The mass and current multipole moments in the non-
relativistic, Newtonian limit are [72]:

Ml ¼ 2π

Z
1

−1
dμ

Z
R�ðμÞ

0

drρðr; μÞPlðμÞrlþ2; ð19Þ

Sl ¼ 4πΩ
lþ 1

Z
1

−1
dμ

Z
R�ðμÞ

0

drρðr; μÞ dPlðμÞ
dμ

ð1 − μ2Þrlþ3;

ð20Þ

where μ ¼ cos θ, R�ðμÞ is the stellar surface, PlðμÞ are
Legendre polynomials and Ω is the star’s angular fre-
quency. For future convenience, let us introduce here the
dimensionless multipole moments

M̄2lþ2 ¼ ð−1Þlþ1
M2lþ2

M2lþ3χ2lþ2
; ð21Þ

S̄2lþ1 ¼ ð−1Þl S2lþ1

M2lþ2χ2lþ1
; ð22Þ

where χ ≡ S1=M2. Notice that M2 ¼ Q is the (mass)
quadrupole moment, while S1 is the (current) dipole
moment and M0 ¼ M is the (mass) monopole.

Let us begin by re-deriving the first universal relation of
[36], using only the self-similar isodensity condition
[condition (1)]. This assumption allows us to separate
the moment integrals into radial and angular parts.
Introducing the coordinate system xi ¼ ~rΘðμÞni, with
ni ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, for some function Θ
of μ only (due to the self-similar isodensity condition), we
find

Ml ¼ 2πIl;3Rl; Sl ¼ 4πl
2lþ 1

ΩδIlRlþ1; ð23Þ

where the radial and angular integrals are given by

Rl ¼
Z

a1

0

ρð~rÞ~rlþ2d~r; Il;k ¼
Z

1

−1
ΘðμÞlþkPlðμÞdμ;

ð24Þ
and δIl ¼ Il−1;5 − Ilþ1;3, with a1 the stellar semi-major
axis, which satisfies a1ΘðμÞ ¼ R�ðμÞ. One can then
immediately derive the first universal relation by taking
the ratio of the moments:

M̄2lþ2

S̄2lþ1

¼
�
4lþ 3

6lþ 3

δI1
δI2lþ1

I2lþ2;3

I2;3

�
M̄2: ð25Þ

This relation does not depend on the polytropic index n
since it does not explicitly depend on Rl, but it does depend
on the spin (or equivalently on e) in general.
Let us now use the elliptical condition [condition (2)]

in Eq. (25). Doing so, the ΘðμÞ function is uniquely given
by [36]

ΘðμÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2

1 − e2ð1 − μ2Þ

s
; ð26Þ

where e is the eccentricity of the ellipsoids. Using this, the
first universal relation becomes

M̄2lþ2

S̄2lþ1

¼ M̄2: ð27Þ

This is the final form of the first universal relation, which
has now become not only EOS-independent but also spin-
independent. Notice that the third condition of the elliptical
isodensity approximation was never needed.
Let us now consider the second universal relation. To

derive this, let us first use the self-similar isodensity
condition [condition (1)] and define

Rl ¼ ρc

�
a1
ξ1

�
lþ3

Rn;l; ð28Þ

where ξ ¼ ðξ1=a1Þ~r is a dimensionless radius with ξ ¼ ξ1
the surface of the star and
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Rn;l ¼
Z

ξ1

0

½ϑðξÞ�nξlþ2dξ; ð29Þ

with ϑðξÞ ¼ ðρ=ρcÞ1=n. We can reexpress ρc in terms of the
mass monopole [Eq. (23)] to find

ρc ¼
M

2πI0;3

�
ξ1
a1

�
3 1

Rn;0
: ð30Þ

Similarly, we can reexpress a1=ξ1 in terms of S2lþ1=S1.
After doing so, we find the second universal relation,

M̄2lþ2 ¼ Ān;lðS̄2lþ1Þ1þ1=l; ð31Þ

where we have defined the coefficient

Ān;l ¼
�
4lþ 3

6lþ 3

�
1þ1=l I2lþ2;3

I0;3

�
δI1

δI2lþ1

�
1þ1=l

~Rn;l; ð32Þ

with

~Rn;l ≡ R1þ1=l
n;2

Rn;0R
1=l
n;2lþ2

: ð33Þ

Observe that Ān;l depends on the angular integral, and
hence it depends on the spin in general. Notice that we have
only applied the first condition of the elliptical isodensity
approximation to derive Eqs. (31)–(33).
Let us now use the second and third conditions. If one

uses the second one through Eq. (26), then Eq. (32)
reduces to

Ān;l ¼ ð2lþ 3Þ1=l
3ð1þ1=lÞ

~Rn;l: ð34Þ

On top of this, if one assumes the third condition through
Eq. (17), Eq. (33) reduces to

~RLE
n;l ≡ RLE

n;2
1þ1=l

jϑ0LEðξ1Þjξ21RLE
n;2lþ2

1=l ; ð35Þ

where we used the LE equation,

1

ξ2
d
dξ

ξ2
d
dξ

ϑ ¼ −ϑn; ð36Þ

and the index “LE” is to remind the reader that the
quantities are evaluated assuming that ϑðξÞ is the LE
function. RLE

n;l corresponds to Eq. (29) with ϑðξÞ replaced
by ϑLEðξÞ.
Reference [36] showed that when one applies all of the

three conditions, Ān;l depends on the EOS, here para-
metrized through n, by at most Oð10%Þ for l ≤ 4 with
n ¼ ½0.3; 1�. This implies that the universal relations among
lower l multipoles depend only weakly on the EOS.

