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The equation of state plays a critical role in the physics of the merger of two neutron stars. Recent
numerical simulations with a microphysical equation of state suggest the outcome of such events depends
on the mass of the neutron stars. For less massive systems, simulations favor the formation of a
hypermassive, quasistable neutron star, for which the oscillations produce a short, high-frequency burst of
gravitational radiation. Its dominant frequency content is tightly correlated with the radius of the neutron
star, and its measurement can be used to constrain the supranuclear equation of state. In contrast, the merger
of higher mass systems results in prompt gravitational collapse to a black hole. We have developed an
algorithm that combines waveform reconstruction from a morphology-independent search for gravitational
wave transients with the Bayesian model selection to discriminate between postmerger scenarios and
accurately measure the dominant oscillation frequency. We demonstrate the efficacy of the method using a
catalog of simulated binary merger signals in data from LIGO and Virgo, and we discuss the prospects for
this analysis in advanced ground-based gravitational wave detectors. From the waveforms considered in
this work, we find that the postmerger neutron star signal may be detectable by this technique to
∼4–12 Mpc, for sources with random sky locations and orientations with respect to the Earth. We also find
that we successfully discriminate between the postmerger scenarios with ∼95% accuracy and determine the
dominant oscillation frequency of surviving postmerger neutron stars to within ∼10 Hz, averaged over all
detected signals. This leads to an uncertainty in the estimated radius of a nonrotating 1.6M⊙ reference
neutron star of ∼100 m.
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I. INTRODUCTION

The inspiral and merger of binary neutron star systems
(BNS) is one of the most promising sources of (GWs) for
the second generation of ground-based detectors, which
include the USA-based Advanced Laser Interferometer
Gravitational Wave Observatory (aLIGO) which has sites
in Hanford Washington and Livingston, Louisiana [1], the
French-Italian Advanced Virgo (AdV) observatory [2,3],
and the Japanese Kamioka Gravitational Wave Detector
observatory [4]. It is expected that the aLIGO-AdV
network will have reached design sensitivity from 2019
onward, leading to the observation of 0.2–200 BNS
coalescence events per year of operation, where the range
in values is set by uncertainties on the BNS coalescence
rate [5].
The internal composition and properties of matter at

supranuclear densities is currently poorly understood, and
the equation of state (EoS) is not well constrained [6].
Current constraints rely on electromagnetic observations of
neutron stars (NSs), from which one tries to infer estimates
of NS radii (see, e.g., Refs. [7,8] and references therein for a
summary and for an extensive list of current observational
methods). Moreover, theoretical models within the chiral

effective field theory constrain the EoS below nuclear
saturation density, which restricts the allowed range of
NS radii at typical NS masses by plausible extrapolations to
higher densities [9]. However, the uncertainties of these
current radius estimates can exceed several tens of percent.
The GW signal from a BNS coalescence carries important
information on the EoS and offers an unprecedented
opportunity to probe the neutron star interior. As the stars
grow closer, increasing tidal interactions imprint a distinc-
tive EoS signature on the phase evolution of the GW
waveform [10–12]. These tidal effects on the inspiral
portion of the waveform may be detectable to distances
∼100 Mpc in aLIGO, leading to the determination of NS
radii to an accuracy of about 1 km [13]. Complementary
and independent constraints on the EoS may be accessible
from the postmerger part of the coalescence signal.
The most likely postmerger scenario is the formation of a

massive (M > 2M⊙), differentially rotating neutron star,
hereafter referred to as the postmerger neutron star (PMNS)
[14–34]. The stability of the PMNS against gravitational
collapse depends on its mass. Less massive systems result
in a long-lived, stable PMNS. For more massive systems, or
where insufficient material has been ejected during the
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merger, centrifugal and thermal effects result in a quasi-
stable remnant that eventually undergoes gravitational
collapse due to the redistribution of energy and angular
momentum via viscous processes, radiation of GWs, and
emission of neutrinos (“delayed collapse”). Sufficiently
high mass systems will result in prompt collapse to a black
hole (BH), emitting a high-frequency ringdown GW signal
at ∼6–7 kHz. The detection of these stellar-mass black hole
ringdowns will be very challenging in the next generation
of ground-based GW detectors, due to their reduced
sensitivity at high frequency; we will not consider them
further in this discussion. We note that in Ref. [26] the
authors suggest two subclasses of the delayed collapse
scenario characterized by the lifetime of the postmerger
remnant. In this work, however, we do not distinguish
between the cases of long- and short-lived PMNS. Instead,
we restrict our classification scheme to the two cases:
i) prompt collapse to a BH and ii) PMNS formation. For
simplicity, we will hereafter refer to (ii) as delayed collapse.
This term is also supposed to subsume cases that actually
do not lead to a gravitational collapse at all because the
PMNS is stable. Observationally, this scenario cannot be
distinguished from a true delayed collapse by the GW
signal immediately following the merger. Moreover, for
some binary setups, it may be very difficult to decide based
on numerical simulations whether the resulting PMNS is
stable or may eventually collapse because this would
require long-term simulations that also take into account
the relevant physics of the secular evolution of the PMNS.
Such simulations are currently unavailable.
In case that the PMNS survives prompt collapse,

transient nonaxisymmetric deformations in the postmerger
remnant lead to a short-duration (∼10–100 ms) burst of
GWs that typically resembles an amplitude-modulated,
damped sinusoid with a dominant oscillation frequency
∼2–4 kHz associated with quadrupole oscillations in the
fluid. In addition to the dominant oscillations, nonlinear
couplings between certain oscillation modes have been
identified, which appear as secondary peaks in the GW
spectra [24]. The spectral properties of this signal carry a
distinct signature of the EoS. In Ref. [29], for example, the
authors perform a large-scale survey using a wide variety of
different EoSs and establish the following correlation
between the peak frequency fpeak of the postmerger signal
from 1.35–1.35M⊙ binaries and the radius of a fiducial,
nonrotating neutron star with mass 1.6M⊙, R1.6,

fpeak ¼
�
−0.2823R1.6 þ 6.284 for fpeak < 2.8 kHz
−0.4667R1.6 þ 8.713 for fpeak > 2.8 kHz;

ð1Þ

where radii are in kilometers and frequencies in kilohertz.
Allowing for an estimated uncertainty in the determination
of fpeak and the maximum deviation from this correlation
for the different EoSs considered in Ref. [29], it is possible

that a single observation of the postmerger signal from a
surviving PMNS could thus determine R1.6 to an accuracy
of 100–200 m. A relation between the dominant oscillation
frequency and neutron star radii was confirmed in Ref. [31],
and an attempt to infer the neutron star compactness from a
secondary peak is included in Ref. [33]. If the postmerger
signal is observable for sources at distances ofOð10Þ Mpc,
while the error in the radius estimation from the inspiral
phase scales inversely with the signal-to-noise ratio (SNR),
then measurements of the radius from the pre- and
postmerger phases may have comparable accuracy, for a
single source. We note that other work (e.g., Refs. [35–37])
has demonstrated the feasibility of constraining the NS
EOS via tidal deformability, rather than NS radii, and how
multiple inspiral observations may be combined to further
improve the constraints.
It is worth stressing that these two observational chan-

nels are independent and highly complementary. Indeed, a
totally idealized and optimal analysis would be based on an
analytic description of the full pre- and postmerger signal.
Until such a description is developed, however, the best
constraints from GWs on the neutron star EOS will be
obtained by studying the pre- and postmerger GW signal
separately, neglecting neither when possible.
Finally, we note that the premerger EOS measurement is

that of the inspiraling neutron stars, which will likely have
masses ∼1.35M⊙, while the postmerger radius measure-
ment is that of a fiducial NS with mass 1.6M⊙; in addition
to measuring NS radii using different methods that rely on
separate sets of assumptions then, the two measurements
therefore also hold the potential to probe quite different
density regimes.
A single observation of the postmerger GW signal from

