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Inflation is the leading theory to describe elegantly the initial conditions that led to structure formation in
our Universe. In this paper, we present a novel phenomenological fit to the Planck, WMAP polarization
(WP) and the BICEP2 data sets using an alternative parametrization. Instead of starting from inflationary
potentials and computing the inflationary observables, we use a phenomenological parametrization due to
Mukhanov, describing inflation by an effective equation of state, in terms of the number of e-folds and two
phenomenological parameters α and β. Within such a parametrization, which captures the different
inflationary models in a model-independent way, the values of the scalar spectral index ns, its running and
the tensor-to-scalar ratio r are predicted, given a set of parameters ðα; βÞ. We perform a Markov Chain
Monte Carlo analysis of these parameters, and we show that the combined analysis of Planck and WP data
favors the Starobinsky and Higgs inflation scenarios. Assuming that the BICEP2 signal is not entirely due
to foregrounds, the addition of this last data set prefers instead the ϕ2 chaotic models. The constraint we get
from Planck andWP data alone on the derived tensor-to-scalar ratio is r < 0.18 at 95% C.L., value which is
consistent with the one quoted from the BICEP2 Collaboration analysis, r ¼ 0.16þ0−06

−0.05 , after foreground
subtraction. This is not necessarily at odds with the 2σ tension found between Planck and BICEP2
measurements when analyzing data in terms of the usual ns and r parameters, given that the parametrization
used here, for the preferred value ns ≃ 0.96, allows only for a restricted parameter space in the usual ðns; rÞ
plane.
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I. INTRODUCTION

The recent claimed discovery of primordial B-modes by
the BICEP2 Collaboration [1,2] has spurred a lot of interest
in the cosmology community. One of the main topics of
discussion is the tension between the BICEP2 results and
the previous ones. In particular, this measurement corre-
sponds to a tensor-to-scalar ratio of1 r ¼ 0.2þ0.07

−0.05 , while the
Planck TT data [combined with WMAP polarization (WP)
data, high-l CMB measurements and without running of
the scalar spectral index] [3,4] gives r < 0.11 at 95% C.L.
As argued in [1], allowing for a running of the scalar
spectral index makes the two data sets compatible at the 1σ
level. On the other hand, the large-field slow-roll models
are able to explain successfully the BICEP2 data, however
they predict negligible running, which, indeed, has not been
seen in any previous observation like e.g. Planck. This by
itself suggests a nontrivial departure from the simple single-
field slow-roll inflation paradigm. Plenty of effort has been
devoted in the literature to reconcile BICEP2 and Planck
observations, either by modifications of the inflationary
sector [5–11] and/or of the standard cosmological scenario,

as, for instance, extensions to the neutrino sector [12–17].
Implications of the BICEP2 results in terms of the usual
inflationary parameters have also been extensively explored
[18–20]. In this work, we will look at this issue with a
different perspective; we shall use an alternative para-
metrization to fit both Planck and BICEP2 observations.
There are two aspects of this discrepancy that are worth
pursuing. The first one is purely experimental/observational
and implies a reassessing of all the systematic errors and
possible unaccounted-for foregrounds (see [21] for a recent
analysis in this direction). Despite the tremendous and
impressive work done by the BICEP2 Collaboration, this
step is mandatory before drawing any definitive conclusion
about the cosmological origin of this signal. For a road map
of this program, see e.g. [22]. In the following, we will be
assuming that the BICEP2 signal is primordial, although
the novel phenomenological approach presented here can
be applied to fit any cosmological data. The second aspect
is theoretical, and it addresses the crucial question: Did our
Universe suffer a quasi–de Sitter expansion phase driven by
the potential energy of a scalar field (the inflaton)? If yes,
then, among the variety of available inflationary scenarios,
which one describes better the observations? And, what
are the physical implications of such a scenario? In treating
this last question, it is customary to use single-field slow-
roll models as benchmark scenarios against which the

1This figure is obtained without subtracting polarized dust
foregrounds, though the signal seen by BICEP2 outweighs any
known foreground. Using the best available foreground template
shifts the measured value to r ¼ 0.16þ0.06

−0.05 .
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temperature anisotropies observational data are tested.
This is justified by the simplicity of these models when
it comes to computing their predictions. Given a simple
potential VðϕÞ, where ϕ is the canonically normalized
inflaton field, one can compute easily the observational
predictions in terms of the slow-roll parameters ϵ and η
defined as2