Moreover, through this analysis one finds that Eq. (34)
is spin-independent.
The Ī–Q̄ relation discussed in the previous section can be

reproduced as follows. First, using the self-similar isoden-
sity condition [condition (1)] and Eq. (23), one finds

M̄2

Ī
¼ −

3I2;3
2δI1χ2

: ð37Þ

If one further imposes the elliptical condition [condition
(2)], one finds [36]

M̄2

Ī
¼ e2

2χ2
: ð38Þ

In order to see the EOS universality of the Ī–Q̄ relation for a
fixed χ, one needs to express e in terms of χ, n and Ī. Such
an expression is given in Ref. [36] in the elliptical
isodensity approximation, using the relation between Ω
and e found in Ref. [54].
In the remainder of this section, however, we will focus

on how the universal relation among multipole moments is
affected by relaxing the elliptical isodensity approximation.
Reference [36] showed that the Ī–Q̄ relation has a similar
(but slightly smaller) EOS variation to the S̄3–M̄4 relation,
with the EOS dependence of the latter encoded in Ān;1. We
thus expect that the Ī–Q̄ relations will be affected by the
relaxation of the elliptical isodensity approximation in
roughly the same way as the universal relation among
multipole moments is affected. We will study the latter in
detail in the next subsections, but we leave a detailed
analysis of how the Ī–Q̄ relations are affected by the
elliptical isodensity approximation to future work.

B. Relaxing the elliptical condition

Let us now relax each of the conditions made above in
turn to see how it affects the universality. We start off
by breaking the elliptical condition, since this is easiest. We
can achieve this by choosing the function ΘðμÞ to be
something other than Eq. (26). This function specifies the
shape of the self-similar, isodensity contours. One could,
for example, choose

ΘðμÞ ¼
�

1 − e2

1 − e2ð1 − μ2Þ
�
p=2

; ð39Þ

for p an odd, positive integer, i.e. p ∈ Nodd. When p ¼ 1,
one recovers an elliptical coordinate system, while for p >
1 the star becomes more peanut-shaped (in the ~z-~x plane),
and for p < 1 it becomes more spherical, as shown in
Fig. 12. Notice that when e ¼ 0, the star is spherical
irrespective of the choice of p, since then Θ ¼ 1.
Interestingly, as p increases, the peanut-shape becomes
more and more pronounced. Clearly then, the cases when
p > 1 should be taken as toy problems only. In order to
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keep the analysis generic, we do not specify the form of
Θ in this subsection.
Modifying the functional form of Θ only changes the

angular integral Il;k in the multipole moment expression
in Eq. (23). Thus, the relations among multipoles are still
valid if they are expressed in terms of Il;k, without
explicitly solving Il;k. It follows that the universal relations
in Eqs. (25) and (31) with Eq. (32) still hold even if one
relaxes the elliptical condition.
The first universal relation is automatically EOS inde-

pendent, so let us focus on the EOS dependence of the
second one. Let us consider the fractional difference of
the barred coefficients from some mean hĀn;li on n. Since
the EOS dependence is encoded in ~Rn;l of Eq. (32), one
easily finds

Ān;l − hĀn;li
hĀn;li

¼
~Rn;l − h ~Rn;li

h ~Rn;li
: ð40Þ

Since h ~Rn;li does not depend on Θ, the fractional differ-
ence of Ān;l is the same even if one relaxes the elliptical
condition. This shows that the shape of the self-similar
surfaces does not affect the universality at all.

C. Relaxing the spherical density profile condition

Let us now consider the relaxation of the spherical
density profile condition, namely the assumption that ϑðξÞ
is a LE function. One could, for example, let

ϑðξÞ ¼ ϑLEðξÞ½1þ ϵ1ϑ1ðξÞ�; ð41Þ

where ϵ1 ≪ 1 is some small number and ϵ1ϑ1ðξÞ is a small
deformation. Such a modification to the isodensity con-
dition can be easily propagated throughout the calculation
of [36] described in Sec. III A, since effectively it reduces to

the same integrals but with different harmonic number. The
angular integrals, of course, are completely unmodified.
The radial integrals can still be rescaled as in Eq. (28),
except with the replacement

Rn;l →
Z

ξ1

0

½ϑðξÞ�n½1þ ϵ1ϑ1ðξÞ�nξlþ2dξ;

¼ Rn;l þ ϵ1nR
ðϑ1Þ
n;l þOðϵ21Þ; ð42Þ

where we have expanded in ϵ1 ≪ 1 and

Rðϑ1Þ
n;l ≡

Z
ξ1

0

½ϑðξÞ�nϑ1ðξÞξlþ2dξ: ð43Þ

We see then that the modification to the density profile
has changed the radial integral through the addition of a
new term that depends on ϑ1 and ϵ1, but also on n and l.
Let us now consider how these modifications affect the

two universal relations described in Sec. III A. First, it is
clear that the first relation is not modified at all since
Eq. (25) does not depend on the radial integral. On the other
hand, the second relation, given by Eq. (31), is modified
since it depends on the radial integral through ~Rn;l in
Eq. (33). Using Eq. (42), Ān;l becomes

Ān;l ¼ ð2lþ 3Þ1=l
3ð1þ1=lÞ

~RLE
n;l

×

�
1þ ϵ1n

�ðlþ 1Þ
l

Rðϑ1Þ
n;2

RLE
n;2

−
1

l

Rðϑ1Þ
n;2lþ2

RLE
n;2lþ2

−
Rðϑ1Þ

n;0

RLE
n;0

��

þOðϵ21Þ: ð44Þ

From this result, we can already derive some interesting
conclusions. The deviation from the standard universal
relations are both linear in ϵ1 and n. In fact, how much the
relations deviate will simply depend on the magnitude of
ϵ1, since n ¼ Oð1Þ.