delayed or prompt collapse can also constrain the threshold
mass Mthresh for prompt collapse. In the case of a delayed
collapse observation, the total mass measured from the
inspiral signal provides a lower limit on Mthresh, and an
upper limit can be inferred from the peak frequency fpeak
and the fact that the frequency increases with the mass of
the remnant [30]. In the case of unambiguous identification
of a prompt collapse, the total mass measured from the
inspiral signal represents an upper limit on Mthresh, leading
to constraints on the maximummass of a nonrotating star in
isolation [30]. Similarly, recent work has demonstrated how
two or more measurements of fpeak from systems with
slightly different masses may allow the determination of the
maximum mass of cold, nonrotating neutron stars to within
0.1M⊙ and the corresponding radius to within a few
percent [38].
Finally, with the projected Einstein Telescope [39], it

may even be possible to use the postmerger signal to
measure the rest-frame source mass and luminosity dis-
tance of a BNS system [40]. This measurement would
break the mass-redshift degeneracy present in observations
of the inspiral phase and permit the use of coalescing
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neutron stars as standard sirens with GW observations
alone [41].
Most detectability estimates for these systems in the

literature generally find that the postmerger signal may be
detectable in aLIGO to distances of ∼few–20 Mpc, assum-
ing an optimally oriented, overhead source and that an
optimal SNR of ∼5 is sufficient for detection.1 These
previous detectability estimates assume stationary,
Gaussian noise and that the postmerger waveform is
sufficiently well modelled to allow a search to be conducted
using matched filtering. However, the postmerger signal
has only recently begun to be described by analytical
waveforms [31]. Consequently, to search for and character-
ize these signals, one must presently use more general
morphology-independent search techniques. Here, tran-
sient bursts of GWs can be identified in the detector output
data as excess power localized in the time-frequency
domain (see, e.g., Refs. [42–45]), and the impinging GW
waveform can be reconstructed by considering the coherent
signal energy coincident in multiple detectors [46–48] or by
projecting the data onto bases formed from representative
catalogs of simulations of the unmodelled signal [49,50].
Additionally, in the case of the high-frequency GW burst
following a binary neutron star coalescence, it is reasonable
to assume that the time of coalescence will be known to
high accuracy from the inspiral portion of the signal
[51,52], thus increasing the detection confidence for the
postmerger part.
It is the goal of this work to determine realistic estimates

for the detectability of the postmerger signal in the second
generation of ground-based GW observatories using CWB
[47], which is the algorithm used for unmodeled searches
of gravitational wave transients [53,54], and simulated
BNS merger waveforms using a variety of EoSs. In
deploying the CWB, we obtain, for the first time, an
estimate of the detectability of the postmerger signal based
on an existing, robust, and demonstrably effective data
analysis algorithm. We also introduce a novel and computa-
tionally inexpensive algorithm for the analysis of the
waveforms reconstructed by CWB that allows accurate
determination of the outcome of the merger (delayed vs
prompt collapse) and, where appropriate, a measurement of
the dominant postmerger oscillation frequency.
This paper is structured as follows. In Sec. II, we

describe the data analysis algorithm and model selection
procedure proposed for the detection and characterization
of the postmerger GW signal. Section III describes the
experimental setup of the study, including a description of
the LIGO data (Sec. III A) and the postmerger waveform
simulations (Sec. III B) used. In Sec. IV, we describe the
results of our analysis in terms of the distance reach, expected

detection rates, and potential measurement accuracy using
the algorithm proposed in this work. We conclude in Sec. V
with a discussion of our findings and future prospects.

II. ANALYSIS ALGORITHM

In this section, we describe the algorithm used to detect,
classify, and infer the parameters of the putative postmerger
signal, in two stages:
(1) Coherent Excess Power Detection: We use the CWB

algorithm [47] to detect statistically significant high-
frequency GW signal power in the data stream
around the time of a known BNS coalescence. Once
a signal is identified as significant with respect to
the noise via a constrained likelihood statistic, the
CWB algorithm reconstructs the detector responses
using a coherent network analysis [46].

(2) Signal Classification and Characterization: Spectral
analysis of this reconstructed response from the first
step is used to determine the outcome of the merger
(delayed collapse and a surviving PMNS vs prompt
collapse to a BH). If the outcome is identified as a
surviving PMNS, the dominant postmerger frequency
is recovered and used with Eq. (1) to determine the
radius of a fiducial 1.6M⊙ neutron star as in
Ref. [29].

A. Coherent WaveBurst

Searches for the inspiral GW signal from coalescing
binaries are typically carried out using a matched-filtering
technique and potentially large template banks [55–57].
The size and composition of these template banks is
defined by the details of the targeted sources. While
analytical expressions are available and appropriate for
the inspiral portion of a BNS [58], phenomenological
waveform families including the merger and ringdown
are needed for higher-mass binary black hole systems in
which the later part of the signal contributes significant
SNR [59,60]. These families, however, are not adequate for
a postmerger search, since they do not yet include the
effects of the neutron star matter on the orbital evolution
during the inspiral, and they assume that the postmerger
signal is the simple, quasinormal mode ringdown expected
from a Kerr black hole (e.g., Ref. [61]). While in the past,
binary neutron star simulations were performed with a
simple polytropic EoS and were focusing on the inspiral
phase, most recent simulations are including microphysical
EoS and also focus on the long-term postmerger evolution.
However, the currently allowed sample of proposed EoS
leads to a variety of different outcomes. This motivates us
to consider a hierarchical search approach, in which the
inspiral phase of the signal is detected via matched filtering
to post-Newtonian analytical waveforms and then followed
up using a morphology-independent analysis that identifies
the postmerger signal.

1We note that the simulations reported in Ref. [33] result in
higher signal-to-noise ratios, increasing the detection horizon to
20–40 Mpc.
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The CWB algorithm is designed to identify and recon-
struct generic transients in data collected from a network
of interferometers. First, the data are decomposed into
pixelated maps, where each pixel represents the localized
energy of the data in a given time-frequency region.
Clusters of time-frequency pixels across different interfer-
ometers’ maps are marked as having significant energy
above the expected properties of the noise. Next, the
analysis attempts to match the expected response of a
passing gravitational wave—the two independent polar-
izations denoted hþ; h×—in the network with a maximum
likelihood estimator,

logLðhþ; h×Þ ¼
X
Ω
2x · ξ − jξj2; ð2Þ

where the boldfaced symbols imply a vector quantity
formed from each member of the network. The detector
response ξ ¼ Fþhþ þ F×h× represents the inferred signal
in the data x, such that x ¼ nþ ξ and n is the intrinsic
interferometer noise. The dependence on source sky
location is encoded in the geometrical antenna patterns
Fþ;F×, defined in Ref. [62]. The two polarizations of the
GW signal are free parameters in the likelihood statistic,
and Ω is the event’s time-frequency area.
The likelihood for a time-frequency cluster is maximized

over the source sky location, and the waveform is recon-
structed as

hþ ¼ Fþ · x
jFþj2

ð3Þ

h× ¼ F× · x
jF×j2

: ð4Þ

The likelihood is an optimal statistic under the assumption
that the detector noise is stationary and Gaussian. In
general, GW detectors can suffer from nonastrophysical,
environmental, mechanical, or electrically induced transi-
ents, referred to as glitches. To mitigate the effects of these
glitches on the analysis and reject false positives, several
statistics characterizing the consistency of the signal
between interferometers, as well as additional likelihood
constraints (e.g., imposing constraints on the polarization
content of the signal) have been developed and applied in
previous analyses [54,63]. None of these additional con-
straints were used in this analysis as the detector data at
high frequencies is dominated by photon shot noise and is
far less contaminated by instrumental glitches than at lower
frequencies.
Two statistics derived from the likelihood are used to

identify and characterize potential GWevents: the coherent
network amplitude η, which is proportional to the signal-to-
noise ratio and is used to rank candidate events and
establish their significance, and the network correlation
coefficient cc, which is a measure of the degree of

correlation between the detectors. Both statistics are
described in detail in Ref. [64]. Small values of cc ≪ 1
are typical for uncorrelated background events, while true
GW signals have cc close to unity. A threshold of cc ¼ 0.5
is used in the generation of CWB events in this analysis.
Determination of event significance using η and the GW
detection criterion is described in Sec. III C.