ϵ≡ 1

2
M2

PðV 0=VÞ2 and η≡M2
PV

00=V; ð1Þ

where the primes denote derivatives with respect to ϕ, i.e.
V 0 ≡ dV=dϕ and so on. During slow-roll, these parameters
are small i.e. ϵ, jηj ≪ 1, and the energy density of the
Universe is given approximately by the potential V≃
3M2

PH
2, where H is the Hubble expansion rate during

inflation. At leading order in slow-roll, the basic observ-
ables—the tensor-to-scalar ratio r and the spectral index
ns—are given by

r ¼ 16ϵ� and ns ¼ 1þ 2η� − 6ϵ�; ð2Þ

where the subscript � is to remind that quantities are
evaluated at horizon exit. These quantities are usually the
basic ones used when testing models against observations.
Each potential VðϕÞ corresponds to a certain set of observ-
ables ðr; nsÞ, but in general, these parameters are expected to
beOð1=N�ÞwhereN� is the number of e-folds starting from
horizon exit, necessary to solve the standard cosmological
problems. In general, this number has a mild dependence on
the cosmological history, however under rather reasonable
assumptions, N� takes values in the range N� ≃ 50–60, that
we adopt from now on in our analysis.
Instead of the usual slow-roll parametrization, one can

use a more phenomenological and intuitive way of describ-
ing the inflationary phase through its equation of state [25].
During inflation, the equation of state is p≃ −ρ≃
−3H2M2

P, up to slow-roll corrections, while at the end
of inflation _ϕ2=2≃ VðϕÞ≃ ρ=2 and the equation of state is
instead p≃ 0. One can thus write that

p
ρ
¼ −1þ β

ð1þ NeÞα
; ð3Þ

where α and β are phenomenological parameters and
are both positive and of Oð1Þ, and Ne is the number of
remaining e-folds to end inflation NeðtÞ≡

R te
t dtH and it

runs from N�, at horizon exit, to 0, when inflation
ends. Using energy conservation _ρþ 3Hðρþ pÞ ¼ 0 one
gets the following expressions for the tilt and tensor
fraction [25]:

ns − 1 ¼ −3
β

ðN� þ 1Þα −
α

N� þ 1
; ð4aÞ

r ¼ 24β

ðN� þ 1Þα : ð4bÞ

The general prediction of the ansatz Eq. (3) is that the tilt
is always negative, irrespective of the inflationary scenario.
In contrast, the value of the tensor-to-scalar ratio can take
any value depending on both α and β. In addition, one can
compute the running of the tilt

αs ≡ dns=d log k ¼ −
3αβ

ð1þ N�Þαþ1
−

α

ðN� þ 1Þ2 ; ð5Þ

which is, like the tilt, always negative.
The parametrization Eq. (3) encodes a variety of models

with completely different predictions [25]. Notice however
that this phenomenological description of the inflationary
phase is not completely equivalent to the slow-roll picture,
as there is no more freedom in the signs of both the tilt and
the running.
From Fig. 1, it is clear that the observationally preferred

value of the scalar spectral index ns ≃ 0.96 corresponds to
two different branches. The first one lies close to the
horizontal line r ≈ 0, in Fig. 1, and contains for instance
Starobinsky models of inflation [24], which are based on
the Lagrangian

ffiffiffiffiffiffi−gp ðRþ aR2Þ. In terms of the phenom-
enological parametrization Eq. (3), this branch corresponds

FIG. 1 (color online). Confidence regions in the ðns; rÞ para-
metrization plane. The blue (dashed boundary) areas represent the
68% and 95% C.L. regions of Planck (including a nonzero
running), while the red (solid boundary) areas are the 68% and
95% C.L. regions for BICEP2 only. The gray band represents the
predictions of the models captured by the parametrization Eq. (3)
for 50 ≤ N� ≤ 60. The solid magenta lines correspond to the
natural inflation scenario. For large decay constant f ≫ MP, they
reduce to the V ∝ ϕ2 scenario (short-dashed magenta line).