D. Relaxing the self-similar isodensity condition

Let us relax the self-similar isodensity condition. In
particular, one may wish to force the contours to become
more spherical as ~r approaches the NS core, which is in fact
what occurs physically inside NSs [73]. Therefore, we
promote the eccentricity to be a function of the radial
coordinate, i.e.

e → eð~rÞ ¼ e0f

�
~r
a1

�
; ð45Þ

where e0 is the eccentricity at the surface and f is an
arbitrary function of ~r=a1 with fð1Þ ¼ 1. Although the
relaxation of the self-similar isodensity condition through
Eq. (45) renders the integrals of the previous subsections
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x~/ a

1

-1

-0.5

0

0.5

1

z~ / a
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FIG. 12 (color online). Stellar shape in the ~x-~z plane given by
Eq. (39) for different values of p and e ¼ 0.9.
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nonseparable in general, one can still perform the integrals
analytically by calculating them as follows.
When the eccentricity becomes a function of the radial

coordinate, ΘðμÞ in Eq. (26) now becomes Θð~r; μÞ. In spite
of this, one can still solve the angular integral exactly.
The mass and spin moments then become

Ml ¼ 2π

Z
a1

0

ρð~rÞ~rlþ2Il;3ð~rÞd~r; ð46Þ

Sl ¼ 4πl
2lþ 1

Ω
Z

a1

0

ρð~rÞ~rlþ3δIlð~rÞd~r; ð47Þ

where [36]

Il;3ð~rÞ ¼ ð−Þl2 2

lþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eð~rÞ2

q
eð~rÞl; ð48Þ

δIlð~rÞ ¼ ð−Þl−12 2ð2lþ 1Þ
lðlþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eð~rÞ2

q
eð~rÞl−1: ð49Þ

One can rewrite Eqs. (46) and (47) as

Ml ¼ 2πIð0Þl;3R
ðMÞ
l ; Sl ¼ 4πl

2lþ 1
ΩδIð0Þl RðSÞ

lþ1; ð50Þ

where the superscript (0) refers to setting eccentricity
constant [i.e. e → e0 ¼ const in Eqs. (48) and (49)] and

RðAÞ
l ≡

Z
a1

0

ρð~rÞ~rlþ2

�
f

�
~r
a1

��
nA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e20½fð~r=a1Þ�2

1 − e20

s
d~r;

ð51Þ

with A ¼ ðM;SÞ, nM ¼ l and nS ¼ l − 2. Observe the
resemblance of Eqs. (50) and (23). Observe also that
RðMÞ
l ¼ Rl ¼ RðSÞ

l when fð~r=a1Þ ¼ 1.

1. Modification to the Multipole Moments Relation

Let us now investigate how the universal relations
change by the replacement in Eq. (45). First, similar to
Eq. (28), we define RðAÞ

n;l as

RðAÞ
l ¼ ρc

�
a1
ξ1

�
lþ3

RðAÞ
n;l; ð52Þ

with

RðAÞ
n;l≡

Z
ξ1

0

ϑnξlþ2

�
f

�
ξ

ξ1

��
nA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e20½fðξ=ξ1Þ�2

1−e20

s
dξ: ð53Þ

We will here assume that ϑ is a LE function, but omit the
index “LE” for convenience. In the slow-rotation limit, the
above equation becomes

RðAÞ
n;l ¼

�Z
ξ1

0

ϑnξlþ2

�
f

�
ξ

ξ1

��
nA
dξ

�
½1þOðe20Þ�:

The first universal relation is obtained by substituting
Eq. (52) into Eq. (50) and taking the ratio of these
moments. After nondimensionalizing them through
Eqs. (21) and (22), we find

M̄2lþ2

S̄2lþ1

¼ B̄ðfÞ
n;lM̄2; ð54Þ

where we have defined

B̄ðfÞ
n;l ¼ RðMÞ

n;2lþ2R
ðSÞ
n;2

RðSÞ
n;2lþ2R

ðMÞ
n;2

: ð55Þ

Notice that when fð~r=a1Þ ¼ 1, B̄ðfÞ
n;l ¼ 1 and thus, one

recovers the first universal relation of Eq. (27). Notice also

that B̄ðfÞ
n;0 ¼ 1 irrespective of the functional form of fð~r=a1Þ.

We follow the same procedure explained in Sec. III A to
derive the second relation. Namely, we first rewrite ρc in
terms of a1 andM from Eqs. (50) and (52) with l ¼ 0, as in
Eq. (30), with the radial integral performed using the LE
equation. Next, we express a1=ξ1 in terms of S2lþ1=S1 from
Eqs. (50) and (52). Then, from these equations, one finds

M̄2lþ2 ¼ ĀðfÞ
n;lðS̄2lþ1Þ1þ1=l; ð56Þ

where we have defined

ĀðfÞ
n;l ¼ ð3þ 2lÞ1=l

31þ1=l

RðMÞ
n;2lþ2ðRðSÞ

n;2Þ1þ1=l

RðMÞ
n;0 ðRðSÞ

n;2lþ2Þ1þ1=l : ð57Þ

Notice again that when fð~r=a1Þ ¼ 1 one recovers the
results of [36].

2. Effect on universality

We see clearly that the introduction of a nontrivial radial
dependence in the eccentricity has led to different universal
relations, but the question is whether such a modification
spoils universality. We address this by looking at some
example below. Let us consider the simple toy model

f

�
~r
a1

�
¼

�
~r
a1

�
s
; ð58Þ

for some power s > 0 that controls how fast the star
becomes spherical as one approaches the core. As shown
in Fig. 13, when s ¼ 0.3, the star is mostly elliptical until
~r=a1 < 0.1, at which point eð~rÞ < e0=2. On the other hand,
when s ¼ 3 the star is more spherical, with its eccentricity
dropping below half its initial value already at ~r=a1 ¼ 0.8.
The actual eð~rÞ for Newtonian stars can be estimated by
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solving the Clairaut-Radau equation [73–75], as we will do
in Sec. IV C. Since the purpose of this subsection is to
investigate how eð~rÞ affects the universality, we do not
solve such equation but treat s as arbitrary.
For simplicity, let us work in the slow-rotation limit.

