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The late time accelerated expansion of the Universe demands that even in local galactic scales it is
desirable to study astrophysical phenomena, particularly relativistic accretion related phenomena in
massive galaxies or in galaxy mergers and the dynamics of the kiloparsecs-scale structure and beyond, in
the local galaxies in Schwarzschild–de Sitter (SDS) background, rather than in Schwarzschild or
Newtonian paradigm. Owing to the complex and nonlinear character of the underlying magneto-
hydrodynamical equations in general relativistic (GR) regime, it is quite useful to have a Newtonian
analogous potential containing all the important GR features that allows us to treat the problem in
Newtonian framework for study of accretion and its related processes. From the principle of conserved
Hamiltonian of the test particle motion, here, a three dimensional Newtonian analogous potential has been
obtained in spherical geometry corresponding to SDS/Schwarzschild–anti–de Sitter spacetime, that
reproduces almost all of the GR features in its entirety with remarkable accuracy. The derived potential
contains an explicit velocity dependent term of the test particle that renders an approximate relativistic
modification of Newtonian-like potential. The complete orbital dynamics around SDS geometry and the
epicyclic frequency corresponding to SDS metric have been extensively studied in the Newtonian
framework using the derived potential. Applying the derived analogous potential it is found that the current
accepted value of Λ ∼ 10−56 cm−2 moderately influences both sonic radius as well as Bondi accretion rate,
especially for spherical accretion with smaller values of adiabatic constant and temperature, which might
have interesting consequences on the stability of accretion disk in active galactic nuclei/radio galaxies.
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I. INTRODUCTION

The simplest and most attractive general relativistic
model that explains the late time accelerated expansion
of the Universe [1] is the ΛCDM model where Λ denotes
the positive cosmological constant with a value of nearly
10−56 cm−2 [2] and CDM refers to cold dark matter. The
ΛCDMmodel is more or less consistent with all the current
cosmological observations [3] though the origin of cos-
mological constant still remains elusive [4] and is one of the
most pressing problems in modern physics.
In the presence of a repulsive cosmological constant

(positive) “Λ” the spacetime geometry exterior to a static
spherically symmetric metric is Schwarzschild–de Sitter
(SDS), which describes an isolated black hole (BH) in a
spatially inflated universe, rather than Schwarzschild met-
ric. Therefore, the cosmological constant may affect any
local gravitational phenomenon like perihelion shift of the
orbits of gravitationally bound systems [5], gravitational
bending of light [6], geodetic precession [5], etc., but the
general perception is that owing to its tiny value,

cosmological constant does not lead to any significant
observable effects in a local gravitational phenomenon. In
the Solar system the influence of cosmological constant is
known to be maximum in the case of perihelion shift of
mercury orbit where the Λ contribution is about 10−15 of
the total shift [5]. However, the contribution of repulsive Λ
could be significant (larger than the second order term)
even in a local gravitational phenomenon when kiloparsecs
to megaparsecs-scale distances are involved, such as the
gravitational bending of light by cluster of galaxies [7]. The
study of particle dynamics in SDS spacetime shows a
significant contribution of Λ when kiloparsecs-scale dis-
tance is involved [8,9]. The trajectories of both small and
large magellanic clouds in the gravitational field of the
Milky Way are affected significantly (∼10% level or
higher) by Λ [10]. Cosmological constant also leads to
nonspherical effects with non-negligible contributions on
the local dynamics of clusters and superclusters [11]. Some
authors claimed [12] that the repulsive Λ is responsible for
significantly lower value (∼60 Kms−1=Mpc) of Hubble
parameter in our close neighborhood than its large-scale
value (∼70 Km s−1=Mpc). The cosmological constant also
influences gravitational equilibrium [13].
A plausible local scenario where cosmological constant

may contribute significantly is the relativistic accretion
phenomena around massive BHs which involve distance

*ta.sa.nbu@hotmail.com
†shubhrang.ghosh@gmail.com
‡Corresponding author.

aru_bhadra@yahoo.com

PHYSICAL REVIEW D 90, 063008 (2014)

1550-7998=2014=90(6)=063008(20) 063008-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.063008
http://dx.doi.org/10.1103/PhysRevD.90.063008
http://dx.doi.org/10.1103/PhysRevD.90.063008
http://dx.doi.org/10.1103/PhysRevD.90.063008


scale of the order of hundreds of parsecs or even more. This
is because the asymptotic character of the BH spacetime
changes significantly in the presence of cosmological
constant [7]. Note that the accretion of matter on to BH
is believed to act as the engine for the active galactic nuclei
(AGNs). A few studies have been carried out so far to
investigate the effect of Λ in astrophysical jet/accretion
flow paradigm [14–19]. It was found that the presence of
cosmological constant leads to suppression of black hole
evaporation [14]; instead of evaporation, black hole will
accrete energy. The effect of Λ on the dynamics of
kiloparsecs to megaparsecs-scale astrophysical jets would
be intriguing to investigate as suggested by Stuchlík, Slańy
and Hledík [15]. Their work indicated that positive Λ can
have strong collimation effect on jets. Rezzolla et al. [16]
have analyzed the effect of Λ on the dynamical stability of a
geometrically thick accretion disk with constant angular
momentum around a SDS BH. Their work showed that Λ
introduces an outflow of matter through the outer cusp of
disk causing a considerable impact on the runway insta-
bility. Slobodov et al. [17] demonstrated that characteristic
peaks in the iron line profile generated in the BH accretion
disk in a SDS background are less noticeable and distin-
guishable with the increase in the value of Λ. In an
interesting scenario, Karkowski and Malec [18] and
Mach, Malec and Karkowski [19] have recently explored
the possible dependence of Λ on relativistic Bondi-type
accretion flow around a nonrotating BH. They defined a
quasilocal mass accretion rate and found that Λ suppresses
the mass accretion rate of the flow and dramatically impacts
the transonic nature of the accretion flow.
All the works on the effect of Λ on accreting systems are

carried out under some restricted conditions/situations. This
is because the study of accreting BH systems involves
solving general relativistic (GR) hydrodynamic/magneto-
hydrodynamic (MHD) equations in a strong gravitational
field regime. Owing to the complex and nonlinear character
of the underlying equations in GR regime, analytical/
quasinumerical treatment of the problem is virtually dis-
carded. Even numerical simulation is complicated by several
issues such as different characteristic time scales for propa-
gating modes of general relativity and relativistic hydro-
dynamics. Several early works on these accretion related
phenomena were based on pure Newtonian gravity. A few
GReffectswere incorporated ad hoc. After the seminalwork
of Paczyński and Witta [20], most of the authors treated
accretion and its related processes around BHs using
hydrodynamical/MHD equations in the Newtonian frame-
work by using some pseudo-Newtonian potentials (PNPs)
which are essentiallymodificationofNewtonian gravitational
potential developed with the objective to reproduce (certain)
features of relativistic gravitation. This is to avoid GR gas
dynamical equations, which in most occasions become
inconceivable in practice in describing a complex physical
system like accreting plasma. Consequently, adopting PNPs,

one can comprehensively construct more realistic accretion
flow models in simple Newtonian paradigm, while the
corresponding PNP would capture the essential GR effects
in the vicinity of the compact objects. Instead of PNPs, some
authors simply use parametrized post-Newtonian (PPN)
expansion up to a certain order [21]. Since the PPN expansion
converges very slowly, the latter option is valid only for orbits
at largedistances, but not for particle trajectories in thevicinity
of the BHs.
Several PNPs exist in the astrophysical literature which

are mostly prescribed either in an ad hoc manner or are
devised employing certain explicit method [20,22–33],
mostly developed for Schwarzschild and Kerr BHs. A
PNP corresponding to SDS metric has also been prescribed
[34] based on the method in [30–32] for a Keplerian
rotation flow which can be more appropriately used to
study gas dynamical properties of accretion disk, and
thereby concentrating mostly in its use in accretion tori
[35], though it has also been recently used to investigate the
influence of the repulsive cosmological constant on the
kinematics of Small and Large Magellanic cloud [10].
Although notionally PNPs are aimed at mimicking GR
geometries, however, they, in general, are devoid of their
uniqueness to effectively describe the GR features in its
entirety. To replicate GR features, PNPs lay emphasis
mostly to reproduce marginally stable and marginally
bound orbits. Moreover, in general, they are unable to
reproduce observationally verified tests in general relativity
like geodetic precession, gravitational bending of light or
gravitational time delay.
If the effects of cosmological constant need to be

