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Using an algebraic condition of vanishing discriminant for multiple roots of fourth-degree polynomials,
we derive an analytical expression of a shadow size as a function of a charge in the Reissner-Nordström
(RN) metric [1,2]. We consider shadows for negative tidal charges and charges corresponding to naked
singularities q ¼ Q2=M2 > 1, where Q and M are black hole charge and mass, respectively, with the
derived expression. An introduction of a negative tidal charge q can describe black hole solutions in
theories with extra dimensions, so following the approach we consider an opportunity to extend the RN
metric to negative Q2, while for the standard RN metric Q2 is always non-negative. We found that for
q > 9=8, black hole shadows disappear. Significant tidal charges q ¼ −6.4 (suggested by Bin-Nun [3–5])
are not consistent with observations of a minimal spot size at the Galactic Center observed in mm-band;
moreover, these observations demonstrate that a Reissner-Nordström black hole with a significant charge
q ≈ 1 provides a better fit of recent observational data for the black hole at the Galactic Center in
comparison with the Schwarzschild black hole.
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I. INTRODUCTION

Soon after the discovery of general relativity (GR), the
first solutions corresponding to spherical symmetric black
holes were found [1,2,6]; however, initially people were
rather sceptical about possible astronomical applications of
the solutions corresponding to black holes [7] (see also, for
instance, one of the first textbooks on GR [8]). Even after
an introduction to the black hole concept by Wheeler [9]
(he used the term in his public lecture in 1967 [10]), we did
not know too many examples where we really need GR
models with strong gravitational fields that arise near black
hole horizons to explain observational data. The cases
where we need strong field approximation are very impor-
tant since they give an opportunity to check GR predictions
in a strong field limit; therefore, one could significantly
constrain alternative theories of gravity.
One of the most important options to test gravity in

the strong field approximation is analysis of relativistic line
shape as it was shown in [11], with assumptions that a line
emission is originated at a circular ring area of a flat
accretion disk. Later on, such signatures of the Fe Kα line
have been found in the active galaxy MCG-6-30-15 [12].
Analyzing the spectral line shape, the authors concluded
the emission region is so close to the black hole horizon that
one has to use Kerr metric approximation [13] to fit
observational data [12]. Results of simulations of iron
Kα line formation are given in [14,15] (where we used our

approach [16]); see also [17] for a more recent review of the
subject.
Now there are two basic observational techniques to

investigate a gravitational potential at the Galactic Center,
namely, (a) monitoring the orbits of bright stars near the
Galactic Center to reconstruct a gravitational potential [18]
(see also a discussion about an opportunity to evaluate
black hole dark matter parameters in [19] and an oppor-
tunity to constrain some class of an alternative theory of
gravity [20]) and (b) measuring in mm band, with VLBI
technique, the size and shape of shadows around the black
hole, giving an alternative possibility to evaluate black hole
parameters. The formation of retro-lensing images (also
known as mirages, shadows, or “faces” in the literature) due
to the strong gravitational field effects nearby black holes
has been investigated by several authors [21–24].
Theories with extra dimensions admit astrophysical

objects (supermassive black holes in particular) which
are rather different from standard ones. Tests have been
proposed when it would be possible to discover signatures
of extra dimensions in supermassive black holes since the
gravitational field may be different from the standard one in
the GR approach. So, gravitational lensing features are
different for alternative gravity theories with extra dimen-
sions and general relativity.
Recently, Bin-Nun [3–5] discussed the possibility that