The coefficients in the universal relations then become

B̄ðfÞ
n;l ¼ B̄n;l;s ≡ Rn;2

Rn;2þ2s

Rn;2lþ2þ2sðlþ1Þ
Rn;2lþ2þ2sl

; ð59Þ

ĀðfÞ
n;l ¼ Ān;l;s

≡ ð3þ 2lÞ1=l
31þ1=l

1

ξ21jϑ01j
Rn;2lþ2þ2sðlþ1ÞðRn;2Þ1þ1=l

ðRn;2lþ2þ2slÞ1þ1=l :

ð60Þ
Figure 14 shows B̄n;l;s (left panel) and Ān;l;s (right panel)
as a function of n for different choices of s and l. Let us

first focus on the first universal relation by looking at the
left panel of Fig. 14. Recall that when l ¼ 0, B̄n;0;s ¼ 1,
which is why we plot only the l ≥ 1 cases. Observe that
irrespective of the choice of l, B̄n;l;0.3 ∼ B̄n;l;0, while B̄n;l;s
is very different from B̄n;l;0 in the more spherical cases
when s > 1. Observe also that when s ¼ 3, the universality
is essentially lost, with B̄n;l;s changing by as much as 50%
over the range of n explored here. This is to be compared to
a variability of about 1% when s ¼ 0 or 0.3. Let us now
look at the second universal relation by focusing on the
right panel of Fig. 14. As in the case of B̄n;l;s, Ān;l;s is very
similar when s ¼ 0 and when s ¼ 0.3. Also as before, the
universality with n deteriorates as s increases, but the effect
is much less pronounced this time.
In order to understand the behavior of B̄n;l, let us

consider its asymptotic behavior in the s → ∞ limit for
an n ¼ 0 polytrope, where ϑ ¼ 1 − ξ2=6 and ξ1 ¼

ffiffiffi
6

p
so

that R0;l ¼ 6ðlþ3Þ=2=ðlþ 3Þ. First, the mass and current
multipole moments in the slow-rotation limit become

M2lþ2¼ð−Þlþ1
4πe2lþ2

0

2lþ3

�
a1
ξ1

�
2lþ5 ρc

ξ2sðlþ1Þ
1

R0;2lþ2þ2sðlþ1Þ;

ð61Þ

S2lþ1 ¼ ð−Þl 8πΩ
2lþ 3

e2l0

�
a1
ξ1

�
2lþ5 ρc

ξ2sl1

R0;2lþ2þ2sl: ð62Þ

Then, from these equations, one finds

M2lþ2 ∼
1

s
ðl ≥ 0Þ; S2lþ1 ∼

1

s
ðl ≥ 1Þ; ð63Þ

and M ∼ s0 ∼ S1. Notice that both M2lþ2ðl ≥ 0Þ and
S2lþ1ðl ≥ 1Þ vanish in the s → ∞ limit. This is because
in this limit, the density contour is spherical everywhere
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FIG. 13 (color online). Eccentricity as a function of radius
given by Eq. (58) for different choices of s.
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FIG. 14 (color online). B̄n;l;s (left) and Ān;l;s (right) given by Eqs. (59) and (60), respectively, as a function of n for different choices of
s and l. Observe that as we increase s, the universality is lost, especially as s > 1. Observe also that B̄n;l;s and Ān;l;s are barely modified
from the s ¼ 0 case when s ¼ 0.3.
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except at the surface. Since the measure of the integrals is
zero, the multipole moments vanish. The above scaling
leads to

B̄0;l ¼ M2lþ1S1
S2lþ1M2

∼ s ð64Þ

in the large s limit. For n close to zero, B̄n;l can be
expressed as B̄n;l ∼ ðc0 þ c1nÞs for some constants c0 and
c1 and the fractional difference of B̄n;l with respect to some
mean n is given by

B̄n;l − hB̄n;li
hB̄n;li

∼
c1ðn − hniÞ
c0 þ c1hni

: ð65Þ

Therefore, for large s, the fractional difference of B̄n;l is
nonvanishing and can be relatively large.

IV. ECCENTRICITY PROFILES FOR
RELATIVISTIC STARS

The previous section showed that the elliptical isodensity
approximation plays a crucial role in the universality. We
now need to investigate the validity of such an approxi-
mation for realistic relativistic stars, i.e. study the eccen-
tricity radial profile of such stars, thus addressing the third
question in the Introduction.
We will first look at the profile of slowly rotating NSs

and QSs. We will show that the eccentricity only changes
by ∼10% within the region that matters to the universality.
We will then look at the profile of rapidly rotating NSs
and show that the eccentricity variation is always smaller
than 20%–30% even for rapidly rotating NSs in the region
that matters. We will finally re-consider the relation for
uniformly rotating Newtonian polytropes described in
Sec. III D using a realistic eccentricity profile for NSs.
We will show that such modification only affects the 3-hair
relation in [36] by less than 10% relative to the constant-
eccentricity Newtonian results, e.g. if certain relations are
universal to 1% when using the elliptical isodensity
approximation, corrections due to a nonconstant eccentric-
ity profile induce modifications of 0.1%.

A. Slowly rotating stars

We first look at eccentricity profiles for slowly rotating
NSs and QSs. We extract the eccentricity of isodensity
surfaces from the embedded surface following [56].
Figure 2 shows the radial profile of the NS eccentricity,
which affects the stellar quadrupole moment. Within
50%–95% of the stellar radius, the eccentricity only
changes by ∼10%. Observe also that the EOS variation
in this radial region is smaller than the one in the region less
than 50% of the radius.
Figure 15 shows the eccentricity profile for QSs.

Observe that the eccentricity is almost constant for QSs
with large Ī. For such stars, the elliptical isodensity

approximation used in [36] becomes an excellent approxi-
mation. Such approximate self-similarity in the stellar
eccentricity suppresses the EOS variation in the relations
among stellar multipole moments, which in turn realizes
the universality.

B. Rapidly rotating stars

Let us now study the eccentricity radial profile for
rapidly rotating stars. As in the slow-rotation case, we
estimate the eccentricity of constant density surfaces from
the embedded surface following [56]. We will present the
results in Schwarzschild-like coordinates. Figure 16
presents the NS eccentricity profile for n̄ ¼ 0.5 (top) and
n̄ ¼ 1 (bottom) polytropic indices, for the various rotation
rates of Fig. 11. Observe that in the Newtonian limit (left
panels), the Clairaut-Legendre approximation3 (red curves)
gives an accurate description of the radial profile of the
eccentricity for all the rotating models (green curves). This
approximation becomes less accurate as the compactness
increases (right panels). Observe that the eccentricity
variation due to rotation becomes larger as one increases
λ and rotation. The relativistic effects with a rapid rotation
result in lower central values for the eccentricity and thus
higher eccentricity variation throughout the star. The
observed behavior of the relativistic eccentricity profile
is consistent with the Newtonian picture [73], where the
more centrally condensed polytropes have larger variation
in their eccentricity profiles, in agreement with previous
results [76].

