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Dark energy might directly interact with cold dark matter. However, in such a scenario, an early-time large-
scale instability occurs occasionally, which may be due to the incorrect treatment for the pressure perturbation
of dark energy as a nonadiabatic fluid. To avoid this nonphysical instability, we establish a new framework to
correctly calculate the cosmological perturbations in the interacting dark energy models. Inspired by the well-
known parametrized post-Friedmann approach, the condition of the dark energy pressure perturbation is
replaced with the relationship between the momentum density of dark energy and that of other components on
large scales. By reconciling the perturbation evolutions on the large and small scales, one can complete the
perturbation equations system. The large-scale instability can be successfully avoided and the well-behaved
density and metric perturbations are obtained within this framework. Our test results show that this new
framework works very well and is applicable to all the interacting dark energy models.
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Interactions are ubiquitous in nature, and so it is very
possible that dark energy directly interacts with cold
dark matter, which also provides an intriguing mechanism
to solve the “coincidence problem” [1–4]. The existence
of such an imaginary interaction could be confirmed or
falsified by the future highly precision measurements of the
growth of large-scale structures combined with those of the
expansion of the universe. It is also of particular importance
to distinguish between the interacting dark energy (IDE)
and the modified gravity models, since both of them can
modify the growth of structures but there are some subtle
differences between the two [5]. To achieve this goal, the
cosmological perturbations in the IDE model should first be
investigated correctly and clearly. Numerous works on this
have been done; see, e.g., Refs. [5–10].
Nevertheless, the framework for calculating the cosmo-

logical perturbations in the IDE scenario in the literature
does not seem to be correct. This is hinted by the well-
known early-time large-scale (superhorizon) instability
appearing in the IDE scenario. The cosmological pertur-
bations will blow up at the early times for theQ ∝ ρc model
with w > −1 [9] and for the Q ∝ ρde model with w < −1
[5,10]. Such a phenomenon is particularly prominent in the
models with w ¼ const. Here, ρde and ρc are the back-
ground energy densities of dark energy and cold dark
matter, w is the equation-of-state parameter of dark energy
defined by pde ¼ wρde, and Q describes the interaction
between dark energy and cold dark matter,

ρ0de ¼ −3ðρde þ pdeÞ þ
Qde

H
; ð1Þ

ρ0c ¼ −3ρc þ
Qc

H
; Q ¼ Qde ¼ −Qc; ð2Þ

where 0 ¼ d=d ln a and H is the Hubble parameter. This
large-scale instability seriously depresses the study of IDE.
However, there exists an important possibility that such an
instability is not a true physical effect but an unreal
phenomenon arising from our ignorance about how to
correctly treat the pressure perturbation of dark energy.
In general, for any adiabatic I fluid its pressure pertur-

bation takes the form δpI ¼ c2a;IδρI, where δρI is the
density perturbation of I fluid and the adiabatic sound
speed c2a;I ¼ p0

I=ρ
0
I . However, if dark energy is treated as an

adiabatic fluid, it immediately follows that c2a;de ¼ w < 0
(for constant w case) leading to dark energy collapsing
faster than dark matter on the small scales [11]. In order to
avoid such a nonphysical result, one has to treat dark
energy as a nonadiabatic fluid, and lets δpde ¼
c2a;deδρde þ δpnad, where δpnad denotes the intrinsic non-
adiabatic pressure perturbation of dark energy. As
explained in Ref. [9], δpnad is a function of ρ0de, and thus
the interaction term Qde enters δpnad explicitly via Eq. (1).
Due to the interaction, the nonadiabatic mode grows fast on
the large scales, no matter how small the coupling is, and
soon drags other matter perturbations onto the nonadiabatic
blowup, leading to rapid growth of the curvature perturba-
tion at the early times [9]. Therefore, it seems that simply
treating dark energy as a fluid is problematic for IDE
scenario.
In fact, even for the noninteracting dark energy such a

nonadiabatic fluid treatment can also bring instability when
w crosses the phantom divide w ¼ −1 [12–15]. This
instability arises due to the fact that c2a;de ¼ p0