the black hole at the Galactic Center is described by the
tidal Reissner-Nordström metric which may be admitted by
the Randall-Sundrum II braneworld scenario [25]. Bin-Nun
suggested an opportunity of evaluating the black hole*zakharov@itep.ru
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metric analyzing (retro-)lensing of bright stars around the
black hole in the Galactic Center. Doeleman et al. evaluated
a size of the smallest spot for the black hole at the Galactic
Center with VLBI technique in mm-band [26] (see con-
straints done from previous observations [27]). Theoretical
studies showed that the size of the smallest spot near a
black hole practically coincides with shadow size because
the spot is the envelope of the shadow [23,24,28]. As it was
shown [23,24], measurements of the shadow size around
the black hole may help to evaluate parameters of black
hole metric [29]. Sizes and shapes of shadows are calcu-
lated for different types of black holes and gravitational
lensing in strong gravitational field has been analyzed in a
number of papers [34].
We derive an analytic expression for the black hole

shadow size as a function of the tidal charge for the
Reissner-Nordström metric. We conclude that observatio-
nal data concerning shadow size measurements are not
consistent with significant negative charges, in particular,
the significant tidal charge q ¼ Q2=M2 ¼ −6.4 [35], dis-
cussed in [3–5], where the author used slightly different
notations, namely q0 ¼ q=4, is practically ruled out with a
very high probability (the tidal charge is roughly speaking
is far beyond 9σ confidence level). We also show a smaller
shadow sizes in respect to estimates obtained with the
Schwarzschild black hole model can be explained with the
Reissner–Nordström metric with a significant charge. It
was found a critical q value for shadow existence, namely
for q ≤ 9=8, Reissner–Nordström black holes have shad-
ows while for q > 9=8 the shadows do not exist.
Interestingly, the same critical value is responsible for a
qualitative different behavior of quasinormal modes for the
scattering [36] and for existence of circular orbits of neutral
test particles [37].
As J. A. Wheeler coined “Black holes have no hair”: it

means that a black hole is characterized by only three
parameters, its massM, angular momentum J and chargeQ
(see, e.g., [38,39] or [40] for a more recent review).
Therefore, in principle, charged black holes can be formed,
although astrophysical conditions that lead to their for-
mation may look rather problematic. Nevertheless, one
could not claim that their existence is forbidden by
theoretical or observational arguments. Moreover, we will
show below that observations give a hint about an existence
of a significant charge, but its origin is not clear at the
moment.
Charged black holes are also object of intensive studies

in quantum gravity, since a static, spherically symmetrical
solution of Yang-Mills-Einstein equations with fairly natu-
ral requirements on asymptotic behavior of the solutions
gives a Reissner-Nordström metric [41]. Thus, the metric
describes a spherically symmetric black hole with a color
charge (and (or) a magnetic monopole). Later on, color
charges have been found for rotating black holes as
well [42].

II. BASIC EQUATIONS

The expression for the Reissner-Nordström metric in
natural units (G ¼ c ¼ 1) has the form

ds2 ¼ −
�
1 −

2M
r

þQ2

r2

�
dt2 þ

�
1 −

2M
r

þQ2

r2

�−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð1Þ

Applying the Hamilton-Jacobi method to the problem of
geodesics in the Reissner-Nordström metric, the motion of
a test particle in the r coordinate can be described by
following equation (see, for example, [38])

r4ðdr=dλÞ2 ¼ RðrÞ; ð2Þ

where λ is the affine parameter [38] and

RðrÞ ¼ P2ðrÞ − Δðμ2r2 þ L2Þ;
PðrÞ ¼ Er2 − eQr;

Δ ¼ r2 − 2MrþQ2: ð3Þ

Here, the constants μ; E; L and e are associated with the
particle, i.e., μ is its mass, E is energy at infinity, L is its
angular momentum at infinity, and e is the particle’s charge.
We shall consider the motion of uncharged particles

ðe ¼ 0Þ below. In this case, the expression for the poly-
nomial RðrÞ takes the form

RðrÞ ¼ ðE2 − μ2Þr4 þ 2Mμr3 − ðQ2μ2 þ L2Þr2
þ 2ML2r −Q2L2: ð4Þ

Depending on the multiplicities of the roots of the
polynomial RðrÞ, we can have three types of motion
in the r coordinate [43]. In particular, by defining the

outer event horizon as usual rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
[38],

we have
(1) if the polynomial RðrÞ has no roots for r ≥ rþ, a test

particle is captured by the black hole;
(2) if RðrÞ has roots and ð∂R=∂rÞðrmaxÞ ≠ 0 with

rmax > rþ (rmax is the maximal root), a particle is
scattered after approaching the black hole;

(3) if RðrÞ has a root and RðrmaxÞ¼ð∂R=∂rÞðrmaxÞ¼0,
the particle now takes an infinite proper time to
approach the surface r ¼ const.