1
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e/
χ
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FIG. 15 (color online). Eccentricity profile (same as Fig. 2) but
for QSs. The vertical dashed lines are built in the same way as in
Fig. 8. Observe that the eccentricity does not change much for
stars with large Ī.

3The Clairaut-Legendre approximation refers to the expansion
calculated by Clairaut using Legendre polynomials [73], not to be
confused with the Clairaut-Radau equation.
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Although the relativistic effects lower the central value of
the eccentricity compared to the corresponding Newtonian
value, the actual variation does not exceed 35%, while the
variation is ∼20% throughout a Newtonian n̄ ¼ 1 poly-
trope. In the region that matters to the universality
(r=R ¼ 0.5–0.95), the eccentricity varies by 20%–30%,
validating the elliptical isodensity approximation to
Oð10%Þ even for rapidly rotating NSs.

C. Newtonian multipole relations with realistic
eccentricity profile

Let us now consider the Newtonian analysis described in
Sec. III D but using a realistic eccentricity profile. One sees
from Figs. 15 and 16 that the eccentricity for realistic stellar
models remains nonvanishing at the stellar center.
Therefore, one can promote the eccentricity profile to

f

�
~r
a1

�
¼ 1þ δe

��
~r
a1

�
s
− 1

�
; ð66Þ

where δe and s are constants. One can obtain δe and s for
the slowly rotating Newtonian polytropes by solving the
Clairaut-Radau equation [73–75], as shown in Fig. 17.
One can use these realistic δe and s as functions of n to

calculate the coefficients B̄ðfÞ
n;l and ĀðfÞ

n;l in the universal

relations. Figure 18 shows the fractional difference of B̄ðfÞ
n;l

and ĀðfÞ
n;l from those with fð~r=a1Þ ¼ 1 (or equivalently,

δe ¼ 0) as functions of n for various l in the slow-rotation
limit. Notice that the fractional difference decreases as one
decreases n. This is because the elliptical isodensity
approximation becomes exact for an n ¼ 0 polytrope.
Notice also that this fractional difference is not a measure
of universality, but rather it is a measure of how sensitive
the universal relations are to the nonconstant eccentricity
profile. For example, if in the constant eccentricity case, the
relation between the multipoles were accurate to 1%, then
the fractional difference of Fig. 18 shows how a non-
constant eccentricity profile affects this 1% accuracy by
∼0.1% at most.
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FIG. 16 (color online). Eccentricity radial profile (normalized
by the eccentricity at the stellar surface es) with a polytropic
index n̄ ¼ 0.5 (top) and n̄ ¼ 1 (bottom). The red curve shows the
Newtonian slow-rotation, Clairaut-Legendre model, while the
five green curves correspond to the same relativistic rotating
models as in Fig. 11. The strange behavior of the eccentricity of
the central regions in the right panels is mainly due to the specific
coordinates used to measure the eccentricity, which have no
specific analogue in Newtonian stars.

0

0.5

1

δ 
e

0 1 2 3 4
n

1

1.5

2

2.5

s

FIG. 17 (color online). δe and s in Eq. (66) as functions of n for
Newtonian polytropes.
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FIG. 18 (color online). Fractional difference of B̄ðfÞ
n;l [Eq. (55)]

and ĀðfÞ
n;l [Eq. (57)] based on Eq. (66) and Fig. 17 from those with

constant eccentricity (δe ¼ 0) as functions of n in the slow-
rotation limit.
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Figure 18 shows that the fractional difference of B̄ðfÞ
n;l is

larger than that of ĀðfÞ
n;l. One can understand such behavior

by expanding the universal relations around δe ¼ 0. To do

so, one first needs to expand RðMÞ
n;l and RðSÞ

n;l to yield

RðMÞ
n;l ¼ Rn;l

�
1þ 2l − ð2lþ 1Þe20

2ð1 − e20Þ
δe

Rn;l;s

Rn;l

�
þOðδe2Þ;

ð67Þ

RðSÞ
n;l ¼ Rn;l

�
1þ 2ðl − 2Þ − ð2l − 3Þe20

2ð1 − e20Þ
δe

Rn;l;s

Rn;l

�
þOðδe2Þ; ð68Þ

where

Rn;l;s ≡
Z

ξ1

0

ϑnξlþ2

��
ξ

ξ1

�
s
− 1

�
dξ: ð69Þ

Substituting Eqs. (67) and (68) into Eqs. (55) and (57), one
finds

B̄ðfÞ
n;l ¼ 1þ 2δe

�
Rn;2lþ2;s

Rn;2lþ2

−
Rn;2;s

Rn;2

�
þOðδe2Þ; ð70Þ

ĀðfÞ
n;l ¼ Ān;l

�
1þ e20δe

2ð1 − e20Þ
�
1

l
Rn;2lþ2;s

Rn;2lþ2

−
lþ 1

l
Rn;2;s

Rn;2

þRn;0;s

Rn;0

��
þOðδe2Þ: ð71Þ

One now sees that the correction to B̄ðfÞ
n;l isOðδeÞwhile that

to ĀðfÞ
n;l is Oðδee20Þ.