de=ρ
0
de

diverges at w ¼ −1.
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The appearance of these instabilities in dark energy
perturbations reveals our ignorance about the nature of dark
energy. In the current framework for calculating dark
energy perturbations, dark energy is treated as a non-
adiabatic fluid, and the pressure perturbation of dark energy
is derived by assuming a rest-frame sound speed (which is
not equal to the adiabatic sound speed). But the current
embarrassed situation urges us to abandon this framework
and find out a new effective theory to handle dark energy
perturbations.
The parametrized post-Friedmann (PPF) approach was

proposed to solve the w ¼ −1-crossing instability problem
[16,17]. This approach replaces the condition on the dark
energy pressure perturbation with a direct relationship
between the momentum density of dark energy and that
of other components on the large scales. Now, the sim-
plified PPF code has become a part of the COSMOMC
package [18], used to handle the perturbations in dark
energy with w ≠ const. In this letter, we establish a PPF
framework for calculating the cosmological perturbations
in the IDE scenario. In this framework, the aforementioned
instability is successfully avoided. Also, this new PPF
framework is downward compatible with the previous one
for noninteracting dark energy.
In a FRW universe with scalar perturbations, the per-

turbed metric can be expressed in general in terms of four
functions A, B, HL, and HT [19,20],

δg00 ¼ −a2ð2AYÞ;
δg0i ¼ −a2BYi;

δgij ¼ a2ð2HLYγij þ 2HTYijÞ; ð3Þ

where Y, Yi, and Yij are the eigenfunctions of the Laplace
operator and its covariant derivatives. The perturbed
energy-momentum tensor can be expressed as

δT0
0 ¼ −δρY;

δT0
i ¼ −ðρþ pÞvYi;

δTi
j ¼ δpYδij þ pΠYi

j; ð4Þ

where v and Π are the velocity perturbation and anisotropic
stress of total matters including dark energy, respectively.
Then, the Einstein equations give [16]

HL þ
HT

3
þ B

kH
−

H0
T

k2H
¼ 4πGa2

cKk2

�
δρþ 3ðρþpÞv−B

kH

�
;

ð5Þ

A −H0
L −

H0
T

3
−

K
ðaHÞ2

�
B
kH

−
H0

T

k2H

�
¼ 4πG

H2
ðρþ pÞ v − B

kH
;

ð6Þ

where kH ¼ k=ðHaÞ and cK ¼ 1 − 3K=k2 with k the wave
number and K the spatial curvature. Considering the
interaction between dark energy and cold dark matter,
the conservation laws become

∇νT
μν
I ¼ Qμ

I ;
X
I

Qμ
I ¼ 0; ð7Þ

and the energy-momentum transfer can be split in general
as

QI
μ ¼ að−QIð1þAYÞ−δQIY; ½fIþQIðv−BÞ�YiÞ; ð8Þ

where δQI and fI are the energy transfer perturbation and
momentum transfer potential of I fluid, respectively. Then,
Eqs. (7) and (8) give the following two conservation
equations [19],

δρ0I þ 3ðδρI þ δpIÞ þ ðρI þ pIÞðkHvI þ 3H0
LÞ

¼ 1

H
ðδQI − AQIÞ; ð9Þ

½a4ðρI þ pIÞðvI − BÞ�0
a4kH

− δpI þ
2

3
cKpIΠI − ðρI þ pIÞA

¼ a
k
½QIðv − BÞ þ fI�: ð10Þ

It is very convenient to present our work in the comoving
gauge defined byB ¼ vT andHT ¼ 0. Hereafter, we use the
subscript T to denote the corresponding quantity of total
matters except dark energy (HT is an exception). To avoid
confusion, we use new symbols for metric and matter
perturbation quantities in the comoving gauge. They are
ζ≡HL, ξ≡ A, ρΔ≡ δρ,Δp≡ δp,V ≡ v, andΔQI ≡δQI .
Note thatΠ and fI are two gauge-independent quantities. In
practice, one often sets Πde ¼ 0 for dark energy, ΔQde and
fde are given by the specific interacting models, and the two
metric perturbations ζ and ξ satisfy two Einstein equa-
tions (5) and (6). Thus, we still have three quantities, ρdeΔde,
Δpde, and Vde, for dark energy. However, the remaining
conservation equations (9) and (10) can only give two of
them the equations of motion. A common practice to
complete the system is to treat dark energy as a nonadiabatic
fluid, and establish the relationship between Δpde and
ρdeΔde, which, however, induces the large-scale instability
in the IDE scenario, as mentioned above.
Inspired by the PPF approach to noninteracting dark