B. Postmerger signal classification and characterization

A characteristic feature of the PMNS oscillation wave-
form is a distinct peak in the power spectrum around
2–4 kHz with a bandwidth of several tens of hertz. This is in
addition to the roughly power-law decay across frequency
from the late inspiral and merger, as well as one or more
secondary oscillation peaks. An example of a typical
PMNS waveform may be found in Fig. 1. On the other
hand, in the prompt collapse scenario, one still expects
power across these frequencies from the late inspiral and
merger, but any postmerger oscillation comes from the
stellar-mass black hole ringdown at ≳6 kHz. The wave-
form shown in Fig. 2 provides an example of the signal
expected from prompt collapse.
These features in the GW signal spectrum may be

identified in the waveforms reconstructed by the CWB
algorithm, for candidate events that follow a detected low-
mass binary inspiral. For this, we build an SNR-weighted
average power spectral density (PSD) of the reconstructed
waveform in a network of Ndet detectors as

Pi ¼
1

Ndet

XNdet

j¼1

ρrecj

maxkðρreck ÞPij; ð5Þ

where i indexes the frequency bins and ρrecj is the SNR in
the jth detector. We model the PSD for the delayed collapse
as the sum of a power law and a Gaussian,

SNSðfÞ ¼ A0 exp

�
−
�
f − f0peak

2σ

�
2
�
þ A1

�
f

flow

�
α

; ð6Þ

where f0peak is an estimator for the true peak frequency fpeak
of the postmerger peak and σ is its characteristic band-
width. flow is the lower bound on the frequencies analyzed,
α is the power law for the decay component of the signal,
and the terms A0 and A1 set the amplitude scale of each
component.
Since the postmerger signal is likely to be detectable

only to Oð10Þ Mpc, we assume that the inspiral portion for
the signal is detected with high confidence (e.g., SNR
∼160, at design sensitivity [5]). Even at quite moderate
SNRs (e.g., SNR ∼10), the chirp mass M ¼
ðm1m2Þ3=5ðm1 þm2Þ−1=5 and symmetric mass ratio η ¼
m1m2=ðm1 þm2Þ2 can be measured from the inspiral
signal, with fractional uncertainties as low as ΔM=M≲
0.1% and Δη=η ∼ 1–10% [51,65–70], which results in a
total mass uncertainty of a few percent.
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The total mass of the system sets a lower bound on the
expected fpeak. Stars with a stiff equation of state are
relatively underdense, resulting in a low fpeak. The fpeak for
the very stiff equation of state (i.e., Shen [88]) therefore
represents a conservative lower limit on the probable
value for a given mass configuration and unknown EoS.
We probe frequencies up to 400 Hz below these values to
account for uncertainty in the mass measurement and in the
EoS. Lower bounds on the value of fpeak used for the
different mass configurations are given in Table I. Setting a
lower-frequency bound reduces the chance that the
Gaussian component of Eq. (6) is fitted to secondary,
lower-frequency peaks in the reconstructed spectrum and
significantly improves the robustness of the analysis. We
place an upper bound on fpeak at 4 kHz, high enough to
allow for the postmerger ringing from softer (i.e., high-
frequency) EoS, such as APR, and low enough that we
expect no contribution from any black hole ringing, should
the system undergo gravitational collapse.
In the case of prompt collapse to a BH, there will still be

detectable signal power from the late inspiral and merger.

Neglecting any contribution from the BH ringdown, which
is at significantly higher frequencies, we model the recon-
structed power spectrum as a power law,

SBHðfÞ ¼ A1

�
f

flow

�
α

; ð7Þ

where the terms are the same as those in Eq. (6).
We select between these two models for the recon-

structed PSD using the Bayesian Information Criterion
(BIC) [71], defined as

BIC ¼ −2 lnLmax þ k ln n; ð8Þ

where n is the number of spectral bins analyzed, k is the
number of free parameters in the model, and Lmax is the
maximum likelihood. The BIC arises from approximating
the relative Bayesian posterior probabilities of models and
provides a convenient measure of goodness of fit, weighted
by the parsimony of the model. The model with the smallest
value of the BIC is preferred. Assuming that the

FIG. 1 (color online). Demonstration of signal characterization from the Shen EoS and 1.35–1.35M⊙ system, which results in a
surviving PMNS. Left column: the time series and power spectral density of the “plus” (þ) polarization of the target waveform, for a
source located 0.7 Mpc from the Earth. A small distance is deliberately chosen to provide a high SNR signal for demonstrative purposes.
Center column: the power spectral densities and time series (insets) of the detector responses reconstructed by the CWB algorithm. The
subscripts H1, L1, and V1 refer to simulated results from the LIGO detectors located in Hanford and Livingston, and the Virgo detector,
respectively. Right column: the SNR-weighted average reconstructed power spectral density and fitted models. The model for the
delayed collapse scenario is preferred in this instance, as indicated by the relative values of the BIC, defined by Eq (8), for the delayed
and prompt collapse scenarios.
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measurement errors are independent and identically dis-
tributed according to a normal distribution, the BIC is, up to
an additive constant that is the same for all models,

BIC ¼ n ln χ2min þ k ln n; ð9Þ
and

χ2min ¼
1

n − 1

Xn
i¼1

ðPi − S�i Þ2; ð10Þ

wherePi and S�i are the average power spectral density of the
reconstructed detector response and the value of the best-
fitting model in the ith frequency bin, respectively. The best-
fit model is found via least-squares minimization where the
value of the center frequency of the Gaussian component
f0peak is constrained to lie above the relevant value from
Table I, and the power law is constrained such that α < 0.
Figure 3 shows the work flow of this detection and

classification analysis pipeline. The proposed procedure is
as follows:
(1) We assume a robust detection of an inspiral signal

from BNS is achieved from a separate analysis,
providing an estimate for the time of coalescence
and total mass of the system.

(2) A high-frequency CWB analysis is performed in a
small time window around the time of coalescence
of the BNS inspiral. The CWB analysis is con-
strained to [1.5, 4] kHz.

(3) If CWB detects statistically significant excess power
in a small time window around the time of BNS

TABLE I. Estimates of the peak frequency of the postmerger
GW signal for the stiffest EoS for the different masses considered
in this analysis, fstiffpeak. The analysis searches for spectral peaks
above fmin

peak.

Total mass ½M⊙� fstiffpeak [kHz] f̂min
peak [kHz]

2.7 (1.35, 1.35) 2.15 1.75
3.2 (1.6, 1.6) 2.36 1.96
3.3 (1.65, 1.65) 2.40 2.00
3.8 (1.9, 1.9) 2.63 2.23

FIG. 2 (color online). Demonstration of signal characterization for the SFHo EoS and 1.6–1.6M⊙ system, which results in prompt
collapse to a BH. BH quasinormal ringing is not included in the numerical approach used here but lies at higher frequencies than are
considered in this analysis. Left column: the time series and power spectral density of the plus (þ) polarization of the target waveform,
for a source located 0.8 Mpc from the Earth. A small distance is deliberately chosen to provide a high SNR signal for demonstrative
purposes. Center column: the power spectral densities and time series (insets) of the detector responses reconstructed by the CWB
algorithm. The subscripts H1, L1, and V1 refer to simulated results from the LIGO detectors located in Hanford and Livingston and the
Virgo detector, respectively. Right column: the SNR-weighted average reconstructed power spectral density and fitted models. The
model for the delayed collapse scenario is preferred in this instance, as indicated by the relative values of the BIC for the delayed and
prompt collapse scenarios.
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coalescence, assume this is associated with the
coalescence and attempt to classify as follows.

(4) Construct PSDs of detector reconstructions, fPigj,
and average according to Eq. (5) to obtain fPig.

(5) Fit models described by Eqs. (6) and (7) to fPig and
compute ΔBIC ¼ BICBH − BICNS.

(6) If ΔBIC > 0, the PMNS model is preferred, and the
best-fitting value of f0peak provides our estimate of
the peak frequency of the postmerger oscillations.