Figure 18 shows that the fractional difference increases
as l increases. This is somewhat surprising: for higher-l,
the multipole moments are more heavily weighted toward
the surface, precisely where the elliptical isodensity
approximation should be more accurate, and thus, one
expects the fractional difference to decrease as l increases.
Figure 18, however, shows the opposite behavior. The mass
multipole moments are roughly given by Ml ∼

R a1
0

ρð~rÞ~rlþ2eð~rÞld~r. Because of the ~rlþ2 factor in the inte-
grand, it is true that the multipole moments have more
weight on the outer region inside the star. However, notice
that the integrand also contains a factor of el. Since the
eccentricity is raised to the lth power, the multipole
moments are more sensitive to the difference between
the realistic and constant eccentricity stellar models as l
increases. Therefore, whether the fractional difference in
the universal relations increases as one increases l depends
on which of these two effects dominate.
In order to quantify the l dependence in the fractional

difference of the universal relations from the constant
eccentricity case, we perform the following scaling esti-
mate in the slow-rotation (e0 ≪ 1) and nearly constant

eccentricity (δe ≪ 1) limit. Since all the eccentricity

dependence in the universal relations is encoded in RðAÞ
n;l,

let us focus on this quantity. Using the approximations
described above, Eq. (67) leads to

RðMÞ
n;l ¼ Rn;l

�
1þ lδe

Rn;l;s

Rn;l

�
þOðδe2; e20Þ: ð72Þ

The fractional difference from the constant eccentricity
case is then given by

jRðMÞ
n;l −Rn;lj
Rn;l

¼ lδe
jRn;l;sj
Rn;l

: ð73Þ

As an example, let us use n ∼ 0, and then

Rn;l;s ∼
Z

ξ1

0

ξlþ2

��
ξ

ξ1

�
s
− 1

�
dξ¼ −

sξlþ3
1

ðlþ 3Þðlþ sþ 3Þ ;

Rn;l ∼
Z

ξ1

0

ξlþ2dξ¼ ξlþ3
1

ðlþ 3Þ ; ð74Þ

and

jRðMÞ
n;l −Rn;lj
Rn;l

∼ δe
ls

lþ sþ 3
; ð75Þ

which monotonically increases from 0 (l ¼ 0) to s
(l ¼ ∞). One can easily obtain a similar result for the

fractional difference in RðSÞ
n;l. This rough estimate shows

that the fractional difference of the universal relations from
the constant eccentricity case increases as one increases l,
as shown in Fig. 18. Since the figure shows that the
correction from the constant eccentricity case to the
universal relations are∼10% at most for l ≤ 4, this justifies
the use of the elliptical isodensity approximation to model
realistic stars.

V. MULTIPOLE RELATIONS AND
ECCENTRICITY PROFILE FOR

NONCOMPACT STARS

In order to better understand the relationships satisfied
by the multipole moments of neutron stars, it is instructive
to understand how they are different from regular, non-
compact stars. We simulate regular rotating stars to address
two main questions:
(i) Do regular stars satisfy an Ī–Q̄ relation or some other

multipole moment relation?
(ii) Is the elliptical isodensity approximation valid for

regular stars?
In this section, we address these questions, which are
essentially those posed in the fourth item of the
Introduction. The answers to these questions will provide
further justification of the picture of an emergent symmetry
as an explanation for the universality, already described in
the Introduction and in more detail in the next section.
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We simulate a series of rapidly rotating stellar models,
gridded in the mass range M� ∈ ½2M⊙; 10M⊙� in incre-
ments of 0.5M⊙ and in the range of surface equatorial
rotation frequencies (as a fraction of breakup) ΩSurf

Eq ∈
½0.1Ωbk; 0.9Ωbk� in increments of 0.1Ωbk. Such rotation
rates correspond to χ ¼ 3–17.5 for a 3M⊙ star. To perform
these simulations we used the publicly-available ESTER
code [60,61], which self-consistently solves the equations
of stellar structure for an axisymmetric, rapidly and differ-
entially rotating star with realistic tabulated EOS.4 We
cannot freely vary the equation of state, since it is well
understood for such a star. However, we can vary the
opacity law as a proxy to understand the EOS dependence.
We adopted two different opacity laws: Kramers’ law and
the OPAL tabulated opacity [77]. The latter is more
realistic, while we consider the former as a toy model to
see the effective EOS universality for noncompact stars.
Figure 19 shows the mass-radius relation for two different
opacity laws. Observe that changing the opacity law has an
effect on the mass-radius relation similar to changing
the EOS. We address questions (i) and (ii) in Secs. VA
and V B, respectively.

A. Multipole relationships

As the ESTER code is spectral, it is straightforward to
extract the multipole moments from the solutions.5 So far in
this paper, we have used I ¼ S1=Ω as a definition for the
moment of inertia. This definition is appropriate for rigid
rotation, but here we are considering differentially-rotating
stars. Therefore, in this section, we take advantage of the
Newtonian limit and instead use

IN ¼ 2

3

Z
ρr2dV; ð76Þ

where the integral is over the entire star; this is Eq. (9)
without any symmetry assumptions.
The Ī–Q̄ relationship for regular stars is shown in Fig. 20

with Kramers’ (solid) and OPAL (dashed) opacity laws.
Each curve in each opacity family is at a constant
ΩSurf

Eq =Ωbk, with M� varying along a curve (and increasing
to the left). We create a fit for each opacity family given by
a power-law of the form Q̄ ¼ CĪb1 by fitting a straight line
in log space, i.e.

log Q̄ ¼ b1 log Ī þ b2: ð77Þ

The fit parameters are presented in Table II. The fractional
difference between these two fits can be as large as 40%,
showing a loss of universality. Notice that the dependence
onΩ is weak, about 2%–3% variation, unlike in the relation
for compact stars, which has a clear spin dependence
[33–35,78].
Recall that in the Newtonian limit [26,36], the Ī–Q̄

relation for compact stars is Q̄ ∝ Ī1=2. From the b1
parameter in Table II we see that noncompact stars lie

Kramers

OPAL

2 3 4 5 6 7
2
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R R

M
M

FIG. 19 (color online). The mass-radius relation of noncompact
stars with two different opacity laws. Observe that different
opacity laws corresponds to different effective EOSs.
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Q

FIG. 20 (color online). Ī–Q̄ relation for regular stars of various
masses, spins, and opacity laws of Kramers’ (solid) and OPAL
(dashed). Within each opacity law family, each curve has a
constant ΩSurf

Eq =Ωbk ¼ 0.1; 0.2;…0.9. Along each curve, total
stellar mass increases to the left, withM� ¼ 2M⊙ at the rightmost
end and M� ¼ 10M⊙ at the leftmost end. Within each family
there is 2%–3% variation from the best fit, while the two fits
differ from each other by 40% at most.