energy [16,17], we also replace the condition on the dark
energy pressure perturbation with a direct relationship
between the momentum density of dark energy and that
of other components on the large scales. This relationship
can be parametrized by a function fζðaÞ as

lim
kH≪1

4πG
H2

ðρdeþpdeÞ
Vde−VT

kH
¼ −

1

3
cKfζðaÞkHVT; ð11Þ
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since in the comoving gauge Vde − VT ¼ Oðk3HζÞ and
VT ¼ OðkHζÞ on the large scales [21]. Substituting
Eq. (11) into Eq. (6), in the comoving gauge one obtains

lim
kH≪1

ζ0 ¼ ξ −
K
k2

kHVT þ 1

3
cKfζkHVT; ð12Þ

where ξ can be derived from Eq. (10),

ξ ¼ −
ΔpT − 2

3
cKpTΠT þ a

k ½QcðV − VTÞ þ fc�
ρT þ pT

: ð13Þ

In the limit of kH ≫ 1, dark energy is smooth enough,
and the first Einstein equation (5) reduces to the Poisson
equation

lim
kH≫1

Φ ¼ 4πG
cKk2HH

2
ΔTρT; ð14Þ

where Φ ¼ ζ þ VT=kH. In order to make these two limits
compatible, one can introduce a dynamical function Γ such
that

Φþ Γ ¼ 4πG
cKk2HH

2
ΔTρT ð15Þ

on all scales. Taking the derivative of Eq. (15) and using
Eqs. (9), (10), and (12), one can obtain the equation of
motion of Γ at kH ≪ 1,

lim
kH≪1

Γ0 ¼ S − Γ; ð16Þ

where the source term

S ¼ 4πG
k2HH

2

�
½ðρde þ pdeÞ − fζðρT þ pTÞ�kHVT

þ 3a
kcK

½QcðV − VTÞ þ fc� þ
1

HcK
ðΔQc − ξQcÞ

�
:

The effect of dark sector interaction is explicitly shown in
this equation.
On the other hand, Eqs. (14), (15), and (16) imply Γ → 0

and S → 0 at kH ≫ 1. To satisfy all these limits at kH ≪ 1
and kH ≫ 1, we can take the equation of motion for Γ on all
scales to be

ð1þ c2Γk
2
HÞ½Γ0 þ Γþ c2Γk

2
HΓ� ¼ S: ð17Þ

Here, cΓ gives a transition scale in terms of the Hubble
scale under which dark energy is smooth enough. Once the
evolution of Γ is derived, we can directly obtain the energy
density perturbation and momentum density of dark energy,

ρdeΔde ¼ −3ðρde þ pdeÞ
Vde − VT

kH
−

k2cK
4πGa2

Γ; ð18Þ

Vde−VT

kH
¼ −H2

4πGðρdeþpdeÞF

×

�
S−Γ0−Γ þ fζ

4πGðρT þpTÞ
H2

VT

kH

�
; ð19Þ

with

F ¼ 1þ 3
4πGa2

k2cK
ðρT þ pTÞ:

Actually, the dark energy pressure perturbation Δpde can
also be derived within this framework from Eq. (10),

Δpde ¼
½a4ðρde þ pdeÞðVde − VTÞ�0

a4kH
− ðρde þ pdeÞξ

−
Qde

H
ðV − VTÞ

kH
−
fde
kH

: ð20Þ

So far, the perturbation system has been completed by a
function fζ, a parameter cΓ, and a dynamical quantity Γ. We
can take the initial condition Γ ¼ 0 at a → 0 for solving
Eq. (17), since S → 0 at a → 0 from the expression of S.
The values of fζ can be inferred by solving the full
equations at kH → 0 in a specific IDE model. However,
it suffices for most purposes to simply let fζ ¼ 0 [17]. For
the value of cΓ, we follow Ref. [17] and choose it to be
0.4cs [22,23]. With a careful test, we conclude that the dark
energy perturbation evolution is insensitive to this value.
Next, we show that this new framework can give stable

cosmological perturbations in the IDE scenario. As a
concrete example, we consider the following typical model,