If we are considering a photon (μ ¼ 0), its motion in the
r-coordinate depends on the root multiplicity of the
polynomial R̂ðr̂Þ

R̂ðr̂Þ ¼ RðrÞ=ðM4E2Þ ¼ r̂4 − ξ2r̂2 þ 2ξ2r̂ − Q̂2ξ2; ð5Þ

where r̂ ¼ r=M; ξ ¼ L=ðMEÞ and Q̂ ¼ Q=M. Below we
do not write the hat symbol for these quantities.
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One could see from Eqs. (5) and (3) as well that the black
hole charge may influence substantially the photon motion
at small radii (r ≈ 1), while the charge effect is almost
negligible at large radial coordinates of photon trajectories
(r ≫ 1). In the last case we should keep in mind that the
charge may cause only small corrections on photon motion.

III. DERIVATION OF SHADOW SIZE AS A
FUNCTION OF CHARGE

Let us consider the problem of the capture cross section
of a photon by a charged black hole. It is clear that the
critical value of the impact parameter for a photon to be
captured by a Reissner-Nordström black hole depends on
the multiplicity root condition of the polynomial RðrÞ. This
requirement is equivalent to the vanishing discriminant
condition [44]. To find the critical value of impact param-
eter for Schwarzschild and RN metrics the condition has
been used for corresponding cubic and quartic equations
[45–47]. In particular, it was shown that for these cases the
vanishing discriminant condition approach is more power-
ful in comparison with the procedure excluding rmax from
the following system

RðrmaxÞ ¼ 0; ð6Þ

∂R
∂r ðrmaxÞ ¼ 0; ð7Þ

as it was done, for example, by Chandrasekhar [33] (and
earlier by Darwin [48]) to solve similar problems, because
rmax is automatically excluded in the condition for vanish-
ing discriminant.
Introducing the notation ξ2 ¼ l;Q2 ¼ q, we obtain

RðrÞ ¼ r4 − lr2 þ 2lr − ql: ð8Þ

We remind basic algebraic definitions and relations. If we
consider an arbitrary polynomial fðXÞ with degree n,

fðXÞ ¼ Xn þ a1Xn−1 þ � � � þ an−1X þ an; ð9Þ

the elementary symmetric polynomials sk have the fol-
lowing form, where X1;…Xn are roots of the polynomial
fðXÞ [44],

skðX1;…XnÞ ¼
X

1≤i1<i2<…<ik≤n
Xi1Xi2…Xik ; ð10Þ

where k ¼ 1; 2;…; n. The symmetrical k-power sum poly-
nomial pk have the following expression

pkðX1;…XnÞ ¼ Xk
1 þ Xk

2 þ � � � þ Xk
n; for k ≥ 0: ð11Þ

To express pk through sk one can use Newton’s equations

pk − pk−1s1 þ pk−2s2 þ � � � þ ð−1Þk−1p1sk−1

þ ð−1Þkksk ¼ 0; for 1 ≤ k ≤ n; ð12Þ

pk − pk−1s1 þ pk−2s2 þ � � � þ ð−1Þn−1pk−nþ1sn−1

þ ð−1Þnpk−nsn ¼ 0; for k > n: ð13Þ

We introduce the following polynomial

ΔnðX1;…XnÞ ¼
Y

1≤i<j≤n
ðXi − XjÞ; ð14Þ

which can be represented as the Vandermonde determinant

ΔnðX1;…XnÞ ¼

���������

1 1 … 1

X1 X2 … Xn

… … … …

Xn−1
1 Xn−1

2 … Xn−1
n

���������
: ð15Þ

According to the discriminant Dis definition we have the
Disðs1;…; snÞ polynomial