2For a nice review of slow-roll inflation see e.g. [23]. Through-
out the paper, we will adopt natural units ℏ ¼ c ¼ 1. As usual,
the reduced Planck scale is given by MP ¼ ð8πGNÞ−1=2≃
2.43 × 1018 GeV.
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to α ¼ 2, and r≃ 10−2β. In particular [25], Starobinsky
inflation corresponds to β ¼ 1=2.
In contrast, the second branch, with significantly higher

tensor fraction (appearing as a thick diagonal gray area in
Fig. 1) is where chaotic inflation models VðϕÞ ∝ ϕn [26]
live. In terms of the parametrization Eq. (3), chaotic
scenarios live on the line corresponding to α ¼ 1. From
Eqs. (4), the line in the ðns; rÞ plane is given by ns ≃ 1 − r

8
,

up to an Oð1=N�Þ correction. On the other hand, the
parameter β fixes the power of the potential V ∝ ϕn,
as n ¼ 6β.
The natural inflation scenario [27,28], in which the

inflaton is a pseudo-Nambu-Goldstone boson, is repre-
sented by the purple line in Fig. 1. This scenario described
by the potential VðϕÞ ∝ ½1 − cosðϕ=fÞ� is captured by the
parametrization Eq. (3) but only for large enough decay
constants f ≳ 10MP. We recall that in the limit of very
large decay constant, f ≫ MP, Natural inflation reduces to
the ϕ2 scenario represented by the thick purple dots
(N� ¼ 50 and N� ¼ 60) in Fig. 1.
Before describing our cosmological data fits, let us

determine the interval spanned by the phenomenological
parameters α and β. First, as explained in Ref. [25], given
that inflation ends, i.e. Ne → 0, when p=ρ ≈ 0, it follows
that β cannot be much larger that 1. Second, given that in
the most optimistic situation, the tensor-to-scalar ratio will
be measured at an accuracy of [22] Δr=r ¼ 10−2, it is clear
from Eq. (4b) that3 α≲ 2.5. We shall adopt these priors in
our numerical analyses.
The structure of the paper is as follows. In Sec. II, we

describe the method followed when performing the fits to
the different data sets. Next, in Sec. III, we present our
results in terms of the parameters α and β governing the
parametrization Eq. (3), and in terms of the derived, most
commonly used inflationary parameters ns and r. We also
discuss their implications. Finally, we draw our conclusions
in Sec. IV.

II. DATA ANALYSIS

A. Method

The phenomenological scenario we explore is described
by the following parameter set:

fωb;ωc;Θs; τ; log½1010As�; α; βg; ð6Þ

where ωb ≡ Ωbh2 and ωc ≡Ωch2 are the physical baryon
and cold dark matter energy densities, Θs is the ratio
between the sound horizon and the angular diameter
distance at decoupling, τ is the reionization optical depth,
As the amplitude of the primordial spectrum and α and β are
the phenomenological parameters governing the paramet-
rization given in Eq. (3). In the following, we fix the
number of e-folds to N� ¼ 60. Furthermore, we assume
that dark energy is described by a cosmological constant.
Table I specifies the priors considered on the cosmological
parameters listed above. The commonly used ðns; rÞ
parameters can be easily obtained using Eqs. (4), however
unlike the usual case where the running of the spectral
index is a free parameter, the running here is completely
fixed through Eq. (5), given ðα; βÞ and N�. In our analysis,
we also consider the so-called inflation consistency relation
relating the tensor spectral index to r through nT ¼ −r=8,
which is also valid in this parametrization.4 For our
numerical calculations, we use the CAMB Boltzmann
code [32] deriving posterior distributions for the cosmo-
logical parameters from the data sets described in the next
section by means of Markov Chain Monte Carlo (MCMC)
analyses. Our MCMC results rely on the publicly available
MCMC package COSMOMC [33] that implements the
Metropolis-Hastings algorithm.

B. Cosmological data

In our analyses we will consider, as a basic data set: the
Planck CMB temperature anisotropies data [34,35]
together with the nine-year polarization data from the
WMAP satellite [36]. The total likelihood for the former
data is obtained by means of the Planck Collaboration
publicly available likelihood code, see Ref. [35] for details.
The Planck temperature power spectra extend up to a
maximum multipole number lmax ¼ 2500, while the nine-
year WP polarization data are analyzed up to a maximum
multipole l ¼ 23 [36].
As stated before, very recently, the BICEP2

Collaboration has found evidence for the detection of B-
modes in the multipole range 30 < l < 150 spanned by

TABLE I. Uniform priors for the cosmological parameters
considered here.