III. EXPERIMENTAL SETUP

The efficacy of the method outlined in Sec. II is
determined via Monte Carlo simulations in which simu-
lated postmerger signals are superimposed on realistic
detector data. In this section, we describe the data and
waveform simulations used.

A. GW detector data

Data acquired by aLIGO and AdV is unlikely to be
Gaussian or stationary, and it is helpful to demonstrate that
our analysis method is robust to such features by analyzing
realistic detector data. To do so, we use a week of data
recorded by the initial generation instruments in 2007,
recolored to the advanced detector design sensitivities,
following the procedure in Ref. [72].
The LIGO data are recolored to have the Advanced

LIGO design sensitivity given by the zero-detuned, high-
power noise curve [73], while the Virgo data are recolored
to have the Advanced Virgo design sensitivity, given by the
dual recycled, 125 W, tuned signal recycling configuration
[74]. This choice of detectors and noise curves loosely
corresponds to a plausible GW detector network configu-
ration for c.2020 [5]. Figure 4 shows the noise amplitude
spectral densities (ASDs) of the recolored data for each
detector, where the colored regions indicate the variation
between the 5th and 95th percentiles of the ASDs,
measured over the analyzed data.
The data from this period are not contiguous; the

detectors were not always operational, and environmental
artifacts and instrumental glitches affect the quality of
the data. Such times are identified and removed from the
analysis following the procedures described in Refs. [64,
75,76], leaving a total analyzed time of 3.87 days.

B. Binary neutron star coalescence simulations

1. Merger simulations

The waveforms used in our analysis are extracted from
hydrodynamical simulations. These calculations are

FIG. 3. Proposed data analysis pipeline for the detection and
characterization of high-frequency GW signals following binary
neutron star coalescence. The CWB unmodelled analysis algo-
rithm is used to detect and reconstruct a high-frequency compo-
nent to the GW signal temporally coincident with the inspiral
signal from BNS coalescence. The BIC is then used to select
between models for the frequency content for the postmerger
signals to determine whether the outcome of the BNS merger was
a prompt collapse to a black hole or the formation of a postmerger
neutron star remnant.

FIG. 4 (color online). The noise amplitude spectral density of
the recolored data from the LIGO (H1, L1) and Virgo (V1)
detectors used in this analysis. Shaded regions indicate the 5th
(lower edge) and 95th (upper edge) percentiles of the variation in
the noise floor for the data used. Black solid (dashed) curves
indicate the design sensitivities of the aLIGO (AdVirgo) detectors
used for this study [73,74].
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performed with a relativistic smooth particle hydrodynamics
code, which employs the conformal flatness approximation
for the solution of the Einstein field equations [77,78].
Details on the numerical model can be found in Refs. [18,29,
79,80]. A comparison to fully relativistic grid-based simu-
lations has revealed a quantitatively very good agreement
[29,31,33]. In comparison to Ref. [29], we implemented
an improved version of the artificial viscosity scheme (see
Refs. [18,81]) that reduces the artificial viscosity in domi-
nantly rotational flows and causes less numerical damping of
the fluid oscillations in the postmerger phase. The oscillation
frequencies remain basically unchanged compared to the
results presented in Ref. [29], while the artificial damping of
the GW amplitude is reduced.
The prime goal of this study is the extraction of equation-

of-state properties from the gravitational wave detection of
the neutron star coalescence postmerger phase. Since the
properties of high-density matter are only incompletely
known, the numerical modeling relies on different theo-
retical descriptions of the equation of state (see, e.g.,
Ref. [7] for a review). For this work, we employ a large
variety of microphysical EoS models to ensure that the full
range of possible signatures is covered (see Table II). All
equations of state are compatible with the current lower
limit on the maximum mass of nonrotating neutron stars of
about 2M⊙ [82,83]. The considered equations of state
yield maximum gravitational masses of nonrotating neu-
tron stars from 2.02 to 2.79M⊙. Neutron star radii vary
between 11.33 and 14.75 km for 1.35M⊙ neutron stars and
thus cover a significant part of the range of typical radii
constructed with various allowed EoS. Details on the stellar
properties for the specific models can be found in Table II
and in Refs. [29,38], which provide also the mass-radius
relations. All except for one equation of state (APR) take
into account the dependence on temperature and compo-
sition (electron/proton fraction). For the APR model, which
provides only the zero-temperature behavior, we employ
an approximate description of thermal effects (see, e.g.,

Ref. [80], which discusses also the reliability of the
approximate treatment).
The merger simulations start from quasiequilibrium

orbits a few revolutions before the coalescence. Initially,
the temperature of the neutron stars is set to zero and the
electron fraction is determined by neutrinoless beta equi-
librium. The intrinsic spin of neutron stars is assumed to be
small compared to the orbital motion because the viscosity
of neutron star matter is not sufficient to yield tidally locked
systems during the inspiral [93,94]. Hence, we adopt an
irrotational velocity profile (see Ref. [32] for an inclusion
of spins in the case of an ideal gas equation of state).
Binary neutron star observations suggest (in accordance

with population synthesis studies) that symmetric systems
with two stars of about ∼1.35M⊙ dominate the binary
population [7,95]. Therefore, the majority of waveforms
used in this study are extracted from merger simulations of
equal-mass binaries with a total mass of 2.7M⊙, but we
also explore cases with higher masses. It is worth noting
that similar relations between the dominant GWoscillation
frequency and fiducial neutron star radii exist also for other
binary masses [96]. We leave the investigation of unequal-
mass systems for the future but note that the dominant
oscillation frequency of the postmerger remnant resulting
from asymmetric binaries is very close to the one from
a symmetric merger of the same total mass (e.g.,
Refs. [29,31]).
For most investigated binary setups, the merging results

in the formation of a hot, massive, differentially rotating
neutron star. The rapid differential rotation and thermal
pressure support stabilize the remnant also in cases when
the total binary mass exceeds the maximum mass of static
nonrotating neutron stars. The collision induces strong
oscillations; in particular, the quadrupolar fluid mode is
strongly excited and generates the pronounced peak in the
gravitational wave spectrum (Fig. 1) (see Ref. [24] for the
identification of several oscillation modes in the merger
remnant). After angular momentum redistribution and the

TABLE II. The nuclear equations of state used in this study. References are provided in the first column. Equations
of state indicated by “approx” refer to models that rely on an approximate treatment of thermal effects, whereas
“full”marks equations of state that provide the full temperature dependence.Mmax, Rmax, and ρc are the gravitational
mass, circumferential radius, and central energy density of the maximum-mass Tolman–Oppenheimer–Volkoff
configurations. We list ρc in units of the nuclear saturation density ρ0 ¼ 2.7 × 1014 g=cm3. R1.35 and R1.6 are the
circumferential radii of 1.35 and 1.6M⊙ neutron stars.

EoS Mmax ½M⊙� Rmax [km] R1.35 [km] R1.6 [km] ρc=ρ0

APR [84] (approx) 2.19 9.90 11.33 11.25 10.4
NL3 [85,86] (full) 2.79 13.43 14.75 14.81 5.6
DD2 [86,87] (full) 2.42 11.90 13.21 13.26 7.2
Shen [88] (full) 2.22 13.12 14.56 14.46 6.7
TM1 [89,90] (full) 2.21 12.57 14.49 14.36 6.7
SFHx [91] (full) 2.13 10.76 11.98 11.98 8.9
SFHo [91] (full) 2.06 10.32 11.92 11.76 9.8
TMA [90,92] (full) 2.02 12.09 13.86 13.73 7.2
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extraction of energy and angular momentum by gravita-
tional waves, the remnant possibly collapses to a black hole
on a longer time, which typically exceeds the simulation
time of about 20 ms after merging. The exact collapse time
scale depends strongly on the total mass and also on other
(partially not modelled) dissipative processes like magnetic
fields, neutrino cooling, and mass loss.
For sufficiently high total binary masses, the remnant

cannot be supported against the gravitational collapse, and
the merging leads to the direct formation of a black hole on
a dynamical time scale. In our set of models, the SFHo with
3.2M⊙ total binary mass represents such a case (see the
waveform in Fig. 2). Note that our numerical approach does
not allow us to simulate the quasinormal ringing of the BH.
The oscillations of the BH occur at higher frequency than
the [1.5, 4.0] kHz interval considered in this analysis and at
smaller amplitude and, therefore, are unlikely to be con-
fused with the signature of the NS postmerger remnants
[97]. The threshold binary mass that results in the prompt
collapse has been found to depend in a particular way on
the equation of state and may yield information on the
maximum mass of nonrotating neutron stars [30]. Therefore,
we are also interested in distinguishing observationally the
prompt collapse and the formation of a neutron star remnant.
Note that the DD2 model with 3.2M⊙ total binary mass and
the NL3 simulation with 3.8M⊙ total binary mass constitute
models that are “close” to the prompt collapse because their
binary masses are approximately 0.1M⊙ below the thresh-
old. For both calculations, the collapse still did not occur
until the end of the simulation.