properly revealed in different astrophysical phenomena
in local galactic scales circumventing the complex GR
treatment, it is desirable to have a correct Newtonian
analogous-like potential corresponding to SDS geometry
that will reproduce all the salient features of the SDS metric
with reasonable accuracy and extensively mimic a wide
spectrum of GR behavior. Recently, Tejeda and Rosswog
[36] derived a generalized effective potential for a
Schwarzschild BH based on a proper axiomatic procedure.
Their generalized potential, which has an explicit depend-
ence on radial velocity and orbital angular velocity of test
particle, reproduces exactly several relativistic features of
corresponding Schwarzschild geometry. Later, the work
has been extended for the Kerr BH [37]. In the present
work, we would derive a modified Newtonian-like potential
from the conserved Hamiltonian of the test particle motion
[36], which would then be an approximate relativistic
potential analogue corresponding to the SDS metric. We
would show from a detailed investigation that the derived
potential, which depends on the velocity of the test particle,
reproduces almost all of the corresponding GR features
with remarkable accuracy. It would be worthy enough to
explore the feasibility of measurement of cosmological
constant in local-scales or in galactic scales, and further to
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explore its influence on the dynamics on kiloparsecs-scale
structure and beyond in the local galaxies, or the accretion
related scenarios/conditions where cosmological constant
may contribute significantly, in which case, the proposed
modified Newtonian-like potential analogue to SDS
geometry considering it as a background metric, would
be of remarkable use.
The plan of the paper is the following. In the next

section, we would formulate the approximate relativistic
potential analogue in the Newtonian framework corre-
sponding to both SDS and Schwarzschild–anti–de Sitter
(SADS) spacetimes simultaneously, starting from the con-
served Hamiltonian of the system in the low energy limit of
the test particle motion [36]. Subsequently in Sec. III, we
evaluate the geodesic equations of motion and extensively
analyze their solutions corresponding to SDS geometry,
with both our analogous potential and general relativity, for
the current accepted value of Λ ∼ 10−56 cm−2. In Sec. IV
we explicitly investigate the influence of repulsive Λ on
Bondi accretion rate. Finally, we end in Sec. V with
comments and discussion.

II. FORMULATIONOF AMODIFIEDNEWTONIAN
ANALOGOUS POTENTIAL CORRESPONDING

TO SDS/SADS GEOMETRY

For a general class of static spherically symmetric
spacetimes of the form (in the standard coordinates system)

ds2 ¼ −fðrÞc2dt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2 and f(r) is the generic metric
function, the Lagrangian density of a particle of mass m is
given by

2L ¼ −fðrÞc2
�
dt
dτ

�
2

þ 1

fðrÞ
�
dr
dτ

�
2

þ r2
�
dΩ
dτ

�
2

: ð2Þ

From the symmetries, one obtains two constants of
motion corresponding to two ignorable coordinates t and
Ω as given by

Pt ¼
∂L
∂~t ¼ −c2fðrÞ dt

dτ
¼ constant ¼ −ϵ ð3Þ

and

PΩ ¼ ∂L
∂ ~Ω

¼ r2
dΩ
dτ

¼ constant ¼ λ; ð4Þ

where, ϵ and λ are specific energy and generalized specific
angular momentum of the orbiting particle, respectively.
Here, ~t and ~ϕ represent the derivatives of “t” and “ϕ” with
respect to proper time τ. It needs to be mentioned that from
now onwards, throughout the paper, the terms related to
momentum, energy/Hamiltonian, potential and frequency,

all of which are in fact their specific quantities, would be
addressed without the using of word “specific.” Using
Eq. (3) we then can write

dt
dτ

¼ ϵ

c2
1

fðrÞ : ð5Þ

Using 2L ¼ gαβpαpβ ¼ −m2c2 and substituting Eqs. (3)
and (4) in Eq. (2), we obtain

�
dr
dτ

�
2

¼
�
ϵ2

c2
− c2

�
− c2½fðrÞ − 1� − fðrÞ λ

2

r2
: ð6Þ

By considering a locally inertial frame for a test particle
motion, we write EGN ¼ ðϵ2 − c4Þ=2c2 (“GN” symbolizes
“GR Newtonian”). Second term in the above definition
of EGN is the rest mass energy of the particle which
is subtracted from relativistic energy owing to low energy
limit.
From Eqs. (5) and (6) and using Eq. (4), we get

dr
dt

¼ c2

ϵ
fðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EGN − c2½fðrÞ − 1� − fðrÞ _Ω2 r2

fðrÞ

s
; ð7Þ

where _Ω is the derivative with respect to coordinate time t.
Using the condition for low energy limit ϵ=c2 ∼ 1, as we
prefer to, EGN is given by

EGN ¼ 1

2

�
dr
dt

�
2 1

fðrÞ2 þ
r2 _Ω2

2fðrÞ þ
c2

2
½fðrÞ − 1�: ð8Þ

In the asymptotic nonrelativistic limit EGN reduces to
the Newtonian mechanical energy (¼ Hamiltonian of the
motion). The generalized Hamiltonian EGN in the low
energy limit should then be equivalent to the Hamiltonian
in Newtonian regime. The Hamiltonian in the Newtonian
regime with the generalized analogous potential in spheri-
cal polar geometry will then be equivalent to EGN in Eq. (8).
Thus

EGN ≡ 1

2
ð_r2 þ r2 _Ω2Þ þ VGN − _r

∂VGN

∂ _r − _Ω
∂VGN

∂ _Ω
; ð9Þ

where T ¼ 1=2ð_r2 þ r2 _Ω2Þ is the nonrelativistic kinetic
energy of the test particle. _r is the derivative with respect to
coordinate time t. VGN is the analogous potential which
would then be given by

VGN ¼ c2½fðrÞ − 1�
2

−
½1 − fðrÞ
2fðrÞ

�
1þ fðrÞ
fðrÞ _r2 þ r2 _Ω2

�
:

ð10Þ

VGN, thus, is the generalized three dimensional potential in
spherical geometry in Newtonian analogue, corresponding to
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any generalized static GR metric given in Eq. (1), with test
particlemotion in the lowenergy limit.Note that, the first term
on the right-hand side of the potential contains the explicit
information of the source. For a purely spherically symmetric
gravitational mass with zero charge and without any external
effects, the classical Newtonian gravitational potential
−GM=r will be recovered from this term. The second term
is the explicit velocity dependent andcontains the information
of the test particle motion, thus contributing to the modifica-
tion of Newtonian gravity.
For SDS/SADS metric the metric function fðrÞ ¼ 1−

2rs
r − Λr2

3
, where Λ is the cosmological constant. Λ > 0

represents the SDS metric with spatially inflated universe,
where Λ < 0 represents a SADS metric corresponding
to negative vacuum energy density. rs ¼ GM=c2. From
Eq. (10) we then obtain the three dimensional generalized
Newtonian analogous potential in spherical geometry,
corresponding to SDS/SADS geometry in the low energy
limit, which is given by

VDS=ADS ¼ −
�
GM
r

þ Λc2r2

6

�
−

 
2rs þ Λr3

3

r − 2rs − Λr3
3

!

×

 
r − rs − Λr3

6

r − 2rs − Λr3
3

_r2 þ r2 _Ω2

2

!
; ð11Þ

where, subscript “DS/ADS” denotes Schwarzschild–de
Sitter/anti–de Sitter. WithΛ ¼ 0, the above potential reduces
to the potential corresponding to the simplest static
Schwarzschild geometry, given in [36]. M≡MBH is the
mass of the BH/central object. The denominator in the second
termof thepotential contains the exactmetric functionfðrÞ of
SDS/SADSgeometry, andhence thepotentialVDS=ADS would
reproduce the exact location of the event horizon and
cosmological horizon and other horizon properties, as that
in full general relativity. Introducing a dimensional parameter
or cosmological parameter ζ ¼ Λr2s=3, the vanishing cubic
polynomial fðrÞ with repulsive cosmological constant
(Λ > 0) would give two real positive roots representing the
locations of two horizons, namely the BH horizon and
the cosmological horizon. The locations of these two

horizons are then given by rH ¼ 2ffiffiffiffi
3ζ

p cos ½π
3
þ cos−1ð3 ffiffiffiffi3ζp Þ

3
�

and rCM ¼ 2ffiffiffiffi
3ζ

p cos ½π
3
− cos−1ð3 ffiffiffiffi3ζp Þ

3
�, respectively.

In the next section, we will analyze different aspects of
particle dynamics in the gravitational field of SDS geom-
etry in the modified Newtonian framework.