Qμ
c ¼ −Qμ

de ¼ −3βHρcu
μ
c; ð21Þ

where β is a dimensionless coupling. The four-velocities
for I fluid in a general gauge are

uμI ¼ a−1ð1 − AY; vIYiÞ;
uIμ ¼ að−1 − AY; ðvI − BÞYiÞ:

From Eqs. (8) and (21), we have

δQde ¼ −δQc ¼ 3βHρcδc;

fde ¼ −fc ¼ 3βHρcðvc − vÞ;
Qde ¼ −Qc ¼ 3βHρc; ð22Þ

where δI ¼ δρI=ρI denotes the dimensionless density
perturbation of I fluid. Substituting the above equations
into the source term S and Eq. (13), we can obtain the
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perturbations of dark energy in the comoving gauge.
It is also convenient to get the results in the synchronous
gauge by a gauge transformation, since most public
numerical codes are written in the synchronous gauge.
For the details of the gauge transformation, see the
Appendix of Ref. [16] [but note that the background
interaction term QI enters the transformations of δI and
δpI via Eqs. (1) and (2)].
In Fig. 1, we plot the density perturbation evolutions at

k ¼ 0.1 Mpc−1 for the considered IDE model in the
synchronous gauge. The upper panels are obtained by
using the previous method, while the lower panels are
obtained within the PPF framework proposed in this letter.
To show the cases with w < −1 and w > −1, we take w ¼
−1.1 (left panels) and w ¼ −0.9 (right panels) as typical
examples. We take β ¼ −10−17 and fix all the other
parameters at their best-fit values from Planck. Taking
such a small value for β is to avoid the possible breakdown
of the numerical computation when the instability occurs in
the IDE model using the old method. From Fig. 1, one can
clearly see that our new calculation framework (lower
panels) can give stable cosmological perturbations for both
w ¼ −1.1 and w ¼ −0.9 cases, while the previous method
(upper panels) leads to the instability for the w ¼ −0.9 case
even though the coupling is so weak (β ¼ −10−17). Thus,
our new calculation scheme works very well. Note that

Fig. 1 is only an example for the IDE model with
Qμ ¼ 3βHρcu

μ
c. In fact, after a careful test, we conclude

that our new framework is applicable to all the IDE models.
Also as an example, we constrain the parameter space for

the above IDE model by using the current observations.
The observational data are the same as those used in
Ref. [24]. The fit results are shown in Table I and Fig. 2.
This example explicitly shows that the whole parameter
space of the IDE model can be explored within this new
calculation framework. In this fit, we get β ¼ −0.0013�
0.0008 and w ¼ −1.228þ0.093

−0.084 (1σ CL).
Dark energy might interact with cold dark matter in a

direct, nongravitational way. The consideration of such an
interaction is rather natural since the interactions are
ubiquitous in nature. On the contrary, no interaction
between dark energy and dark matter is an additional
assumption [25]. In order to find out this interaction and
determine the properties of dark energy and dark matter
with the future highly accurate measurements of the growth
of large-scale structure, one should investigate the cosmo-
logical perturbations in detail in the IDE scenario.
However, some early-time large-scale instability occurs
on occasion in the IDE scenario, due to the incorrect
treatment for the pressure perturbation of dark energy
as a nonadiabatic fluid. In this letter, we establish a PPF
framework to correctly calculate the cosmological
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FIG. 1 (color online). The density perturbation evolutions at k ¼ 0.1 Mpc−1 in the IDE model withQμ ¼ 3βHρcu
μ
c in the synchronous

gauge. The upper panels are obtained by using the previous method, while the lower panels are obtained within the PPF framework
proposed in this work.
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perturbations in the IDE scenario, in which the dark
energy pressure perturbation condition is replaced by the
relationship between the momentum density of dark energy
and that of the other components on large scales (para-
metrized by a function fζ). Using a dynamical quantity Γ
and a transition-scale parameter cΓ to reconcile the per-
turbation evolutions on the small and large scales, the
density and velocity perturbations of dark energy can be
derived directly. Our new framework can give stable
cosmological perturbations in the whole expansion history
of the universe, and is applicable to all the IDE models.
This calculation scheme would play a crucial role in
distinguishing among the (noninteracting) dark energy,
IDE, and modified gravity models with future highly

precision data, and inject new vitality to the study of
IDE models.
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