2. Hybrid waveforms

The finite simulation time and the numerical damping of
the postmerger oscillations imply an underestimation of the
actual GW amplitude. In an attempt to accommodate this
shortcoming of our approach, we also include a set of
hybrid waveforms, constructed from a subset of the
numerical waveforms described in the previous section.
We extend the numerical waveform with an analytically
prescribed waveform. The analytical part is described with
a sinusoidal waveform, which follows a prescribed fre-
quency evolution and damping behavior. The analytical
model waveform is attached to the numerical waveform
when the numerical amplitude has decayed to one-half of
the initial postmerger GW amplitude. This happens after
several milliseconds when the remnant enters a quasista-
tionary phase. The initial frequency of the analytical wave-
form is chosen to be the frequency of the GW signal at the
matching point. We make conservative assumptions about
the further evolution of the frequency and the damping time
scale of the analytical model as explained below.
The damping of the postmerger oscillations and the

evolution of the dominant oscillation frequency may be
affected by different physical processes, such as gravita-
tional wave emission, magnetic fields, neutrino heating,

and bulk viscosity (e.g., Refs. [98–100] and references
therein). Here, we assume that the extraction of energy and
angular momentum by gravitational waves is the dominant
process responsible for the damping. Currently, there are no
reliable estimates of the time scales of the other damping
mechanisms, which is why we restrict ourselves to pure
GW damping.
For cold, nonrotating NSs, the damping time scale of the

fundamental quadrupolar fluid mode is known to depend
on the star’s mass and radius (see, e.g., Ref. [101]).
However, the postmerger remnant is a hypermassive object
rotating rapidly with strong differential rotation. For such a
case, there still exists no calculation of the actual damping
time scales (see Ref. [102] for the status on the subject).
The damping time scales due to gravitational wave

emission, assuming a quasistationary background, will
be affected by a number of factors: a) rapid rotation,
b) differential rotation, c) high mass, d) the equation of
state, and e) strong field gravity. In addition, if the back-
ground is evolving on a comparable time scale, then this
will result in a time-dependent damping time scale. In the
absence of a proper calculation that takes all of the above
effects into account simultaneously, we are forced, at this
point, to resort to some approximations in order to estimate
upper and lower bounds for the expected damping time
scale for each particular merger event we consider. Next,
we give a detailed account of how we arrive at the particular
upper and lower bounds used in the present work. We focus
on the corotating l ¼ m ¼ 2 f-mode, as this is the
oscillation mode that is more likely to be excited during
the merger of two neutron stars with a frequency of
∼2–3 kHz. The corresponding counterrotating mode will
likely have a lower frequency in the inertial frame, as it is
dragged toward corotation by rotation.
As an estimate for an upper bound on the damping time

scale, we apply the empirical formula from [101],

1

τ0½s�
¼ M̄3

R̄4

�
22.85 − 14.65

M̄
R̄

�
; ð11Þ

where τ0 is the damping time scale (in seconds) of an l ¼ 2
f mode of a star of dimensionless mass M̄ ¼ M=1.4M⊙
and dimensionless radius R̄ ¼ R=10 km. Although the
above formula was derived for nonrotating stars, we use
it as an upper bound, since the actual damping time scale
for rapidly rotating stars is shorter. Above, we use the mass
of the remnant (not of the individual components before
merger), and we extract the equatorial radius of the
remnant, neglecting its low-density envelope, and consider
the mass enclosed within this radius. For example, for the
DD2 EoS, we find an upper bound on the damping time
scale of ∼200 ms for the remnant that results from the
merger of two NSs with 1.35M⊙ each. We note that the
applicability of the above formula is limited only to
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remnants for which it still gives positive values for the
damping time scale, i.e., to remnants for which M̄

R̄ < 1.56.
As an estimate for a lower bound on the damping time

scale, we consider the following. In Refs. [103,104], the
damping time scale due to gravitational wave emission of
the l ¼ m ¼ 2 f mode in rapidly rotating stars was studied,
assuming uniform rotation and the Cowling approximation.
In particular, Ref. [104] used tabulated EoSs and estimated
that the Cowling approximation overestimates the mode
frequencies by up to 30%, while it underestimates damping
time scales by up to a factor of 3. Nevertheless, Ref. [104]
found an empirical relation between the damping time scale
τ of a corotating f mode in a uniformly rotating star and the
corresponding damping time scale in a nonrotating model
of the same central density. This relation shows that a star
rotating at the mass-shedding limit will have a damping
time scale that is ∼1=10 of the corresponding nonrotating
model with the same central density. We find that for
remnants that are far from the threshold to prompt collapse
the central density of the remnant remains comparable,
within a factor of 2, to the central density of one of the
binary components before merger. Therefore, one can relate
the damping time scale of the rotating remnant to the
damping time scale of a nonrotating model with mass equal
to the mass of one of the binary components before merger,
through the empirical relation found in Ref. [104]. We
consider this as an approximate lower bound; because the
central density of the remnant is actually increasing some-
what, compared to the single star before merger, the actual
damping timescale could be somewhat shorter, but at this
level, other uncertainties come into play, and only a real
calculation could give a precise result.
For example, for a 1.35þ 1.35M⊙ merger with the DD2

EoS, using Eq. (11) for a nonrotating 1.35M⊙ model,
which has a radius of ∼13.2 km for this EoS, one obtains
τ0 ∼ 280 ms, and applying the empirical formula of
Ref. [104], this corresponds to τ ∼ 28 ms for a uniformly
rotating star at the mass-shedding limit. For the same mass
but with the APR EoS, we estimate a lower bound on the
damping time scale of ∼18 ms; this is due to the smaller
radius of 11.33 km for this model. Note that the estimates of
the GWemission time scale of ∼30–50 ms in Refs. [16,17]
(which were based on the rate of angular momentum loss
during simulations) fall within our estimated upper and
lower bounds and are in fact closer to our lower bound.
The frequency of the corotating l ¼ m ¼ 2 f mode

levels off as the mass-shedding limit is approached (see
Refs. [103–105]), and so does the damping time scale
[104]. In reality, the remnant will rotate more rapidly than
the mass-shedding limit for uniform rotation, but it is
evident from Ref. [106] that the frequency remains practi-
cally constant, for reasonable values of the degree of
differential rotation. Therefore, to a first approximation,
we will neglect the effect of differential rotation and assume
that the reduction of the damping time scale by a factor of

∼1=10, as obtained at the mass-shedding limit for uniform
rotation, will also hold for hypermassive models with
higher masses, but comparable central density.
Finally, one should also consider the indirect effect of

nonzero temperature on the damping time scales, through
the corresponding increase in radius. For the temperatures
occurring in the remnants in our simulations, this effect
will be within the range of the upper and lower bounds
considered above, and so we do not treat it separately. This
is based on the results of Ref. [107].
We construct additional hybrid waveforms in which we

allow for the remnant to become more compact during the
evolution in order to test the sensitivity of our results to
such an effect. In general, the f mode frequency scales
approximately as

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
[28,29], and we consider the

change of the frequency being mediated by a change of the
remnant’s radius. Here, we assume that the loss of angular
momentum by gravitational radiation is the dominant
mechanism affecting the radius of the remnant while
magnetic fields lead to a braking of the differential rotation
on a time scale of ∼100 ms [99]. The loss of angular
momentum during the damping time scale of ∼200 ms can
be compared to the change of angular momentum in
uniformly rotating neutron stars of constant rest mass.
From this, we obtain a rough estimate of the frequency
change of about 5%. We stress that mass loss counteracts
the compactification of the remnant and that the frequency
change is probably overestimated, in particular, for the
hybrid waveforms with shorter damping time scales. We
employ values of 5% and 0.0% for the change of the
dominant oscillation frequency per damping time scale.
For shorter damping time scales, a 5% change represents
a rather extreme case, which we choose by purpose to
test the sensitivity of our method to such an extreme
assumption.
Table III summarizes the parameters of the hybridized

waveforms used in this study.