III. ORBITAL DYNAMICS AROUND
SDS SPACETIME

In the Newtonian framework, the Lagrangian of a
particle in the presence of the SDS analogous potential
VDS per unit mass is given by

LDS ¼
1

2

�
r2 _r2

ðr− 2rs − Λr3
3
Þ2 þ

r3 _Ω2

r− 2rs − Λr3
3

�
þGM

r
þΛc2r2

6
;

ð12Þ

where _Ω2 ¼ _θ2 þ sin2θ _ϕ2. Here overdots denote the
derivative with respect to coordinate time t. We then
compute the conserved angular momentum and
Hamiltonian using VDS, given by

λDS ¼
r3 _Ω

r − 2rs − Λr3
3

ð13Þ

and

EDS ¼
1

2

�
r2 _r2

ðr− 2rs − Λr3
3
Þ2 þ

r3 _Ω2

r− 2rs − Λr3
3

�
−
GM
r

−
Λc2r2

6
;

ð14Þ

respectively. Using Eqs. (13) and (14), we obtain _r that
uniquely describes the test particle motion, which is given
by

dr
dt

¼ r − 2rs − Λr3
3

r

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EDS þ

2GM
r

þ Λc2r2

3
−
�
r − 2rs −

Λr3

3

�
λ2DS
r3

s
;

ð15Þ

which is exactly equivalent to _r in general relativity in low
energy limit. Replacing _Ω and _r in Eq. (11) using Eqs. (13)
and (15) respectively, SDS analogous potential can be
written in terms of conserved Hamiltonian EDS and angular
momentum λDS, given by

VDS ¼ −
�
GM
r

þ Λc2r2

6

�
−
�
2rs þ

Λr3

3

�

×

��
r − 2rs −

Λr3

3

�
λ2DS=ADS

r4

�
1

2
−
r − rs − Λr3

6

r

��

−
�
2rs þ

Λr3

3

��
1

r2

�
r − rs −

Λr3

6

�

×

�
2EDS=ADS þ

2GM
r

þ Λc2r2

3

��
: ð16Þ

In Fig. 1(a) we show the variation of VDS in the form
given in Eq. (16) with the radial distance r, corresponding
to Λ > 0 with Λr2s ¼ 1 × 10−27 in the low energy limit of
test particle motion. The stated value of Λr2s corresponds to
Λ ¼ 10−56 cm−2 for MBH ∼ 109M⊙. Unless stated explic-
itly, we shall use such a combination of Λ and MBH
throughout the paper. The profile of VDS clearly shows both
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the BH event horizon as well as the cosmological horizon.
With Λr2s ∼ 1 × 10−27, cosmological horizon extends up to
∼5.5 × 1013rs. For a BH of ∼109M⊙, it gives a radius of
∼5.5 × 103 megaparsec. Figure 1(b) resembles that of 1(a)
but for semirelativistic test particle energy (EDS ∼ 0.5).

Although the locations of BH event horizon as well as
cosmological horizon remain unaltered with the increase in
test particle energy, nevertheless, there is a noticeable
change in the magnitude of VDS at both horizon radii. It
is found that λDS has no effect on the nature of potential just
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FIG. 1. Variation of potential VDS [Eq. (16)] with radial distance r. The solid and long-dashed lines in Fig. 1(a) correspond to VDS in
low energy limit EDS ∼ 0 for SDS geometry with Λr2s ¼ 1 × 10−27 with λDS ¼ ð0; 9.5Þ, respectively. The short-dashed curve represents
Schwarzschild spacetime (Λ ¼ 0). Figure 1(b) is for semirelativistic energy EDS ∼ 0.5, otherwise resemble 1(a). Figures 1(c) and 1(d)
correspond to effective potential VEff

DS, with other parameters same to those in Figs 1(a) and 1(b), respectively. Figure 1(e) corresponds to
GR effective potential for SDS geometry with the same physical parameters as those in Figs. 1(c),(d), but independent of conserved
energy. EDS and λDS are expressed respectively in units of c2 and GM=c.

NEWTONIAN ANALOGUE OF SCHWARZSCHILD–DE … PHYSICAL REVIEW D 90, 063008 (2014)

063008-5



beyond ∼100rs. These figures indicate that with the
increase in the value λDS, inner horizon shifts to larger radii.
Figures 1(c) and 1(d) show the variation of effective

potential VEff
DS ¼ VDS þ λ2DS

2r4 ðr − 2rs − Λr3
3
Þ2 for the same

value of Λ as in Figs. 1(a),(b), corresponding to SDS
spacetime. The nature of the profiles resemble that in
Figs. 1(a),(b), however VEff

DS attains a higher peak as
compared to VDS in the vicinity of inner horizon for values
of λDS ≳ 3.5. Figure 1(c) shows the variation of “GR
effective potential” [see Eq. (30)] for the same values of
angular momentum.
In Fig. 2(a), we depict the difference in the magnitude

between VDS in Eq. (16) and the analogous potential for
Schwarzschild metric in [36] ðVSWÞ, with radial distance r.
For semirelativistic energy of test particle, the magnitude of
VDS may even exceed the corresponding Schwarzschild
value by ≳1.6c2 at the outer radii near the cosmological
horizon. In Fig. 2(b), we show the relative deviation (in
percentage) between the VDS and VSW, as a function of
radial distance r. For any arbitrary physical quantity F, the
relative deviation ðξıÞ is defined as ξι ¼ 2j FDS−F SW

FDSþF SW
j which

essentially implies deviation between the analogous poten-
tial for SDS and Schwarzschild geometry relative to their
average value. The subscript “SW” represents correspond-
ing quantities in “Schwarzschild” geometry.
It is found from the Fig. 2(b) that ξι sharply increases

with r, especially, at the outer radii. At smaller distances ξι
is very small, and detecting such small deviations

experimentally does not seem to be possible at present
or in near future. At what distance ξι can be said as non-
negligible depends entirely on experimental accuracy. The
Solar system experiments presently are capable to detect
any deviation from general relativity at 10−5 level. If we
demand a similar experimental accuracy, we can then say
that when ξι attains a value of ∼10−4 (or equivalently
∼0.01%) the relative deviation may be considered to
be non-negligible with the corresponding distance
r ∼ 8.4 × 107rs. With this consideration, this then implies
that beyond such radius the influence of Λ cannot be
neglected. At r≳ 8.5 × 108rs, the relative deviation
becomes substantial with (ξι ≳ 10%). Figure 2(b) also
shows that ξι increases rapidly up to a certain radius
r ∼ 9 × 109rs, beyond which it mostly remains constant.
Around this particular radius, the Λ effects become too
dominating, which renders VSW to become negligible in
comparison to that of VDS. We describe this radius r ∼ 9 ×
109rs as some upper bound ð≡xmaxÞ, where ξι attains
values of ∼200%. For MBH ∼ 109M⊙, in accordance with
the BHmass in many AGNs/quasars or in massive galaxies,
the lower bound in rð≡xminÞ, gives a radius of ∼8 kpc,
whereas the upper bound xmax gives a radius of ∼900 kpc.
Thus, the region between xmin and xmax or a region
approximately existing between few kiloparsecs to a few
100 kpc would be strongly affected by cosmological
constant Λ, thereby, directly influencing the kiloparsecs-
scale structure in massive galaxies, in the local observable
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FIG. 2. Variation of the difference between VDS (Λr2s ¼ 1 × 10−27) and VSW with r. Solid and short-dashed curves in Fig. 2(a)
show the difference between VDS and VSW, corresponding to EDS ∼ 0 and EDS ∼ 0.5, respectively. Solid curve in Fig. 2(b) shows the
variation of the relative deviation (in percentage) ξ{ with r, for both EDS ∼ 0 and EDS ∼ 0.5 (which coincide). The two extreme
vertical dashed lines, denoted as xmin and xmax (in units of rs, correspond to the value of ξ{ ∼ 0.01% and ∼200%, respectively). The
vertical dashed line in the middle represents r at which ξ{ ∼ 10%. EDS is expressed in units of c2. Note that λDS has no effect on the nature
of potentials when r > 100rs.
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universe. With a similar BH mass, the region beyond

80 kpc would have most significant Λ effects, where ξι
would be greater than ∼10%.
Next we obtain the equation of the orbital trajectory

using Eqs. (13) and (15), as given by�
dr
dΩ

�
2

¼ r4

λ2DS=ADS

�
2EDS=ADS þ

2GM
r

þ Λc2r2

3

−
�
r − 2rs −

Λr3

3

�
λ2DS=ADS

r3

�
: ð17Þ

Although Eq. (17) is derived with the condition of low
energy limit, it is exactly the same as that in full general
relativity which one can easily obtain using Eqs. (4) and (7)
with relevant fðrÞ. To furnish a complete behavior of the
particle dynamics in SDS background, we obtain the
equations of motion of the test particle in the presence
of VDS from the Euler-Lagrange equations in spherical
geometry which are given by