Disðs1;…; snÞ ¼ Δ2
nðX1;…XnÞ ¼

Y
1≤i<j≤n

ðXi − XjÞ2;

ð16Þ

one can find [44]

Disðs1;…snÞ ¼

������������

n p1 p2 … pn−1

p1 p2 p3 … pn

p2 p3 p4 … pnþ1

… … … … …

pn−1 pn pnþ1 … p2n−2

������������
: ð17Þ

Clearly, that the vanishing discriminant condition is
equivalent to an existence of multiple roots among roots
X1;…Xn. We apply this technique for the quartic poly-
nomial RðrÞ in Eq. (8). So that the symmetric k-power
polynomials for n ¼ 4 have the form

pk ¼ Xk
1 þ Xk

2 þ Xk
3 þ Xk

4; k ≥ 0: ð18Þ

The symmetric elementary polynomials for n ¼ 4 have the
form

s1 ¼ X1 þ X2 þ X3 þ X4;

s2 ¼ X1X2 þ X1X3 þ X1X4 þ X2X3 þ X2X4 þ X3X4;

s3 ¼ X1X2X3 þ X2X3X4 þ X1X3X4 þ X1X2X4;

s4 ¼ X1X2X3X4: ð19Þ
We calculate the discriminant of the family X1; X2; X3; X4
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Disðs1; s2; s3; s4Þ ¼

���������

1 1 1 1

X1 X2 X3 X4

X2
1 X2

2 X2
3 X2

4

X3
1 X3

2 X3
3 X3

4

���������

2

¼

���������

4 p1 p2 p3

p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6

���������
: ð20Þ

Expressing the polynomials pkð1 ≤ k ≤ 6Þ in terms of the
polynomials skð1 ≤ k ≤ 4Þ and using Newton’s equations

we calculate the polynomials and discriminant of the
family X1; X2; X3; X4 in roots of the polynomial RðrÞ;
we obtain

p1 ¼ s1 ¼ 0; p2 ¼ −2s2; p3 ¼ 3s3;

p4 ¼ 2s22 − 4s4; p5 ¼ −5s3s2;

p6 ¼ −2s32 þ 3s23 þ 6s4s2; ð21Þ

where s1 ¼ 0; s2 ¼ −l; s3 ¼ −2l; s4 ¼ −ql, corresponding
to the polynomial RðrÞ in Eq. (8). The discriminant Dis of
the polynomial RðrÞ has the form

Disðs1; s2; s3; s4Þ ¼

���������

4 0 2l −6l
0 2l −6l 2lðlþ 2qÞ
2l −6l 2lðlþ 2qÞ −10l2

−6l 2lðlþ 2qÞ −10l2 2l2ðlþ 6þ 3qÞ

���������
¼ 16l3½l2ð1 − qÞ þ lð−8q2 þ 36q − 27Þ − 16q3�: ð22Þ

The polynomial RðrÞ thus has a multiple root if and only if

l3½l2ð1 − qÞ þ lð−8q2 þ 36q − 27Þ − 16q3� ¼ 0: ð23Þ

Excluding the case l ¼ 0, which corresponds to a multiple
root at r ¼ 0, we find that the polynomial RðrÞ has a
multiple root for r ≥ rþ if and only if

l2ð1 − qÞ þ lð−8q2 þ 36q − 27Þ − 16q3 ¼ 0: ð24Þ

If q ¼ 0, we obtain the well-known result for a Schwarzs-
child black hole [38,39,49], lcr ¼ 27, or ξcr ¼ 3