TABLE II. Fit parameters for the power-law parametric form in
Eq. (77) for the two families with different opacity laws. Each
family has an approximately 2%–3% variation from the fit, and
the two fits have an approximately 40% variation at most from
each other.

Opacity b1 b2

Kramers 0.527� 0.0051 −1.39� 0.11
OPAL 0.712� 0.0022 −2.90� 0.050

4ester-project: Evolution STEllaire en Rotation, available at
https://code.google.com/p/ester‑project/. Accessed April 2014.

5Program available at https://github.com/duetosymmetry/ester/
tree/master/src/multipoles/. Accessed April 2014.
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on different Ī–Q̄ relations than compact stars. We also see
that changing the opacity law, which is our proxy for the
EOS, changes the fit, and so noncompact stars do not
possess an Ī–Q̄ relation that is nearly as universal as that
which hold for compact stars.
Compact stars also enjoy additional relationships

amongst higher multipole moments that are also approx-
imately universal [33,36]; is such universality still present
for noncompact stars? Figure 21 shows the relation
between S̄3 and M̄4 for noncompact stars, which should
be the next most-universal combination after Ī–Q̄ [36], for
Kramers’ (solid) and OPAL (dashed) opacity laws. Within
each opacity family, we varyΩSurf

Eq =Ωbk. For slowly rotating
stars, the effective EOS universality is preserved, while it is
lost for rapidly rotating stars with a fixed dimensionless
spin parameter of ΩSurf

Eq =Ωbk. The figure also exhibits a
clear spin dependence in the relations, which is in contrast
to the relation for compact stars [33,35]. Such loss in the
universality could be considered as a consequence of the
breakdown of the elliptical isodensity approximation, as we
will see in the next subsection.

B. Isodensity contours

We now turn to the question of the validity of the
elliptical isodensity contour approximation for regular
stars. Isodensity contours were extracted from the
ESTER simulations by root-finding,6 and then computing
the best-fit ellipse to each contour. Figure 22 shows an
example of the radial dependence of e=χ with Kramers’

(solid) and OPAL (dashed) opacity laws with M ¼ 5M⊙
for different spin frequencies. The fits are quite faithful,
with fractional errors between the contour and fit of at
worst (i.e. at the stellar surface) 7%, and sub-1% for spins
below ΩSurf

Eq < 0.7Ωbk.
From these fits we infer another important difference

between compact and noncompact stars. In Figs. 2 and 15
we saw that the e=χ does not vary much in the range of radii
that contribute the most to the moment of inertia and
quadrupole moment. By comparison, for regular stars, we
can see from Fig. 22 that e=χ varies by a factor of ∼3–6
throughout the entire star, much more than for compact
stars. Such large eccentricity variation is precisely the
reason why the effective EOS universality is lost for the
Ī–Q̄ and S̄3–M̄4 relations in general. These results provide
further evidence for the picture of an emergent symmetry as
the origin of universality, which we will explain in more
detail in the next section.

VI. UNIVERSALITY AS AN EMERGENT
APPROXIMATE SYMMETRY

Let us now summarize our work and describe in detail
the picture of emergent approximate symmetry that arises
as an explanation for the universality.
In this paper, we provided further evidence of why the

universal relations hold among stellar multipole moments.
We first tackled this problem by looking at the Ī–Q̄ relation
using piecewise polytropic EOSs [57] that can reproduce
various realistic EOSs with just five free parameters.
Although varying each piecewise parameter by 30%
significantly modifies the mass-radius relation, we found
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FIG. 21 (color online). The S̄3–M̄4 relation for regular stars
with Kramers’ (solid) and OPAL (dashed) opacity law, which
fails to exhibit universality in both effective EOS (opacity law)
and spin. Within each family, each curve is for a fixed
ΩSurf

Eq =Ωbk ¼ 0.1; 0.2;…0.9 which increases to the right amongst
curves. Along each curve, mass increases to the left. Observe how
the effective EOS universality is lost especially for a fixed,
relatively large ΩSurf

Eq =Ωbk.
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FIG. 22 (color online). Radial dependence of e=χ values in
regular stars with Kramers’ (solid) and OPAL (dashed) opacity
law. rEq and REq correspond to the radial coordinate in the
equatorial plane and the stellar equatorial radius, respectively.
The values are best-fits to isodensity contours. Within each
family, each curve corresponds to one value of ΩSurf

Eq =Ωbk ¼
0.1; 0.2;…0.9, increasing upwards. We set the mass as
M ¼ 5M⊙, but the result presented in this figure is insensitive
to the choice of M.

6Program available at https://github.com/duetosymmetry/ester/
tree/master/src/iso_contours. Accessed April 2014. This program
makes use of the GNU Scientific Library [79].
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that it only affects the Ī–Q̄ relation by Oð1%Þ at most. We
also found that the radial profile of the integrand of the
moment of inertia and quadrupole moment is hardly
affected by the piecewise parameters for a fixed moment
of inertia, and most of the contribution in the moment of
inertia and quadrupole moment comes from 50%–95% of
the radius for NSs, confirming [25,26]. The parameters that
control the density in the range ð1014–1015Þ g=cm3 play the
most important role in the universality. The variation in the
slope of the nuclear EOS within this region can be as large
as 17% and we concluded that this alone cannot explain the
universality.
Second, we extended the work in [36] in the Newtonian

limit. We relaxed the elliptical isodensity approximation
[54] to see how this assumption affects the universality. We
found that the shape of the isodensity contours does not
affect the universality, but relaxing the self-similarity
condition does modify the relation significantly. This
shows that the fact that isodensity contours of NSs can
be approximated by self-similar surfaces plays a crucial
role in universality.
Third, we investigated the eccentricity profile for both