̈r ¼
�
−
GM
r2

þ Λc2r
3

��
r − 2rs − Λr3

3

r

�2

þ 2ðrs − Λr3
3
Þ

rðr − 2rs − Λr3
3
Þ _r

2 þ ðr − 3rsÞð_θ2 þ sin2θ _ϕ2Þ; ð18Þ

ϕ̈ ¼ −
2_r _ϕ

r

�
r − 3rs

r − 2rs − Λr3
3

�
− 2 cot θ _ϕ _θ ð19Þ

and

θ̈ ¼ −
2_r _θ
r

�
r − 3rs

r − 2rs − Λr3
3

�
þ sin θ cos θ _ϕ2; ð20Þ

respectively. ϕ̈ and θ̈ equations are exactly the same to that
in general relativity, whereas ̈r equation in (18) corresponds
to that in general relativity in the low energy limit. The
corresponding ̈r equation in general relativity is given by

̈r ¼
�
−
GM
r2

þ Λc2r
3

��
r − 2rs − Λr3

3

r

�2 c4

ϵ2

þ 2ðrs − Λr3
3
Þ

rðr − 2rs − Λr3
3
Þ _r

2 þ ðr − 3rsÞð_θ2 þ sin2θ _ϕ2Þ: ð21Þ

It needs to be mentioned that previously a PNP has been
prescribed in [34] corresponding to SDS geometry based
on a method adopted by [30–32], which has been formu-
lated by considering a Keplerian rotation profile of the test
particle motion. The form of the PNP is given by

ΦðrÞ ¼ r3 Λ
3
− 3rðΛ

3
Þ1=3 þ 2

2½1 − 3ðΛ
3
Þ1=3�ð2 − rþ r3 Λ

3
Þ ; ð22Þ

which is derived on the premise that ΦðrÞ ¼ 0 at the static
radius, preserving the analogy that the gravitational poten-
tial tends to zero in asymptotically flat spacetime. This
potential does not have any dependence on test particle
velocity. With Λ ¼ 0, the PNP in Eq. (22) reduces to that of
Paczyński-Witta potential corresponding to Schwarzschild
geometry. The corresponding GR behavior is mimicked
through this PNP by intending only to reproduce the
marginally stable and bound orbits for circular orbital
trajectory. This is in sharp contrast with the velocity
dependent potential VDS, which, a priori, focused on to
replicate the general relativity by resembling the geodesic
equations of motion. This ensures that most of the GR
features could be reproduced accurately. The equation of the
orbital trajectory and the equations of motion for the
corresponding PNP in Eq. (22) in spherical geometry are
then given by

�
dr
dΩ

�
2

¼ r4

λ2

�
2Eþ r3 Λ

3
− 3rðΛ

3
Þ1=3 þ 2

2½1 − 3ðΛ
3
Þ1=3�ð2 − rþ r3 Λ

3
Þ −

λ2

r3

�
;

ð23Þ

̈r ¼ −
ð1 − r3 Λ

3
Þ

ð2 − rþ r3 Λ
3
Þ2 þ rð_θ2 þ sin2θ _ϕ2Þ; ð24Þ

ϕ̈ ¼ −
2_r _ϕ

r
− 2 cot θ _ϕ _θ ð25Þ

and

θ̈ ¼ −
2_r _θ
r

þ sin θ cos θ _ϕ2: ð26Þ

It is seen that the trajectory equation as well as the
equations of motion corresponding to the PNP in Eq. (22)
do not at all resemble the equivalent relations in general
relativity and hence this PNP cannot reproduce the features
of SDS spacetime accurately. Notwithstanding, in the next
few sections we would compare the dynamical behavior of
the test particle motion obtained with VDS and the PNP in
Eq. (22) as well as with full general relativity, over the
entire spatial regime relevant for SDS background.

A. Particle dynamics along circular orbit

In order to compare the behavior of the particle motion in
presence of VDS and those in general relativity, we compute
the dynamical variables for the simplest circular orbit
trajectory. With the conditions for the circular orbits
_r ¼ 0 and ̈r ¼ 0, we obtain corresponding angular momen-
tum λCDS, Hamiltonian EC

DS and the orbital angular velocity
_ΩC
DS with VDS using Eqs. (13), (15) and (18), given by

λCDS ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM − Λc2r3

3

r − 3rs

s
; ð27Þ
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EC
DS ¼ −

GM
2r

�
r − 4rs
r − 3rs

�
þ
�

Λc2r3

6ðr − 3rsÞ
��

Λr2

3
þ 4rs

r
− 2

�
ð28Þ

and

_ΩC
DS ¼

r − 2rs − Λr3
3

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM − Λc2r3

3

r − 3rs

s
; ð29Þ

respectively. With Λ ¼ 0, all the above equations get
reduced to that obtained in Schwarzschild geometry. To
compute these variables in exact SDS geometry we use the
corresponding GR effective potential, given by

VGR
eff ðrÞ ¼

�
1 −

2rs
r

−
Λr2

3

��
c2 þ λ2

r2

�
: ð30Þ

As usual, circular orbits occur in general relativity
when dr=dτ ¼ 0 and ∂VGR

eff =∂r ¼ 0. We obtain
energy ϵ for particle motion in circular orbit, given
by

ϵ

c2
¼ ðr − 2rs − Λr3

3
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðr − 3rsÞ
p : ð31Þ

Angular momentum (λC) and the equivalent Hamiltonian
EC ½¼ ðϵ2 − c4Þ=2c2� for circular orbits in general relativity
then exactly resemble the corresponding values obtained

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

0 2 4 6 8 10 12 14

P
ot

en
tia

l  
(u

ni
ts

 o
f c

2
)

log (r/rs)

(a)

-2e-08

-1.5e-08

-1e-08

-5e-09

 0

7 8 9 10 11

P
ot

en
tia

l  
(u

ni
ts

 o
f c

2
)

log (r/rs)

(b)

-2

-1.5

-1

-0.5

 0

11 12 13 14

P
ot

en
tia

l  
(u

ni
ts

 o
f c

2
)

log (r/rs)

(c)

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

1 2 3

P
ot

en
tia

l  
(u

ni
ts

 o
f c

2
)

log (r/rs)

(d)

FIG. 3. Variation of potential VDS and the PNP in Eq. (22) with r corresponding to circular motion trajectory for Λr2s ¼ 1 × 10−27. The
solid and short-dashed lines correspond to VDS in Eq. (11) and PNP in Eq. (22), respectively. Figure 3(a) covers the entire distance,
Figs. 3(b),(c)focus only on the outer radii, near to the static radius and the cosmological horizon, respectively, whereas Fig. 3(d) focuses
on the inner radii near the BH event horizon.
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with VDS, given by Eqs. (27) and (28) respectively. The
orbital angular velocity in general relativity is then given by

_ΩC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM
r3

−
Λc2

3

r
; ð32Þ

whose analytical expression is not exactly equivalent to
_ΩC
DS in Eq. (29). Note that the circular orbit corresponding

to SDS metric exists down to 3rs in similarity to that in
Schwarzschild geometry which represents the null hyper-
surface. The photon orbit is thus independent of the
cosmological constant. For PNP in Eq. (22), the corre-
sponding expressions of λC, EC and _ΩC are given in [34].
The said PNP does not reproduce the correct photon orbit.
In Fig. 3 we show the appropriate comparison of the

nature of potential VDS in Eq. (11) and that of PNP in
Eq. (22), corresponding to test particle motion in circular
orbit. In the very inner and outer regions near to both the
BH and cosmological horizons, the behavior of these
potentials differ significantly [Fig. 3(c),(d)]. One of the
major distinctive features of the PNP in Eq. (22) is that it
becomes zero at the static radius ð∼1.4 × 109rsÞ, whereas
VDS attains a value of ∼ − 10−9c2 [Fig. 3(b)]. In the
intermediate region, the nature of the potentials remain
mostly similar. It is seen that at r≳ 108rs, where the effect
of Λ is prominent, the PNP in Eq. (22) differs significantly
as compared to VDS. This radius approximately resembles
xmin in Fig. 2(b).
In Fig. 4, we furnish the variation of λCDS corresponding

to VDS which exactly coincides with that in general
relativity, for the entire spatial regime. In Fig. 4(b), we
compare the nature of λCDS with that corresponding to the