Parameter Prior

Ωbh2 0.005 → 0.1
Ωch2 0.001 → 0.99
Θs 0.5 → 10
τ 0.01 → 0.8
log ð1010AsÞ 2.7 → 4
α 0 → 2.5
β 0 → 1

3A meaningful measurement of the tensor-to-scalar ratio
implies that Δr≲ r. Using Eq. (4b), one gets

α≲ logð24β=ΔrÞ=logðN� þ 1Þ;
which for β ≲ 1 and the optimistic percent-level observational
error on r≃ 0.001 targeted e.g. by COrE [29] and PIXIE [30]
gives α≲ 2.5. Notice that the above estimate does not change
appreciably as it depends only logarithmically on both N�
and Δr. 4See Eq. (8.125) of [31].
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their three-year data set [1,2], with 6σ significance. The
detected B-mode signal exceeds any known systematics
and/or expected foregrounds and is well fitted with a
tensor-to-scalar ratio r ¼ 0.2þ0.07

−0.05 . The BICEP2 likelihood
has been properly accounted for in our MCMC numerical
analyses, by using the latest version of COSMOMC.

III. RESULTS

We represent the results of our MCMC analyses both in
the ðα; βÞ plane and in the usual ðns; rÞ plane. Figure 2
shows the 68% and 95% C.L. contours in ðα; βÞ. The red
solid contours depict the 68% and 95% C.L. allowed
regions from the combined analysis of Planck, WP and
BICEP2 data, while the blue dashed contours refer to the
68% and 95% C.L. allowed regions from the analysis of
Planck andWP data. The green dotted region represents the
limits in the ðα; βÞ plane inferred from the 1σ preferred
values for ns and r from Planck and BICEP2 data,
respectively. Notice that the results from our MCMC
analyses after the combination of Planck, WP and
BICEP2 data sets lie precisely within this region. The
combination of Planck and WP data is completely insensi-
tive to the β parameter, as β sets the amount of gravitational
waves. The addition of BICEP2 data, however, strongly
constrains the value of β, as illustrated in Fig. 3, which
shows the one-dimensional probability density for the β
parameter before and after the inclusion of BICEP2
measurements. Figure 3 shows as well the best fit and
the 1σ allowed regions for the β parameter after considering

all the measurements exploited in this study. We also depict
in Fig. 3 the value of β for the most favored inflationary
scenario, as we shall see in what follows.
Figure 4 depicts the 68% and 95% C.L. allowed contours

in the plane of the derived parameters ns and r, together
with the region covered by the parametrization given by
Eq. (3) for 50 ≤ N� ≤ 60. Table II shows the constraints at
68% confidence level on the cosmological parameters
considered in our MCMC analyses for the different data
combinations explored here. Notice that, when BICEP2
measurements are not considered, α ¼ 2.24� 0.43
while β ¼ 0.50� 0.28, which corresponds to ns ≃ 0.96

FIG. 2 (color online). Confidence regions in the ðα; βÞ param-
eters in Eq. (3). The red areas (solid boundary) represent the 68%
and 95% C.L. allowed regions arising from a combined analysis
of the Planck, WP and BICEP2 data, while the blue areas (dashed
boundary) are the 68% and 95% C.L. allowed regions from the
analysis of Planck and WP data. The green region with dotted
contours represents the joint 1σ preferred region for Planck and
BICEP2.
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FIG. 3 (color online). The derived likelihood distribution for
the phenomenological parameter β of Eq. (3) using different data
sets. The red thick (solid and dashed) vertical lines represent the
best fit (�1σ intervals) of β, while the red thin-dashed line stands
for the derived mean value of β, see Table II for details. The
quadratic chaotic scenario, corresponding to β ¼ 1=3, is repre-
sented by a green long-dashed line.

FIG. 4 (color online). Confidence regions of the derived
parameters ðns; rÞ using the parametrization given by Eq. (3).
The color coding is the same as in Fig. 1. The gray band
represents the predictions of the models covered by the para-
metrization given by Eq. (3) for 50 ≤ N� ≤ 60.
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and r < 0.18 at 95% C.L., values that can clearly be
inferred from the results depicted in Fig. 4. The constraint
we get for Planck and WP data alone is r < 0.18 at
95% C.L., value to be compared with the value quoted
for BICEP2 Collaboration for r ¼ 0.16þ0.06

−0.05 [1] after
subtracting the various foregrounds. Therefore, the upper
limits we get on the tensor-to-scalar ratio r from Planck and
WP data using the parametrization given in Eq. (3) are very
close to the figure of r ¼ 0.16þ0.06