slowly and rapidly rotating relativistic stars. We showed
that the eccentricity only varies by ∼10% in the region that
matters to the universality for slowly-rotating NSs and QSs,
while the eccentricity variation is below 20%–30% even for
rapidly rotating NSs. This suggests the elliptical isodensity
approximation is a very good description for realistic NSs.
To verify this, we improved the Newtonian analysis in [36]
by using a realistic, radially-dependent eccentricity profile
for NSs. We found that, in the slow-rotation limit, the radial
dependence of the eccentricity introduces at most a 10%
correction to the Ī–Q̄ relation within the constant eccen-
tricity assumption.
Fourth, we looked at the multipole relations and eccen-

tricity profiles for noncompact, regular stars. We found that
the eccentricity variation can easily exceed 100% for such
stars, in contrast to relativistic stars that only have ∼10%
variation for similar rotation rates. This means that the
elliptical isodensity approximation is not good to model
noncompact stars. We then studied whether the Ī–Q̄
relations remained universal for noncompact stars when
we change its EOS. As a proxy for the latter, we used two
different opacity laws, which indeed lead to different slopes
in the mass-radius relation. We found that the Ī–Q̄ relations
and the relations among higher multipole moments are not
EOS universal for noncompact, regular stars.
The above results paint an interesting, albeit phenom-

enological picture of why universality holds. Consider the
multi-dimensional phase space, spanned by different quan-
tities that characterize stars, such as their stellar temper-
ature, compactness, rotation rate, strength of the magnetic
field, etc. One corner of this space is inhabited by very hot
and noncompact stars, like supergiants, with stellar com-
pactness of about 10−8 and temperatures of 20,000 K,

which may rotate differentially in some interior region.
Since the interior density in such stars is subnuclear, the
EOS can be well modeled through simulations, experi-
mental data and helio-seismological observations. Another
corner of this space is inhabited by cold (relative to their
Fermi temperature) and compact stars, like NSs with
compactness of about 10−1 and temperatures of 10−9TF,
where TF is the Fermi temperature. These stars rotate
rigidly in the absence of external perturbations, because in
the barotropic limit, vorticity (and thus differential rotation)
is unsourced. Since the interior density in such stars is
supra-nuclear, the EOS is not perfectly well-understood.
In spite of our ignorance of the NS’s EOS, the corner of

phase space in which they live is effectively dominated by
just two dimensions: compactness and EOS effective
polytropic index n. All other extra dimensions related to
microphysics, like temperature, play a small, negligible role
in controlling the characteristics of NSs. That is, at
sufficiently high compactness, all details of microphysics
efface away and NSs can be well-described by barotropic
EOSs. Effectively, this EOS can be approximately captured
by a polytrope, with an effective polytropic index n ∈
½0.3; 1�.
Let us then span this corner of phase space by one axis

that measures compactness and one axis that measures the
effective polytropic index. In the subregion that corre-
sponds to NSs, i.e. for C ¼ Oð0.1Þ and n ∈ ½0.3; 1�, the
isodensity profiles are approximately self-similar in
the region inside the star that matters the most for the
calculation of multipole moments, i.e. the eccentricity of
isodensity contours remains invariant under a radial remap-
ping. This is not the case for realistic noncompact stars
which have large eccentricity variations in their interior.
Thus, as compactness increases and one flows to the NS
corner of phase space (see Fig. 3), an approximate
symmetry emerges (isodensity contours become approx-
imately self-similar) and this is responsible for the univer-
sality we have observed. As one approaches the region of
phase space inhabited by BHs, the universality becomes
exact, as expressed by the no-hair theorems.

VII. FUTURE DIRECTIONS

In this paper, we presented the relations among multipole
moments for differentially-rotating stars in the Newtonian
limit for the first time. The next task is to see how the
universal relations change due to differential rotation in the
relativistic case. For this, one could adopt the rotation law
given in [80]. It would also be interesting to derive an
analytic relation amongmultipole moments for differentially-
rotating stars and compare it with the relativistic results.
As explained in the Introduction, other types of universal

relations exist, such as those among higher-l tidal Love
numbers [17] and NS oscillation modes [13,15,16]. It
would be important to carry out a similar analysis as
presented in this paper to understand why the universality
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holds among these observables. One can for example take a
piecewise polytropic EOS and see which parameter affects
the relations the most. One can also investigate which radial
region affects the relations the most, and determine which
region in the EOSs controls the universality.
Another interesting idea would be to study whether the

Ī–Q̄ relations remain universal if one breaks the elliptical
isodensity approximation. In this paper, we studied how the
relation among multipole moments behaves as this approxi-
mation is relaxed. To repeat the analysis for the Ī–Q̄
relation, one would have to determine how the angular
frequency–eccentricity relation is modified as one pro-
motes the eccentricity to a radial function. Based on the
results of this paper, we suspect the Ī–Q̄ relations will be
similarly affected if one relaxes the elliptical isodensity
approximation.
Finally, one could carry out a similar analysis as that

performed in this paper but to study the origin of univer-
sality in theories other than GR, such as dynamical Chern-
Simons gravity [25,26], Eddington-inspired Born-Infeld
gravity [40] and scalar-tensor theories [41]. It would be
interesting to study how the variation in the NS eccentricity
in the region that matters changes and see if the explanation
found here in GR can also be applied to the multipole
relations in such theories.
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Note added.—After we posted the preprint of this manu-
script, Ref. [82] came out where the authors studied the
I-Love-Q relations for proto-NSs with a nonbarotropic
EOS. They found that at the early stage of the NS
formation, when the entropy gradient inside the star is
large, the relation differs from the one with barotropic
EOSs by as much as ∼30%. Moreover, they found that the
eccentricity inside the star varies by ∼200% at this early
stage of formation. This supports one of our claims, that the
relation depends strongly on the stellar eccentricity varia-
tion. However, we note that Ref. [82] does not discuss how
the universality itself changes with time for proto-NSs, as
the authors only looked at a single nonbarotropic EOS.
Namely, the reference does not provide any evidence on
how the EOS universality itself depends on the eccentricity
variation.
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