PNP in Eq. (22) at the outer radii. The figures show that for
SDS spacetime, there is a clear static radius at the outer
radii where angular momentum abruptly falls to zero value.
For BH of ∼109M⊙, with Λ ¼ 10−56 cm−2, the static
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FIG. 4. Variation of angular momentum with r for circular orbit trajectory. The short-dashed curve in Fig. 4(a) corresponds to VDS with
Λr2s ¼ 1 × 10−27 that coincideswith the correspondingGR results. The solid curves in Figs. 4(a) and 4(b) are due toVSW. The long-dashed
line in Fig. 4(b) corresponds to VDS which coincides with the angular momentum profile corresponding to the PNP given in Eq. (22).
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FIG. 5. Radial variation of the relative deviation (in percentage)
in angular momentum. The two extreme vertical dashed lines,
represented by xmin and xmax, correspond to value of ξ{ ∼ 0.01%
and ∼200%, respectively. The curve is truncated at xmax which
also corresponds to the static radius. The vertical dashed line in
the middle represents r at which ξ{ ∼ 10%.
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radius will be located at ∼140 kpc. Figure 4(b) shows that
the angular momentum for circular orbit trajectory corre-
sponding to VDS as well as for the PNP in Eq. (22) behaves
quite similarly at the outer radii, and coincides near the
static radius. However, due to the profound effect of Λ on
the outer radii, the nature of λCDS at the outer radii differs
significantly from that corresponding to VSW, especially
beyond 4 × 108rs. In the inner radii, where the effect of Λ is
negligible, λCDS show appreciable deviation from the angular
momentum profile corresponding to the PNP in Eq. (22).
For a comparison of the profiles of different PNPs in the
inner radii, the readers should see [36]. Resembling
Fig. 2(b), in Fig. 5, we show the relative deviation ðξιÞ

in angular momentum as a function of radial distance
r, showing approximately similar behavior as that in
Fig. 2(b). For this profile (Fig. 5), we found that the value
of xmin ∼ 8.4 × 107 and the value of xmax ∼ 1.4 × 109,
corresponding to the value of ξι ∼0.01% and ∼200%,
respectively. At xmax, which is also the static radius, the
curve gets truncated. At r≳ 8 × 108rs, where the effect of
Λ is significant, large relative deviation (≳10%) in angular
momentum profile is noticed.
Figure 6 shows the variation of conserved Hamiltonian

EC
DS with r, which is compared with the Hamiltonian

corresponding to the PNP in Eq. (22) and the
Hamiltonian corresponding to VSW. It needs to be noted
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FIG. 6. Variation of Hamiltonian with r for test particle in circular orbit corresponding to Λr2s ¼ 1 × 10−27. The solid and long-dashed
lines in Fig. 6(a) are for the Hamiltonian corresponding to VSW and VDS, respectively. The profile of EC

DS corresponding to VDS coincides
with that in general relativity. The solid, long-dashed and short-dashed lines in Figs. 6(b),(c) are for the Hamiltonian corresponding to
VSW, VDS and the PNP in Eq. (22), respectively. Figures 6(b),(c) focus on the outer radii; near to the static radius and the cosmological
horizon, respectively. Figure 6(d) resembles Figs. 2(b) and 5, however, showing the relative deviation in Hamiltonian (in percentage), as
a function of radial distance r.
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that EC
DS corresponding to VDS exactly resembles the

corresponding expression in general relativity. In the outer
region of the test particle motion in circular orbit, where the
effect of repulsive Λ is prominent [Figs. 6(b),(c)], there is a
marked difference between the profile of conserved
Hamiltonian corresponding to VDS and that corresponding
to the PNP in Eq. (22), especially at r≳ 5 × 107rs. This
radius r ∼ 5 × 107rs approximately resembles the location
xmin, the lower bound in r, at which the relative deviation
ðξιÞ in the Hamiltonian attains the value of ∼0.01% [see
Fig. 6(d)]. In fact, the value of xmin in this case is∼5.3 × 107.
Around static radius ð∼109rsÞ, the Hamiltonian correspond-
ing to the PNP in Eq. (22) attains zero value [Fig. 6(b)],
unlike the case of EC

DS. In the vicinity of cosmological
horizon ð∼5.5 × 1013rsÞ, the Hamiltonian corresponding to
the PNP in Eq. (22) diverges, showing a contrasting behavior
with respect to the profile of EC

DS. E
C
DS after attaining a

certain negative value becomes zero at a large outer radius,
which is the outermost bound orbit [Fig. 6(c)]. Due to the
substantial effect of Λ, EC

DS deviates significantly from that
corresponding to VSW at r≳ 5.5 × 108rs [Fig. 6(b)], which
precisely resembles the radius at which ξι attains the value of
∼10% [Fig. 6(d)]. Resembling Fig. 2(b), here too, xmax is
located at that radius where ξι attains a value of ∼200%. The
value of xmax is then ∼7.5 × 109.
In the inner radii of the test particle in the circular orbit,

where the effect of Λ is negligible, EC
DS shows appreciable

deviation from the Hamiltonian profile corresponding to
the PNP in Eq. (22). We do not show the corresponding
profiles separately in this region, as already been furnished
in [36].

In Fig. 7(a), instead of the profile of orbital angular
velocity _ΩC

DS, we depict the profile of corresponding
angular frequency ωC

DSð¼ _ΩC
DS=2πÞ in r, which truncates

at the static radius at ∼1.4 × 109rs. At outer radii where the
effect of Λ is quite substantial, the value of angular
frequency of the particle in circular orbit is negligible.
Owing to which, ωC

DS, its corresponding GR counterpart,
angular frequency corresponding to VSW and the angular
frequency corresponding to the PNP in Eq. (22), all
coincide. Hence, we do not show the angular frequency
profile of the test particle motion in the circular orbit
separately, at the outer radii, as well the corresponding
relative deviation profile. However, in the inner radii, where
the effect of Λ is negligible, ωC

DS deviates from the
corresponding GR result by a maximum of 6%.
Moreover, the angular frequency profile of the particle
in the circular orbit corresponding to the PNP in Eq. (22)
shows a huge deviation from the profile of ωC

DS, as well
as from the corresponding GR result, with an error
margin of ∼75%. The corresponding orbital angular
velocity profiles in the inner radii have already been
shown in [36].

B. Orbital perturbation and apsidal precession

As discussed in the previous subsection about the
importance of the repulsive cosmological constant on the
dynamical behavior of the particle orbits and their stability
at the outer radii near the static radius, it is necessary for us
to investigate the perturbative effects on the orbital dynam-
ics, which would indeed be affected by the positive
cosmological constant around the cosmological horizon.
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FIG. 7. The variation of the angular frequency and the epicyclic frequency with r for the test particle in circular orbit. Solid, long-
dashed and short-dashed curves in Fig. 7(a) depict angular frequency profiles corresponding to VDS with Λr2s ¼ 1 × 10−27, the GR
counterpart, and the PNP in Eq. (22) respectively. Note that ωC

DS coincides with the angular frequency profile corresponding to VSW,
both in the inner as well as at the outer radii. Figure 7(b) depicts the variation of epicyclic frequency with r, corresponding to VDS.
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The perturbative effects would plausibly have substantial
influence on the accretion flow stability in the outer regions
in SDS background, in the expanding universe. We follow
our analysis by computing the epicyclic frequency for small
perturbation of the particle orbit in circular trajectory.
It should be reminded that no analytical relation of
epicyclic frequency in full general relativity corresponding
to SDS spacetime exists at present, unlike the cases of
Schwarzschild and Kerr BHs [38]. Henceforth, we evaluate
the relation for epicyclic frequency using our correct
SDS analogous potential VDS. We restrict ourselves in
the equatorial plane of test particle orbit in a circular
trajectory. We then perturb r and ϕ and their derivatives
accordingly: r → rþ δr, _r → δ_r, ̈r → δ̈r and ϕ → ϕþ δϕ,
_ϕ → _ϕjC þ δ _ϕ, ϕ̈ → δϕ̈ respectively. Using Eqs. (18), (19)
and (20), the linearized perturbed equations of motion are
then obtained as

δ̈r ¼ δr

�
_ϕ2jC þ ðr − 2rs − Λr33Þ

�
2GM
r5

ðr − 4rsÞ

þ Λc2

3r

�
1þ 4rs

r
−
5Λr2

3

���
þ 2 _ϕjCðr − 3rsÞδ _ϕ;