−0.05 reported by the BICEP2
Collaboration. This is consistent with the tension found
between BICEP2 and Planck using the standard parameters
ns and r, as the parametrization used here includes
implicitly a nonvanishing running spectral index, see
Eq. (5).
The resulting favored values of ns ≃ 0.96 and r ≈ 0 from

the Planck and WP data analysis may be associated to the
Starobinsky model of inflation [24]. Indeed, in terms of
the phenomenological parametrization Eq. (3), Starobinsky
inflation corresponds to α ¼ 2 and β ¼ 1=2 [25]. Another
inflationary scenario that can also be identified with these
values of α and β is Higgs inflation, in which the Standard
Model Higgs boson itself is responsible for inflation
[37,38]. Higgs inflation predicts a scalar spectral index
ns ≃ 0.97 and a tensor-to-scalar ratio r≃ 0.0033 for N� ¼
60 [37] and is indistinguishable observationally from the
Starobinsky model.
We can learn from the red contours in Figs. 2 and 4 that,

when adding to Planck and WP data the BICEP2 mea-
surements, models with such large values of α ∼ 2 are no
longer favored. The resulting mean values of the two
parameters are α ¼ 0.88� 0.17 and β ¼ 0.34� 0.20,
which correspond to ns ¼ 0.961� 0.003 and r ¼ 0.195�
0.037 (see Table II). This value of r belongs to the second
of the branches associated to ns ≃ 0.96, which are depicted
by the thick diagonal gray area in Figs. 1 and 4. The one-
dimensional posterior probability densities for the derived
scalar-to-tensor ratio r are depicted in Fig. 5. Notice that
for the two possible data combinations the probability

distribution is bimodal, showing two maxima: one is
located at r≃ 0 and the other one is located at r≃ 0.2.
These two peaks stand for the two possible values of r
corresponding to ns ≃ 0.96. Each of them is located in one
of the two branches shown in Figs. 1 and 4. While the
probability distribution function for PlanckþWP data has
a global maximum at the r≃ 0 branch, the addition of
BICEP2 measurements displaces the global maximum
towards the r≃ 0.2 region in the other possible branch.
As explained before, it is precisely in this second branch
where chaotic inflation models VðϕÞ ∝ ϕn live [25].
Chaotic models with quadratic (quartic) potentials predict
ns ≃ 0.96 and r≃ 0.16 (ns ≃ 0.94 and r≃ 0.32) [25].
Therefore, the mean values of α and β resulting from the
combined analyses of Planck, WP and BICEP2 data seem
to favor ϕ2 models of chaotic inflation and highly disfavor
Starobinsky and Higgs inflation scenarios. The quartic
chaotic model also is disfavored with respect to the
quadratic one. The status of the former two inflationary
models has also been explored recently in the literature (see
e.g. Refs. [39–41]) where it has been found that these two
models require either extreme fine-tuning or nontrivial
extensions to be compatible with BICEP2 results. Chaotic
inflationary models have also been recently revisited in a
number of analyses [42–48]. On the other hand, Natural
inflation is the only case which cannot be analyzed in terms
of α and β except in the large decay constant regime i.e.
f ≫ MP, where MP is the Planck mass. In this case, the
constraints are similar to the case of the quadratic chaotic
scenario (see Fig. 1). Our derived bound on the tensor-to-
scalar ratio (r < 0.18 at 95% C.L.) does not put significant
constraints on f. If on the other hand, we include the
BICEP2 data sets, we can translate the 1σ interval into a
lower bound on the decay constant f ≳ 44.72MP for
N� ¼ 50. This makes Natural inflation practically indis-
tinguishable from the quadratic chaotic scenario, given the
present precision. The next generation of observations will
improve the situation considerably, allowing for instance
to distinguish between the two scenarios if f ≲ 30MP.

TABLE II. Constraints at 68% confidence level on cosmologi-
cal parameters from our analyses for PlanckþWP and Planckþ
WPþ BICEP2 data. When quoting upper bounds, we show the
95% C.L. limits. Notice that the scalar spectral index and the
tensor-to-scalar ratio are derived parameters.

Parameter PlanckþWP PlanckþWPþ BICEP2

Ωbh2 0.0209� 0.0002 0.0209� 0.0002
Ωch2 0.1165� 0.0018 0.1167� 0.0020
θ 1.0409� 0.00055 1.0408� 0.00055
τ 0.086� 0.015 0.078� 0.013
log½1010As� 3.063� 0.031 3.047� 0.026
α 2.24� 0.43 0.88� 0.17
β 0.50� 0.28 0.34� 0.20
ns (derived) 0.961� 0.002 0.961� 0.003
r (derived) < 0.18 0.195� 0.037
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FIG. 5 (color online). The derived posterior likelihood distri-
bution for the tensor-to-scalar ratio using different data sets.
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See e.g. Refs. [42,49,50] for recent appraisals of the Natural
inflation scenario. The results previously discussed have
been obtained fixing the number of e-folds to N� ¼ 60.
Assuming N� ¼ 50 instead does not change the main
conclusions outlined above.
We conclude this section commenting on the results