TABLE III. Characteristics of the hybridized waveforms used
in this study. Daggers (†) and asterixes (�) indicate whether the
analytic part of the waveform is a stationary (in frequency)
ringdown or a decaying chirp, where the frequency increases by
the percentage shown in the Δf=f column. The τ0 column
indicates the e-folding time for the decay of the analytic signal.

Hybrid EoS Δf=f τ0

hlAPR† APR 0.00 180
hlAPR� APR 0.05 200
hsAPR† APR 0.00 18
hsAPR� APR 0.05 18
hlDD2† DD2 0.00 200
hlDD2� DD2 0.05 200
hsDD2† DD2 0.00 28
hsDD2� DD2 0.05 28
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3. GW signal simulations

The GW polarizations hþ and h× are computed from the
second time derivative of the quadrupole moment of the
source Ï, which is obtained from the numerical simulations.
The quantity hþ − ih× can be decomposed into modes
with spin-weighted spherical harmonics sYlmðθ;ϕÞ of
weight -2:

hþ − ih× ¼ 1

D

X∞
l¼2

Xl
m¼−l

−2Ylmðθ;ϕÞHlmðtÞ: ð12Þ

The expansion parametersHlmðtÞ are complex functions of
the retarded source time t. The H2m, where l ¼ 2 is the
quadrupole mode, may be expressed in terms of the second
time derivatives of the Cartesian components of the mass
quadrupole moment ̈I as

FIG. 5. The catalog of waveforms used in this study. Left column: The time series of the plus polarization of the gravitational waves for
a source at 20 Mpc. Right column: The amplitude spectral density of the characteristic strain (solid line) for an optimally located and
oriented source and the aLIGO design sensitivity (dashed line).
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H20 ¼
ffiffiffiffiffiffiffiffi
32π

15

r
G
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�̈
Izz −
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2
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�
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H2�1 ¼
ffiffiffiffiffiffiffiffi
16π

5
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c4
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H2�2 ¼
ffiffiffiffiffiffi
4π

5

r
G
c4

ð̈Ixx − ̈Iyy∓2ïIxyÞ: ð15Þ

Figures 5 and 6 show the catalog of waveforms used in this
study, assuming a distance of 20 Mpc and optimal source
sky location and orientation. We discuss the characteristics
of these waveforms in Sec. IVA.

FIG. 6. The hybridized waveforms used in this study. Left column: The time series of the plus polarization of the gravitational waves
for a source at 20 Mpc. Insets show the early evolution of the signal for comparison with the original waveforms shown in Fig. 5. Right
column: The amplitude spectral density of the characteristic strain (solid line) of the hybridized waveforms for an optimally located and
oriented source and the aLIGO design sensitivity (dashed line).
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The polarizations hþ and h× constructed from the
quadrupole moments from each simulation were super-
imposed on the recolored data streams from each detector
after the appropriate projection onto the sky for a given sky
location, inclination, and polarization,

hðtÞ ¼ FþðΩ;ψÞhþðtÞ þ F×ðΩ;ψÞh×ðtÞ; ð16Þ
whereΩ is the sky location, ψ is the GW polarization angle,
and Fþ and F× are the detector antenna responses, defined
in Ref. [62]. The inclination dependence enters through the
spherical harmonics in Eq. (12). Note that the amplitude of
the waveforms is scaled up by 40% before being injected to
account for the amplitude underestimate from extraction in
the quadrupole approximation [17,29].
We refer to these signal simulations as injections.

Injections are added approximately every 60 sec with a
uniform random offset within a 10 sec window. This places
all injections far enough apart that the whitening and noise
estimation procedures, which use data surrounding each
injection, are never affected by a neighboring injection.
The injections are distributed isotropically over the sky
with randomized source inclinations (uniform in cos ι) and
polarizations (uniform in polarization angle Ψ). Thus, all

results quoted in this study are averaged over sky location
and source orientation. The distances of the injections are
distributed uniformly in [0.5, 8] Mpc for the purely
numerical waveforms and in [0.5, 15] Mpc for the
hybridized waveforms. These distributions are chosen to
cover the range of detection scenarios and are not intended
to correspond to astrophysical scenarios. This procedure
was repeated ten times, resulting in a population of
approximately 53,000 injections for each waveform type.
The results of the injections are then binned in distance and
used to estimate detection probability as a function of
distance as described in Sec. IV B.
We conduct separate simulation campaigns for each of

the waveforms in our catalog (i.e., Fig. 5 and Table IV) and
characterize the results for each waveform separately.

C. Background estimation and detection criterion

Following the approach used in recent searches for GW
transients [53,54] and as described in Sec. II A, triggers
arising from the CWB analysis are ranked by their coherent
network amplitude, η. The statistical significance of CWB
triggers is determined from the distribution η in the absence
of GW signals, the background distribution, which is

TABLE IV. Characteristics of the waveforms used in this study. Unless otherwise indicated in the subscript, the total mass is 2.7M⊙,
and all systems have a symmetric mass configuration (see Sec. III B 1). Signal-to-noise ratios are evaluated for an optimally oriented
source at 20 Mpc. Fields denoted full refer to quantities evaluated over the full frequency range used for detection [1.5, 4.0] kHz. Fields
denoted peak refer to those quantities evaluated in a narrow range around the dominant highfrequency spectral peak (a 2σ width around
the best-fitting Gaussian). ROpt is the effective range of an optimal matched-filter search, assuming a 3–σ statistical significance
and Oð100Þ BNS-inspiral triggers; _NOpt

det is the expected number of postmerger signal detections for a search with this effective range.
The energy, EGW, is the energy carried by the GW signal assuming elliptical polarization and computed according to Eq. (19). The
waveforms listed below the solid horizontal line are the hybrid waveforms. Since the longer duration hybrids (denoted with “hl”)
represent extreme cases for waveform duration, their energy content is not comparable with the other waveforms in the table and,
therefore, is not included here. fpeak is the frequency of the highest peak in the signal power spectrum. Note that the 3.2M⊙ SFHo
waveform exhibits prompt collapse, so the postmerger characteristics are undefined here.