ð33Þ

δϕ̈ ¼ −
2 _ϕjC
r

�
r − 3rs

r − 2rs − Λr3
3

�
δ_r ð34Þ

and

δθ̈ ¼ − _ϕ2jCδθ; ð35Þ

respectively. Here, _ϕjC is the orbital angular velocity of the
particle motion in the circular orbit in equatorial plane. We
concentrate ourselves in computing only the radial epicy-
clic frequency as it is more significant. Using Eqs. (33) and
(34), with the following relations of perturbed quantities
δr ¼ δr0expικt and δϕ ¼ δϕ0expικt for harmonic oscilla-
tions, where κ is the radial epicyclic frequency and δr0 and
δϕ0 are amplitudes (see [38]), we eventually obtain the
expression for radial epicyclic frequency κ corresponding
to VDS after rigorous algebra, given by

κ ¼
�
r − 2rs − Λr3

3

r − 3rs

�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
GM
r5

ðr − 6rsÞðr − 2rsÞ −
Λc2

3r2

�
2ðr − 4rsÞð2r − 3rsÞ −

Λr3

3
ð4r − 15rsÞ

��s
: ð36Þ

The relation in Eq. (36) reduces to that in Schwarzschild
geometry with Λ ¼ 0 whose value lies within a maximum
error of just ∼6%, as compared to the GR result. Although
the radial epicyclic frequency κ has been derived with SDS
analogous potential, we anticipate that this relation could
also be accurately used in full GR framework, as the effect
of Λ can only be realized at large outer radii from the
central object, where the relativistic effect will itself be
diminishing. As no other effective expressions for epicyclic
frequency corresponding to SDS geometry is known, in
Fig. 7(b), we only show the variation of epicyclic frequency
corresponding to VDS with r. Resembling ωC

DS, the value of
κ at the outer radii is negligible. Consequently, the profile of
epicyclic frequency corresponding to VDS coincides with
that corresponding to VSW, both in the inner as well as at
the outer radii, and hence the corresponding relative
deviation would also be negligible. In the inner radii,
where the effect of Λ is negligible, the PNP in Eq. (22)
reduces to Paczyński-Witta potential. The epicyclic fre-
quency profile corresponding to this potential shows a huge
deviation from the profile corresponding to VDS by over an
error margin of ∼75% (see [36]).
Before analyzing the dynamics of orbital trajectory, we

display the profile of the radial velocity vr (see Fig. 8) of

the test particle falling radially towards the central BH in
the SDS background. The expression of vr, here, solely
depends on the energy EDS of the test particle motion. In
Figs. 8(a),(b) we show the profiles of vr corresponding to
VDS, VSW, and the PNP in Eq. (22), for the test particle with
EDS ∼ 0 and EDS ∼ 0.5, respectively. Expression for vr
corresponding to VDS coincides with the GR expression. In
Figs. 8(c),(d), we depict the detailed nature of the corre-
sponding profiles at the outer radii which is our region of
interest, where the effect of Λ is significant. The figures
show that vr profiles corresponding to the PNP in Eq. (22)
distinctly differ, rather show opposite behavior from vr
corresponding to VDS at the outer radii, at r≳ 6 × 1012rs.
For semirelativistic/relativistic test particle energy, the
radial velocity corresponding to the PNP in Eq. (22) even
surpasses velocity of light at that radii, thus showing
physically inconsistent behavior [Figs. 8(b),(d)]. In
Figs. 8(e),(f), we show the profiles of relative deviation
ðξιÞ in vr, corresponding to EDS ∼ 0 and EDS ∼ 0.5,
respectively. xmin and xmax corresponding to vr for EDS ∼
0 are located at r ∼ 1 × 108rs and r ∼ 5.8 × 1010rs, at
which ξι attains the value of ∼0.01% and ∼200%, respec-
tively. However, the relative deviation corresponding to
semirelativistic/relativistic test particle energy [Fig. 8(f)]
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show marked difference as compared to test particle motion
in the low energy limit, unlike that in Fig. 2(b). For the
semirelativistic/relativistic energy, vr corresponding to VDS
deviates from that corresponding to VSW at much outer
radii. xmin and xmax thus move further outward attaining the

value of ∼7 × 1011 and ∼5.5 × 1013, where ξı is ∼0.01%
and ∼200%, respectively. In Fig. 8(f), the curve gets
truncated at xmax which is also the cosmological horizon.
The dynamics of orbital trajectory can be obtained from

Eq. (17), which is identical to that obtained in general
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FIG. 8. Variation of radial velocity of the test particle falling radially towards the central BH. Solid, long-dashed and short-dashed
curves in Fig. 8(a) are for vr corresponding to VDS with Λr2s ¼ 1 × 10−27, VSW and PNP in Eq. (22), respectively, for test particle with
EDS ∼ 0. Figure 8(b) is similar to that in 8(a), however, for EDS ∼ 0.5. In Figs. 8(c),(d) which resemble Figs. 8(a),(b), the detailed nature
of the corresponding profiles at the outer radii is depicted. In Figs. 8(e),(f) we show the relative deviation (in percentage) in vr,
corresponding to EDS ∼ 0 and EDS ∼ 0.5, respectively. The vertical lines in the figures are same to those in Fig. 2(b). EDS is expressed in
units of c2.
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relativity, implying that the nature of trajectory of particle
orbit obtained with VDS would be similar to that in general
relativity. In Fig. 9 we show the profile of dr=dΩ with r
corresponding toΛr2s ¼ 1 × 10−27. The profiles indicate that
for semirelativistic/relativistic test particle energy, dr=dΩ
corresponding to VDS deviate from dr=dΩ corresponding to
VSW at much outer radii [Figs. 9(b),(d)], as compared to test
particle energy in the low energy limit [Figs. 9(a),(c)].
dr=dΩ profiles corresponding to PNP in Eq. (22) also show
different behavior, from that corresponding to VDS.
In Fig. 10(a), the elliptical-like trajectory of particle orbit

in the xy plane due to VDS, along with that due to VSW,
obtained from the equations of motion are shown.
The particle starts with a tangential initial velocity of

1.58114 × 10−5c from an apoapsis ra ¼ 8 × 108rs attain-
ing a constant eccentricity of magnitude 0.8. We obtained
the plot of elliptical trajectory using Cartesian transforma-
tion adopting the method of Euler-Cromer algorithm which
preserves energy conservation. The distinct precessional
effect can be seen around ∼80 kpc. This is precisely the
radius at which the ξı corresponding to the potential
[Fig. 2(b)] becomes greater than ∼10%. In Fig. 10(b),
we show the apsidal precession or the perihelion advance-
ment Ψ [given by Eq. (37)] as a function of eccentricity
which is identical to the GR results. This also guarantees
that the photon orbit trajectory obtained with VDS would
resemble that in general relativity, which is independent of
the cosmological constant.
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FIG. 9. Variation of dr=dΩ in radial direction r corresponding to Λr2s ¼ 1 × 10−27. The solid, long-dashed and short-dashed curves in
all the figures correspond to VDS, PNP in Eq. (22), and VSW. Figures 9(a) and 9(c) are for EDS ∼ 0 corresponding to angular momentum
λDS ¼ ð1.1; 9.5Þ, respectively. Figures 9(b) and 9(d) resemble Figs. 9(a),(c), however for EDS ∼ 0.5. EDS and λDS are expressed in units
of c2 and GM=c, respectively.
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Ψ ¼ Π − π ≡
Z

ra

rp

dϕ
dr

dr − π; ð37Þ

where Π is the usual half orbital period of the test particle.
rp and ra are periapsis and apoapsis of the orbit
respectively.