ffiffiffi
3

p
[where

lcr is the positive root of Eq. (24)]. If q ¼ 1, then l ¼ 16, or
ξcr ¼ 4, which also corresponds to numerical results given
in paper [50]. The photon capture cross section for an
extreme charged black hole turns out to be considerably
smaller than the capture cross section of a Schwarzschild
black hole. The critical value of the impact parameter,
characterizing the capture cross section for a RN black
hole, is determined by the equation

lcr ¼
ð8q2 − 36qþ 27Þ þ ffiffiffiffiffiffi

D1

p
2ð1 − qÞ ; ð25Þ

where D1¼ð8q2−36qþ27Þ2þ64q3ð1−qÞ¼−512ðq−9
8
Þ3.

It is clear from the last relation that there are circular
unstable photon orbits only for q ≤ 9

8
(see also results in

[37] about the same critical value). Substituting Eq. (25)
into the expression for the coefficients of the polynomial
RðrÞ it is easy to calculate the radius of the unstable circular
photon orbit (which is the same as the minimum periastron

distance). The orbit of a photon moving from infinity with
the critical impact parameter, determined in accordance
with Eq. (25) spirals into circular orbit. To find a radius of
photon unstable orbit we will solve Eq. (7) substituting lcr
in the relation. From trigonometric formula for roots of
cubic equation we have

rcrit ¼ 2

ffiffiffiffiffi
lcr
6

r
cos

α

3
; ð26Þ

where

FIG. 1. Shadow (mirage) radius (solid line) and radius of the
last circular unstable photon orbit (dot-dashed line) in M units as
a function of q. The critical value q ¼ 9=8 is shown with dashed
vertical line.
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cos α ¼ −

ffiffiffiffiffiffiffi
27

2lcr

s
: ð27Þ

As it was explained in [24] this leads to the formation of
shadows described by the critical value of ξcr or, in other
words, in the spherically symmetric case, shadows are
circles with radii ξcr. Therefore, by measuring the shadow
size, one could evaluate the black hole charge in black hole
mass unitsM. In Fig. 1 a shadow radius and a radius of last
unstable orbit for photons as a function of q are given as a
function of charge (including possible tidal charge with a
negative q and superextreme charge q > 1).

IV. CONSEQUENCES

A. A disappearance of shadows for naked singularities

In spite of the cosmic censorship hypothesis [51] that a
singularity has to be shielded by a horizon, properties of
naked singularities are a subject of intensive theoretical
studies. As usual spherical symmetrical cases are easier for
analysis and RN metrics with super extreme charge q > 1
are investigated in a number of papers (see, for instance,
[52] and references therein).
So, if we assume that q > 1, we can see from Eq. (25)

that for q ≤ 9=8 we have shadows, while for q > 9=8 the
shadows do not exist. For these charges (q > 9=8) incom-
ing photons always scattering by black holes for l ≠ 0
because the polynomial RðrÞ has no multiple roots but it
has a single positive root (it means scattering) since for
great positive r we have RðrÞ > 0 while Rð0Þ < 0. The
degenerate case of radial trajectories of photons (l ¼ 0) can
be ignored as the case with “zero measure” or the structural
unstable case using the Poincaré-Pontryagin-Andronov-
Anosov-Arnold terminology [53]. It means that in any
small vicinity a behavior of the geodesics other than the
radial ones is qualitatively different; therefore, such objects
cannot be observed in nature. Therefore, shadows exist
only for q ≤ 9=8. So, q ¼ 9=8 is critical value which is
characterized “catastrophe” [54] or the qualitatively differ-
ent behavior of the system (the appearance and the
disappearance of shadows).
For the critical q ¼ 9=8 we have the smallest shadow

with l ¼ 27=2 and a shadow size ξ ¼ ffiffiffiffiffiffiffiffiffi
13.5

p
≈ 3.674 (inM

units) or 37.5 μas in diameter for the black hole at the
Galactic Center. For this impact parameter we have
corresponding circular unstable orbit for photons with r ¼
1.5 (in M units).