Waveform SNRfull SNRpeak ROpt [Mpc] _Nopt
det [year

−1] EGW [M⊙] Epeak
GW [M⊙] fpeak [Hz]

APR 4.07 1.66 13.00 0.04 0.09 0.05 3405.40
DD2 4.19 3.13 13.38 0.04 0.07 0.06 2588.60
DD23.3M⊙ 4.69 2.00 14.98 0.06 0.09 0.04 2987.00
NL3 4.58 3.34 14.64 0.05 0.04 0.03 2156.80
NL33.8M⊙ 5.89 3.46 18.82 0.12 0.14 0.08 2706.60
SFHo 3.82 2.06 12.20 0.03 0.08 0.06 3255.20
SFHo3.2M⊙ 4.28 � � � 13.65 0.04 0.04 � � � � � �
SFHx 3.98 2.44 12.72 0.04 0.09 0.06 3011.40
Shen 4.35 2.96 13.89 0.05 0.04 0.03 2263.20
TM1 4.05 2.73 12.94 0.04 0.04 0.03 2288.60
TMa 4.03 2.84 12.86 0.04 0.05 0.04 2426.80
hlAPR† 7.67 5.54 24.51 0.25 � � � � � � 3383.40
hsAPR† 4.43 2.00 14.15 0.05 0.14 0.06 3384.20
hlAPR� 7.41 4.05 23.66 0.23 � � � � � � 3412.60
hsAPR� 4.39 2.23 14.02 0.05 0.14 0.09 3447.20
hlDD2† 8.49 6.74 27.12 0.30 � � � � � � 2587.80
hsDD2† 4.83 3.32 15.42 0.06 0.10 0.06 2588.00
hlDD2� 8.21 6.11 26.23 0.28 � � � � � � 2606.00
hsDD2� 4.76 3.28 15.20 0.06 0.11 0.06 2609.00
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estimated by time-shifting individual detector data streams
relative to each other by an amount greater than the light
travel time between each detector. This ensures no GW
signal is present in the background data set and also
provides a convenient means to increase the background
statistics of a relatively short data segment. Fifty such time
shifts in increments of 1 sec are applied in this study. This
background analysis assigns a false alarm rate (FAR) to the
CWB triggers. This rate is then interpreted as a p value by
assuming some observation time. For the purposes of this
study, we assume an observation time of Tobs ¼ 100 ms.
This represents a conservative estimate of the time of
coalescence measured from the inspiral signal.
The network configuration chosen for this analysis

corresponds to an expected detection rate of the BNS
inspiral signal of Oð100Þ events=year. As we have dis-
cussed in Sec. I, with aLIGO class detectors, the post-
merger signal is likely to be detectable at relatively low
distances (∼few − 20 Mpc), whereas the majority of
sources will lie significantly further away, assuming a
uniform distribution in volume. We suggest, however, that
the postmerger analysis should be performed for all
detected inspiral signals: the distance and the orbital
inclination of the binary system are highly correlated
parameters in the inspiral signal, which leads to large
uncertainties in the estimated distance so one cannot
confidently exclude any individual event from the post-
merger analysis. Furthermore, there is a wide range in the
expected SNR for the postmerger signal, and, given the
EoS and modelling uncertainties in these waveforms, it will
be safest to adopt an observationally driven, “eyes-wide-
open” approach to the analysis.
We place a threshold on the statistical significance

required for detection of 3–σ. Assuming a trials factor of
Oð100Þ then, triggers with p value p < 10−5 are regarded
as GW detection candidates. Finally, the assumed obser-
vation time of Tobs ¼ 100 ms results in a FAR threshold
of 10−4 Hz.

IV. DETECTABILITY STUDY

We now discuss the prospects for the detection and
measurement of the postmerger GW signal with the
algorithm described in Sec. II.

A. Waveform characteristics and expected detectability

We begin by considering the expected detectability of the
postmerger signal with an optimal matched filter, While
matched filtering may not be realistic, due to the scarcity of
templates and high computational costs, it provides an
estimate for the best-case sensitivity to these systems in
stationary, Gaussian data.
If the form of the expected GW signal in the detector is

known a priori, the optimal detection statistic is the
matched-filter SNR ρ,

ρ2 ¼ 4ℜ
Z

fupp

flow

~dðfÞ ~h�ðfÞ
SðfÞ df; ð17Þ

where ~hðfÞ is a template for the expected GW signal, ~dðfÞ
is the Fourier transform of the data, SðfÞ is the one-sided
noise power spectral density, and flow and fupp are lower
and upper bounds on the searched frequency range [108].
Under the assumption of Gaussian noise and in the

absence of a signal, ρ2 follows a central χ2 distribution with
k ¼ 2 degrees of freedom. The SNR threshold ρthresh that
corresponds to a false alarm probability of 10−5 is found
from the survival function of the SNR distribution in
Gaussian noise, evaluated at the chosen false alarm
probability (FAP):

FAP ¼ 1 − Pχ2ðρ2 ≤ ρ2threshjk ¼ 2ÞNt : ð18Þ

In this equation,Nt is a trials factor introduced by searching
over a template bank. For the most optimistic estimate, we
assume the signal is known exactly and only a single
waveform template is required, so that Nt ¼ 1.2 For
FAP ¼ 10−5, Eq. (18) yields ρthresh ¼ 4.8. Table IV lists
the SNR for the waveform of this study, evaluated at
20 Mpc. Two SNRs are reported: SNRfull, the SNR
evaluated over the full frequency range of [1.5,4] kHz
and which is used to determine the detectability of the
signal, and SNRpeak, which is the SNR evaluated over a
narrow frequency range around the dominant high-
frequency peak and indicates the relative strength of
the postmerger oscillation as compared with the full late-
inspiral, merger, and postmerger signals.
The distance reach of a search is often characterized by

its horizon distance Dh, the distance at which an optimally
oriented source yields an SNR at least as large as the
detection threshold. Since SNR scales inversely with
distance, the horizon distance is obtained by rescaling
the fiducial 20 Mpc to that distance that yields SNRfull ≈ 5.
Following Ref. [65], we define the effective range ROpt

of this hypothetical, optimal search as the radius enclosing
a spherical volume V such that the rate of detections from a
homogenous, isotropic distribution of sources with rate
density _N is _NV. For an elliptically polarized source
[109], the effective rangeROpt ≈Dh=2.26, where the factor
2.26 accounts for the average over all sky locations and
orientations. Table IV lists the optimal effective rangeROpt
for each waveform in the catalog, calculated from the noise
PSD of a single aLIGO instrument at design sensitivity. An
optimal search withX detectors with comparable sensitivity
will be a factor

ffiffiffiffi
X

p
more sensitive than the single detector

search [110]. In Table IV, we also report the expected
effective range for an optimal search in Gaussian noise
assuming a network of three instruments with the aLIGO

2Note that this also implies that the sky location and time of the
signal are known.
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design sensitivity. Figure 7 summarizes the theoretically
achievable effective range for each waveform and compares
this with the result from the CWB Monte Carlo analysis
reported in the next section.
The expected detection rate _NOpt

det is obtained by consid-
ering the number of Milky Way equivalent galaxies
(MWEGs) within the effective range3 and the estimated
BNS coalescence rate. Assuming the coalescence rate
_N ¼ 100 MWEG−1Myr−1 [110], we find _NOpt

det ∼ 0.01–
0.1 year−1, in reasonable agreement with previous
estimates [16,19,22,25,29,31,33].
Finally, Table IV reports the energy emitted in GWs,

EGW, and the peak postmerger frequency, where appro-
priate. The energy EGW was calculated from a numerical
integration of

EGW ¼ πc3

4G
D2

Z
1

−1
dðcos ιÞ

Z
2π

0

dλ

×
Z

∞

−∞
df

�ð1þ cos2ιÞ2
4

þ cos2ι

�
f2j ~hðfÞj2

¼ 8π2c3

5G
D2

Z
∞

−∞
dff2j ~hðfÞj2: ð19Þ

B. Monte Carlo study

1. Detectability

For a more realistic estimate, we performed a
Monte Carlo study with realistic data and the CWB
algorithm, as presented in Sec. II. We define the analysis
effective rangeRCWB as the radius of a volume V such that
the rate of detections is _NV, where V is

V ¼
Z

∞

0

dr4πr2ϵðrÞ ð20Þ

and ϵðrÞ is the probability of detecting the postmerger
signal at distance r, averaged over sky location and
orientation. ϵðrÞ is referred to as the efficiency of the
search and is determined by binning the injections in
distance and counting the number of found injections k
out of N trials. Assuming a uniform prior on the efficiency,
the posterior probability density distribution for ϵ is

Pðϵjk; NÞ ¼ ðN þ 1Þ!
ðN − kÞ!k! ϵ

kð1 − ϵÞN−k: ð21Þ

We estimate the efficiency from its expectation value, given
k detections in N simulations at distance r:

hϵi ¼
Z

ϵPðϵjk; NÞdϵ ð22Þ

¼ kþ 1

N þ 2
: ð23Þ

The effective range is the radius of a sphere of volume V:

RCWB ¼
�
3

Z
∞

0

drr2ϵðrÞ
�
1=3

: ð24Þ

We report the values for RCWB for each waveform in the
catalog in Fig. 7 and in Table V. We find that the range of
the CWB analysis is approximately 60%–70% smaller than
an optimal search with perfect knowledge of the waveform
in stationary, Gaussian noise. This also implies a reduction
of the expected detection rate, with _NCWB

det ∼ 10−3–
0.1 events=year, as listed in Table V.