C. Stability and boundedness of circular orbit

We can obtain the last stable circular orbit using potential
VDS with the condition dλCDS=dr ¼ 0 or equivalently

3rsr − 18r2s − 4Λr4 þ 15Λr3rs ¼ 0; ð38Þ

which is exactly similar to that obtained in full general
relativity. Thus, VDS would accurately reproduce the last
stable circular orbit in general relativity. Also the last bound
circular orbit is obtained from Eq. (28) with EC

DS ¼ 0, and
by virtue, is similar to that in full general relativity. The
equivalent relation is

9rrs − 36r2s þ 6Λr4 − 12Λr3rs − Λ2r6 ¼ 0: ð39Þ

For cosmological parameter ζ ¼ 0, the familiar circular
orbit stability limit and the last bound circular orbit for the
Schwarzschild metric is recovered. Unlike the case in the
Schwarzschild geometry, circular orbits here become
unstable at both inner and outer radii. Equation (38) gives
two real positive roots. One of the roots is the last stable
circular orbit in the inner radii resembling the usual
Schwarzschild case. The other root is the maximum

possible circular stable orbit rSCmax at the outer radii which
is located near to the static radius. The location of rSCmax is
∼0.88 × 109rs, whereas the corresponding static radius is
located at ∼1.4 × 109rs. Resembling the case for stable
circular orbit, Eq. (39) gives two real positive roots,
corresponding to the marginally bound circular orbit in
the inner radii and the maximum possible bound circular
orbit rBCmax at the outer radii. Inner marginally bound circular
orbit is the usual limit corresponding to Schwarzschild
geometry. PNP in Eq. (22), too, accurately reproduces both
marginally stable and bound orbits corresponding to SDS
geometry. However, it needs to be noted that the test
particle in SADS background with negative Λ does not
yield any outermost stable or outermost bound circu-
lar orbit.
Although we have studied the entire test particle dynam-

ics with Λr2s ¼ 1 × 10−27 for BH of ∼109M⊙, however, in
Fig. 11, we will depict the variation of rSCmax and rBCmax with
Λr2s , and the corresponding values of the dynamical
variables for the test particle motion in circular orbit, in
order to see the effect of Λ on the stability of the orbits.
With the decrease in value of Λr2s , both rSCmax and rBCmax move
further outwards. For all values of Λr2s , rBCmax is located at
much outer radii as compared to that of rSCmax. We show the
variation of λCDS; E

C
DS and ωC

DS along rSCmax corresponding to
various values of Λr2s in Figs. 11(b),(c),(d), respectively,
which are identical to the GR results, as well as corre-
sponding to the PNP in Eq. (22). On the other hand, the
corresponding dynamical variable does not furnish any real
values along rBCmax. On the contrary, the values of the
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FIG. 10. The profile of elliptical-like trajectory of particle orbit in equatorial plane due to VDS with Λr2s ¼ 1 × 10−27. In Fig. 10(a), the
solid line is due to VSW and the dotted line for VDS. The particle trajectory coincides with that in general relativity. Figure 10(b) shows
the profile of perihelion advancement Ψ as a function of eccentricity corresponding to VDS for ra ¼ 8 × 108rs. The solid and long-
dashed curves correspond to VSW and VDS respectively.
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dynamical variables corresponding to VDS in the innermost
stable and innermost bound orbits where the effect of Λ is
negligible, differ considerably from that corresponding to
the PNP in Eq. (22), as discussed in [36].
For supermassive BHs (SMBHs) in AGNs or quasars

with ð106M⊙ ≲MBH ≲ 109M⊙Þ, the current accepted
value of Λ yields a maximum possible radius of the
outermost stable circular orbit in the range of
½∼ð0.9–88Þ� kpc. This also implies that the outer edge of
the largest Keplerian accretion disk in AGNs/quasars will
never exceed length scale of kiloparsecs. The instability of
circular orbits at large outer radii can have serious astro-
physical consequences. In the next section, we analyze the
influence of Λ on a simplistic astrophysical phenomenon,
Bondi accretion rate.

D. A comparative analysis

In the last section, we have exemplified that the test
particle dynamics corresponding to VDS are mostly iden-
tical to the corresponding GR results. This is due to the fact
that geodesic equations obtained from the Lagrangian
corresponding to VDS are identical to the GR results, in
the low energy limit. The derived potential exactly repro-
duces the GR results like horizon properties, orbits includ-
ing apsidal precession, angular momentum, energy, radial
velocity of the test particle and also the temporal properties.
In the inner radii, where the effect of Λ is negligible, the

profile of VDS and particle dynamics corresponding to it

essentially coincide with those of VSW. However, as seen

from the analysis in the earlier subsections, the effect of Λ
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FIG. 11. Variation of the location of outermost stable circular and outermost bound circular orbit with repulsive Λ, obtained with VDS.
The solid and dashed lines in Fig. 11(a) show the variation of rSCmax and rBCmax with Λ, respectively. Figures 11(b),(c),(d) show the variation
of Hamiltonian, angular momentum and angular frequency along rSCmax with corresponding values of Λ, obtained with VDS. The y axis in
Fig. 11(a) is in logarithmic scale.
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starts to become prominent in the outer region from an
approximate radius xmin, at which ξι corresponding to most
of the quantities attain a value of ∼0.01%. With
Λr2s ¼ 1 × 10−27, for most of the quantities, the corre-
sponding values of xmin is found out to be approximately in
the range of ∼ð5 × 107–1 × 108Þrs. This is approximately
the region from where VDS and most of its corresponding
dynamical quantities starts to deviate effectively, from that
corresponding to VSW. For MBH ∼ 109M⊙, this gives a
radius of ∼ð5–10Þ kpc. This implies that in massive
galaxies, beyond a scale of few kiloparsecs, the influence
of repulsive cosmological constant may not be neglected.
Nevertheless, the most significant effect of Λ occurs from
around a radius of ≳ð5 × 108–1 × 109Þrs, where ξι corre-
sponding to most of the dynamical quantities attain a value
of ≳10%. With BH of ∼109M⊙, this gives a radius of
∼ð50–100Þ kpc. This is approximately the region where
VDS and its corresponding dynamical quantities largely
deviate from that corresponding to Schwarzschild case.
This is also the radius where strong orbital precessional
effect in the SDS background can be seen (Fig. 10).
On the other hand, the results obtained with VDS differ

significantly from the corresponding results of the PNP in
Eq. (22), both in the inner radii as well as at the outer radii.
In the inner radii ð≲100rsÞ, where the effect of Λ is
negligible, the PNP in Eq. (22) reduces to that of
Paczyński-Witta potential, and the particle dynamics cor-
responding to this PNP deviates largely from that obtained
with VDS, or in general relativity. The details of which have
been elucidated in [36]. However, in the outer region where
the effect of Λ is predominant, especially around the static
radius and beyond ð≳109rsÞ, the PNP in Eq. (22) as well as
the profile of conserved Hamiltonian show prominent
deviations from that of VDS or that in general relativity,
for test particle motion in circular orbit, sometimes showing
contrary behavior near to the cosmological horizon (Fig. 6).
In fact, the Hamiltonian corresponding to the PNP in
Eq. (22) starts deviating from that corresponding to VDS
or GR result, from an approximate location of xmin.
Moreover, the PNP in Eq. (22) gives opposite trend for
the test particle radial velocity [Figs. 8(c),(d)], as compared
to VDS or in general relativity, at r≳ 6 × 1012rs. However,
in general, for circular motion, the velocity dependent part
of VDS vanishes and it gives results close to that predicted
by Eq. (22). Therefore, major differences are expected for
noncircular motions and in such situations the PNP
proposed in [34] does not yield consistent results with
the GR (with Λ) and hence with potential VDS.
Thus the PNP in Eq. (22) does not reproduce GR features

with modest accuracy, unlike that with VDS. This occurs
owing to the fact that VDS has been derived based on the
prerequisite, that, any analogous potential of corresponding
GR geometry should reproduce identical or nearly identical
geodesic equations of motion. However, the only GR
notion that the PNP in Eq. (22) tries to mimic is to

reproduce last stable circular orbits and marginally bound
circular orbits (both innermost and outermost).