B. Observational constraints on a charge
of the black hole at the Galactic Center

If we adopt the distance toward the Galactic Center d� ¼
8.3� 0.4 kpc (or d� ¼ 8.35� 0.15 kpc [55]) and mass of
the black hole MBH ¼ ð4.3� 0.4Þ × 106M⊙ [56,57] (a
significant part of black hole mass uncertainty is connected

with a distance determination uncertainty [57]), then we
have the angle 10.45 μas for the corresponding
Schwarzschild radius Rg ¼ 2.95 � MBH

M⊙ � 105 cm roughly
with 10% uncertainty of black hole mass and distance
estimations, so a shadow size for the Schwarzschild black
hole is around 53 μas, for a black hole with a tidal
charge (q ¼ −6.4) suggested by Bin-Nun [3–5] a shadow
size is about 86.1 μas, while for the extreme charge
(q ¼ 1) and critical charge (q ¼ 9=8) the shadow sizes
are 40.9 μas and 37.5 μas, respectively. Uncertainties of
angular shadow size evaluations are at a level around
10% which corresponds to an uncertainty of black hole
mass evaluation.

C. Comparison with observations

A couple of year ago Doeleman et al. [26] claimed that
the intrinsic diameter of Sgr A� is 37þ16

−10 μas at the 3σ
confidence level. If we believe in GR and the central
object is a black hole, then we have to conclude that a
shadow practically coincides with the intrinsic diameter,
so in spite of the fact that a Schwarzschild black hole is
marginally consistent with observations, a Reissner-
Nordström black hole provides much better fit of a
shadow size, while a black hole with a significant tidal
charge (q ¼ −6.4) is out of a more 9σ level interval.
Later on, the accuracy of intrinsic size measurements was
significantly improved, so Fish et al. [58] gave
41.3þ5.4

−4.3 μas (at 3σ level) on day 95, 44.4þ3.0
−3.0 μas on

day 96, and 42.6þ3.1
−2.9 μas on day 97, so a tidal charge

(q ¼ −6.4) is out of 26σ level for day 95 and even less
probable for other observations.
The black hole in the elliptical galaxy M87 looks also

perspective to evaluate shadow size [59] (probably even
its shape in the future to estimate a black hole spin)
because the distance toward the galaxy is 16� 0.6 Mpc
[60], black hole mass is MM87 ¼ ð6.2� 0.4Þ × 109M⊙
[61], so that an angle ð7.3� 0.5Þ μas corresponds to the
Schwarzschild radius [59], so the angle is comparable
with the corresponding value considered earlier for our
Galactic Center case. Recently, it was reported that
smallest shadow size is 5.5� 0.4RSCH with 1σ errors
(where RSCH ¼ 2GMM87=c2) [59], so that at the moment
the shadow size is consistent with the Schwarzschild
metric for the object.

V. CONCLUSIONS

Based on observations [26,58] one can say that for the
Schwarzschild black hole model we have tensions
between evaluations of black hole mass done with
observations of bright star orbits near the Galactic
Center and the evaluated shadow size. To reduce tensions
between estimates of the black hole mass and the intrinsic
size measurements, one can use the Reissner-Nordström
metric with a significant charge which is comparable with
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the critical one. We do not claim that the corresponding
charge has an electric origin because an interstellar
environment is electrically neutral, so the corresponding
charge may be induced (like a tidal charge induced by
extra dimension) and has a nonelectric origin. Charge
estimates for the Reissner-Nordström metric given
from geodesic trajectories for orbital motions are given
in [62].
Recent estimates of the smallest structure in the M87

published in paper [59] do not need an introduction of
charge (tidal or normal) to fit observational data because
sizes of the smallest spot near the black hole at the object
are still consistent with the shadow size evaluated for the
Schwarzschild metric.
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