obtained when using a slightly different upper prior on the
α parameter. In general, smaller values of α will give rise to
a higher tensor-to-scalar ratio and therefore the tension
between Planck and BICEP2 measurements may be alle-
viated. If we assume an upper prior on α of 2, the 95% C.L.
upper bound on the derived tensor-to-scalar ratio parameter
is slightly larger (r < 0.23 at 95% C.L.). On the contrary,
when higher values for α are considered, the significance of
the tension between Planck and BICEP2 measurements
slightly increases, as higher values of α correspond to lower
values of r. A fit to Planck andWP data gives an upper limit
on r < 0.17 at 95% C.L. when using an upper prior on α
of 3. When BICEP2 measurements are included in the
analysis, we obtain ns ¼ 0.961� 0.004 and r ¼ 0.184�
0.040 (ns ¼ 0.961� 0.004 and r ¼ 0.192� 0.037) for an
upper prior on α of 2 (3). These results are almost identical
to the ones quoted in Table II. We have also checked that
the posterior probability density profiles for both the
parameter β and the tensor-to-scalar ratio r do not exhibit
a significant prior dependence. Summarizing, the effect of
the upper prior choice on α barely changes our main results.

IV. CONCLUSIONS

The recent claimed discovery of primordial gravitational
waves by the BICEP2 Collaboration has opened a new
window into the inflationary paradigm. Chaotic inflation
scenarios, highly disfavored by Planck temperature data,
are, after BICEP2 results, among the most plausible ones.
Model-independent data analyses are usually presented in
terms of the scalar spectral index ns and the tensor-to-scalar
ratio r, which can then be related to a particular model via
the inflationary slow-roll parameters. Here we employ an
alternative parametrization due to Mukhanov, describing
inflation by an effective equation of state, which captures
most of the relevant inflationary scenarios (at least in their
basic formulation). Using this parametrization, one can
easily identify the different models as well as derive the
usual ns and r parameters. The effective equation of state
used here is described by only two parameters, α and β,
since the running of the spectral index αs is no longer a free
parameter, as is unambiguously determined once the values
of α and β are fixed.
Using Markov Chain Monte Carlo methods, we show

that the combined analyses of Planck temperature and WP

data are unable to determine β, as this last parameter sets
the amount of gravitational waves through Eq. (4b).
However, these two data sets are able to constrain the
other parameter involved, α, resulting in a mean value
α ¼ 2.24� 0.43, which corresponds to ns ≃ 0.96. Such
value of α favored by the Planck and WP data analyses is
associated to both Starobinsky and Higgs inflationary
models. The constraint we get on the derived tensor-to-
scalar ratio, r < 0.18 at 95% C.L., is perfectly consistent
with the value quoted from the BICEP2 Collaboration
(r ¼ 0.16þ0.06

−0.05 [1]) after subtracting the various fore-
grounds. However, this is not necessarily in conflict with
the 2σ tension found between Planck and BICEP2 mea-
surements when analyzing data in terms of the usual ns and
r parameters, since the parametrization used here only
covers a certain region in the usual plane, see Fig. 1, where
it can be noticed that for ns ≃ 0.96 (which is the mean value
arising from our numerical analyses) there are only two
isolated regions, one at r≃ 0 and second one at r≃ 0.2.
Consequently, the likelihood distribution for r is bimodal,
and not a monotonically decreasing function with only
one maximum located at r≃ 0, weakening the 95% C.L.
upper limit on r.
The addition of BICEP2 data to Planck and WP

measurements strongly constrains the values of the phe-
nomenological parameters to the values β≃ 1=3, and
α≃ 1. Such values of α correspond to chaotic inflationary
models characterized by a potential ϕn, where n ¼ 6β.
Therefore, the results from the combined analysis of
Planck, WP and BICEP2 data strongly favor ϕ2 models
of chaotic inflation and rule out Starobinsky and Higgs
inflation scenarios. Upcoming polarization data from
Planck may confirm or falsify the ϕ2 scenario as the most
plausible one for the inflationary period. Future CMB
missions, such as COrE [29] and PIXIE [30], combined
with galaxy clustering and weak lensing data from the
Euclid survey [51] hold the key to establish the amount of
primordial B-modes and the ensuing theoretical implica-
tions, especially if the tensor-to-scalar ratio is as large as
suggested by BICEP2.
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