IV. EFFECT OF Λ ON BONDI ACCRETION RATE

Bondi accretion is a spherically symmetric steady
gaseous accretion onto a compact star [39]. Although
Bondi accretion flow is more hypothetical, it has serious
astrophysical relevance. It is generally accepted that low
luminous AGNs or low excitation radio galaxies (LERGs)
are presumably powered by radiatively inefficient hot
mode accretion, accreting gaseous plasma from hot x-ray
emitting phase of interstellar medium (ISM) or intergalactic
medium (IGM) [40,41]. Consequently the accretion para-
digm is quasispherical in nature, accreting at near “Bondi
accretion rate” from ISM/IGM. In the expanding universe,
Bondi accretion rate itself would be plausibly influenced by
repulsive Λ, thus would explicitly govern the accretion
dynamics [19].
Dynamically Bondi solution is transonic in nature with

two critical radii or sonic radii (rc) at which the radial
velocity vr exactly equals to sound speed a in the limits
r → ∞ and r → 0 respectively. The limit r → ∞ in
astrophysical sense represents the location of the ambient
medium (ISM/IGM). As usual, the flow is considered to be
locally adiabatic, with P ∝ ργ and a ¼ ffiffiffiffiffiffiffiffiffiffiffi

γP=ρ
p

. P is the gas
pressure, ρ is the density of the accreting gas and γ the
adiabatic index. The mass accretion rate here is then
defined by the relation

j _Mj ¼ 4πr2ρvr: ð40Þ

Without going into the detailed physics of Bondi flow
which has been extensively discussed in literature (for e.g.
[39,42]), we simply furnish the relations at critical point rc,
obtained from Eq. (40) and radial momentum conservation
equation. Using the condition at critical radius, i.e., at
r ¼ rc, vrjc ¼ ac and using VDS, instead of usual
Newtonian gravity, the relations at critical point rc are
then given by

v2r jc
2

þ a2c
γ − 1

þ VDSjc ¼
a2∞
γ − 1

ð41Þ

and

2a2c
rc

−
dVDS=ADS

dr

����
c
¼ 0; ð42Þ

respectively. Solving these two equations we obtain rc and
corresponding ac in terms of a∞, where a∞ is the sound
speed at r → ∞. Using this, the density at rc is given by
ρc ¼ ρ∞ða

2
c

a2∞
Þ1=ðγ−1Þ, where, ρ∞ is the density at r → ∞. The

transonic accretion rate is then given by
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j _Mtj ¼ 4πr2cρcac: ð43Þ

j _Mtj can then be expressed in terms of a∞ and ρ∞, which is
defined as “Bondi accretion rate” ðj _MBjÞ in SDS back-
ground with repulsive cosmological constant in presence
of VDS. Assuming the accreting plasma to be of purely
ionized hydrogen, we define a∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γkBT∞=mp
p

and
ρ∞ ¼ npj∞mp, where T∞ and npj∞ are the temperature
and the number density of the accreting gas at r → ∞. mp
and kB are the usual proton mass and Boltzmann constant,
respectively. With these relations j _MBj in presence of VDS
can then be explicitly expressed in terms of T∞; ρ∞;Λ; γ
For Newtonian gravitational potential the usual rela-

tion of j _MBj ¼ 4πqðγÞG2M2ρ∞=a3∞, where qðγÞ ¼
1
4
ð 2
5−3γÞð5−3γÞ=ð2γ−2Þ. T∞ and ρ∞ in astrophysical sense are

the temperature and density of the ambient medium, like
hot x-ray emitting phase of ISM/IGM. In Fig. 12, we study
the variation of j _MBj and sonic radius rc with T∞ and γ for
Λ ∼ 10−56 cm−2. It is found that the current accepted value
of cosmological constant does not have much impact on the
sonic radius as well as the Bondi accretion rate for large
values of ambient temperature. However, it is found that
there is a moderate increase in the value of j _MBj as
compared to the usual value of j _MBj with Λ ¼ 0, for an
ambient temperature T∞ < 104K, and for smaller values in
γ (≲1.5). The sonic radius of the flow, too, shifts little
inwards in SDS back ground as that compared to Λ ¼ 0,
corresponding to T∞ < 104K and γ ≲ 1.5. This impact of Λ
on Bondi accretion rate might have interesting conse-
quences on the advective accretion dynamics, especially
in low luminous AGNs or in LERGs.

V. DISCUSSION

The influence of positive cosmological constant is
important in understanding the kinematics of the kilo-
parsecs-scale regions and beyond, in the local galaxies.
Any observational inference on the possible dependence
of the local-scale structure of the galaxies on Λ would be
very intriguing, for which, Newtonian analogous potential
would be of remarkable use. Here, we have obtained
modified Newtonian analogous potential corresponding
to SDS/SADS geometry which reproduces almost all of
the GR features with remarkable accuracy. We have
investigated the dynamical behavior of the test particle
motion in SDS background for a typical BH mass MBH ∼
109M⊙ in accordance with the BH mass in many AGNs/
quasars. For such massive black hole system, the non-
negligible effects of cosmological constant Λ start to occur
at radius xmin ∼ ð5–10Þ kpc where the relative deviation
between the quantities of SDS and Schwarzschild geom-
etries attain a value of ∼0.01%. The significant effects
(at the level of 10% and above over those due to pure
Schwarzschild geometry) of Λ occur at r≳ ð50–100Þ kpc
and consequently the local astrophysical kinematics in
many massive AGNs/quasars would be strongly influenced
by Λ beyond a distance of few kiloparsecs.
“Low excitation radio galaxies,” which are often massive

elliptical galaxies [43] are powered by the gaseous accre-
tion directly from the x-ray emitting phase of ISM or either
from the hot x-ray halos surrounding the Galaxy or from
the hot phase of the IGM [40,41], in which case the
accretion flow region may well exceed parsecs scale,
extending even to kiloparsecs scale. Quasar accretion disk
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may be susceptible to gravitational instability if the disk is
self-gravitating and massive, which may trigger massive
star formation in the outer regions extending beyond
parsecs scale [44]. Effects of Λ in the outer regions of
these kiloparsecs-scale accretion disk, especially on their
dynamical instabilities, would then have interesting con-
sequences in the expanding universe. As remarked by [15]
that positive cosmological constant could also influence the
accretion process onto primordial BHs in the early epoch of
the expanding universe and can also induce strong colli-
mation effects in astrophysical jets. Over kiloparsecs to
megaparsecs-scale jets are, in fact, observed [45,46] in
quasars and radio galaxies whose dynamics and structure
would likely to be influenced by the effect of repulsive Λ in
the expanding universe.
Seemingly, those are not the only plausible ways in

which a positive cosmological constant can, in principle,
influence the astrophysical processes on the kiloparsecs-
scale regions and beyond, in the local galaxies in SDS
background. Recently [47,48], it has been suggested that
nuclear spirals can be one of the mechanisms to power
central SMBHs by transferring gas from galactic scales
(over kiloparsec-scales) to the central parsec region. In such
circumstances Λ can influence the feeding process where
the mass inflow to nuclear SMBHs occur from kiloparsec
scales, and thus controlling the mass accretion rate of the
accreting BH. Another interesting paradigm to explore the
possible effects of Λ, could be in the area of AGN feedback,
where outflows, jets and radiation from the nuclear region
of the active galaxies harboring SMBHs interact with the
ISM and beyond, with length scales ranging over several
kiloparsecs to even megaparsecs. The feedback might
considerably affect the star formation rates as well as
can curtail accretion onto host SMBH, and thus may
influence the formation and evolution of galaxies
[49,50]. There would be significant effects of Λ at these
length scales in the expanding universe.
To have a glimpse on how repulsive Λ could influence

the realistic astrophysical phenomena as well as to examine
the effectiveness of the potential derived here, as a toy
model, we investigated the impact of Λ on Bondi accretion
rate, which approximately governs the accretion dynamics
plausibly in low luminous AGNs or in LERGs. Using SDS
analogous potential, it is found that the current accepted
value of cosmological constant impact, the sonic radius, as
well as the Bondi accretion rate moderately, for an ambient
temperature is T∞ < 104K and for smaller values in γ
(≲1.5). Thus, it appears that the said value of repulsive

cosmological constant might influence the Bondi accretion
phenomenon, with measurable effect in the local galactic
scales. This might have interesting consequences, espe-
cially on the dynamics of advective accretion flow, the
detailed study of which would be pursued in the near
future. Note that, [19] also analyzed the influence of Λ on
Bondi accretion rate, however with significantly large
values of Λ. Interestingly the authors of [19] adopted
unrealistic high value of Λ, however because for small Λ
their adopted technique becomes too difficult under pure
GR framework.
The next goal is to test the SDS analogous potential in

regard to the realistic astrophysical processes in local
galactic scales in order to explore the influence of Λ on
kiloparsecs-scale structure and beyond, in the local galaxies.
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APPENDIX

Here we furnish the Cartesian transformation of the
acceleration terms of the test particle motion using potential
VDS in SDS background, which are useful to depict the
elliptical-like trajectory of the particle orbit. The acceler-
ation of the test particle in xi direction, where xi ¼ x; y; z is
given by

ẍi ¼ xi

r
fsðrÞ þ fs1ðrÞ_xi

X
i

xi _xi; ðA1Þ

where

fsðrÞ ¼
�
−
rs
r2

þ Λr
3

��
fðrÞ
r

�
2

−
3

r4
X
i

�X
jk

ϵijkxj _xk
�

ðA2Þ

and

fs1ðrÞ ¼ 2
rs − Λr3

3

r2fðrÞ ; ðA3Þ

respectively. fðrÞ ¼ r − 2rs − Λr3
3

and r2 ¼Pix
ixi.
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