2. Waveform classification and parameter recovery

Figures 8, 9, and 10 summarize the results of this
analysis, marginalized over all extrinsic parameters, such
as distance, sky location, and source orientation. We
characterize the performance of the classification scheme
in terms of the classification accuracy, which is the
probability that the outcome of the merger is correctly
identified as prompt (SFHo3.2M⊙ simulation) or delayed
collapse (all other simulations). This is evaluated as an
efficiency using Eq. (22), where k is now the number of

FIG. 7. The effective ranges for each waveform for an idealized
optimal matched-filter analysis strategy (ROpt) and the CWB
Monte Carlo study (RCWB). Both ranges are evaluated at
assuming a false alarm probability of 10−5. Differences in the
ranges for each waveform are consistent with the difference in the
optimal SNR.

3Found from Fig. 1 of Ref. [110].
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correctly classified signals and N is the total number of
detected signals.
In general, we find that the classification accuracy is

better than 95%; the classification algorithm selects the
correct postmerger scenario when confronted with both

PMNS and prompt-collapse waveforms. We note, however,
that three of the PMNS waveforms studied, APR,
DD23.2M⊙ , and SFHo, yield lower classification accuracies
of ∼70%, as the SNR of the postmerger peak in these
models comprises a significantly lower fraction of the full
waveform. In the cases in which the waveform is mis-
classified, only the low-frequency component of the spec-
trum is loud enough to be reconstructed, and no postmerger
peak is visible.
Figure 9 summarizes the accuracy of the postmerger

frequency determination for our suite of PMNS waveforms.
Figure 9(a) shows the recovered frequency as a function of
the target frequency for each waveform. Figure 9(b)
illustrates the accuracy of the frequency measurement in
terms of the median value and interquartile range of the
absolute deviation from the nominal target value:

δfpeak ≡ jfpeak − f0peakj: ð25Þ

The median error lies in δfpeak ∼ ½4; 15� Hz for the purely
numerical waveforms and δfpeak ∼ ½2; 12� Hz for the
hybridized waveforms. We find that the frequency mea-
surements are most accurate for waveforms with the most
clearly defined and symmetric postmerger peaks.
Given the relative likelihood that BNS coalescence

results in the formation of a PMNS for a wide variety of
EoS and canonical NS masses (m1 ¼ m2 ¼ 1.35M⊙), it is
natural to ask whether the classification stage is necessary.
We find that the classification stage significantly improves
the robustness of the frequency estimation, particularly for

TABLE V. Results summary showing effective range to which the CWB analysis is sensitive and the expected detection rate assuming
the “realistic” BNS coalescence rate given in Ref. [110]. Classification accuracy gives the probability that the postmerger scenario
(delayed vs prompt collapse) is correctly identified. The delayed collapse waveforms are also characterized in terms of the median error
in the peak frequency measurement and, where appropriate, the median error in the estimation of R1.6.

Waveform RCWB [Mpc] _Ndet × 102 [year−1] Classification accuracy ~δfpeak [Hz] ~δR1.6 [m]

APR 4.03 0.37 0.67 10.96 131.69
DD2 4.98 0.58 0.96 5.48 188.16
DD23.3M⊙ 4.74 0.57 0.69 13.63 � � �
NL3 6.01 0.64 0.97 9.06 150.24
NL33.8M⊙ 6.13 0.64 0.95 15.03 -
SFHo 3.46 0.25 0.75 6.87 89.49
SFHo3.2M⊙ 5.09 0.59 0.95 � � � � � �
SFHx 3.99 0.36 0.95 3.83 242.07
Shen 5.43 0.62 0.96 15.72 234.13
TM1 4.50 0.55 0.95 10.05 175.38
TMa 4.75 0.57 0.97 12.43 30.55
hlAPR† 10.53 2.15 0.97 1.91 168.65
hsAPR† 4.13 0.43 0.77 4.15 162.71
hsAPR� 4.10 0.41 0.75 9.55 59.79
hlAPR� 8.05 1.11 0.96 9.66 106.93
hlDD2† 12.17 3.21 0.99 1.66 167.40
hsDD2† 6.68 0.71 0.98 1.02 169.32
hlDD2� 8.55 1.23 0.98 12.40 242.25
hsDD2� 5.36 0.61 0.96 4.73 229.28

FIG. 8. Classification accuracy: the probability that the post-
merger scenario is correctly identified. Of these models,
SFHo3.2M⊙ exhibits prompt collapse to a black hole; all other
simulations result in PMNS formation.
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waveforms where the postmerger peak represents only a
small fraction of the total power in the waveform (i.e., APR,
DD23.2M⊙ , and SFHo). To illustrate this, Fig. 11 shows the
cumulative distribution of the frequency error δfpeak for the

APR waveform, with and without the classification pro-
cedure. If we simply assume that the merger results in
PMNS formation, the best-fitting Gaussian component for
the spectrum [see Eq. (6)] frequently lies at much lower
frequencies than the true postmerger peak, which may not
be detected and reconstructed by CWB at all, leading to
serious errors in the frequency estimation. Indeed, we find
that the 90th percentile of the frequency error with no
classification stage is 1477 kHz. This value falls to just
50 Hz when we include the classification step. We find
similar results for the DD23.2M⊙ and SFHo waveforms. The
classification algorithm is, therefore, an integral part of
this analysis and helps to ensure that there is reasonable
evidence for the existence of the postmerger spectral peak
prior to estimating its frequency.
We conclude by considering the accuracy of the deter-

mination of the radius of a reference 1.6M⊙ neutron star,
using the measured f0peak and the fit of Eq. (1) from
Ref. [29]. This fit is derived for systems with total mass
2.7M⊙. We thus restrict this aspect of the analysis to those
simulations withMtot ¼ 2.7M⊙. It is worth noting that one
can still expect a correlation between fpeak and the radius of
a reference neutron star for different mass configurations,
but further systematic studies similar to those in Ref. [29]
will be necessary to obtain a fit for the precise form of this
relationship. Figure 11(b) shows the distributions of the
error in the measured radius, defined as

δR1.6 ¼ jR1.6 − R0
1.6j; ð26Þ

where R0
1.6 is the radius from Eq. (1) and the measured

postmerger frequency f0peak. We find the median radius
error lies in δR1.6 ∼ ½30; 250� m, where the smallest (larg-
est) error is associated with the TMa (SFHx) waveform.
It is important to stress that this error comprises two

components. The first is related to the error in the frequency
recovery, i.e., δfpeak provided in Table V, which contributes
an error in the radius of δfpeak times the slope of Eq. (1).

FIG. 9 (color online). Frequency recovery for the PMNS
waveforms. Top panel: the median recovered frequency as versus
the target peak frequency of the waveform. Half-filled symbols
indicate hybridized waveforms (see Sec. III B 2). Bottom panel:
the median (red lines), interquartile ranges (boxes), and the
minimum and maximum values within 1.5× the interquartile
range of the absolute error in the frequency determination for
each waveform.

FIG. 10 (color online). The cumulative probability distribution
of the absolute error in the determination of peak frequency for
APR waveforms. The red, dashed trace shows the frequency error
after we have applied our classification scheme (see Sec. II B).
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This error typically amounts to only a few 10 s of meters
(with a maximum of 56 m for the Shen EoS). The second
component results from the deviation of the specific models
from the fit describing the empirical relation between fpeak

and R1.6. This implies that generally one should assign an
error to future measurements that reflects both components,
i.e., the (maximum) error in the frequency recovery plus the
largest deviation from Eq. (1) found for any EoS model.
In this regard, we stress that we are using the fit

originally presented in Ref. [96], which was constructed
using a large sample of EoSs including some models with
an approximate temperature treatment. Although most of
the EoSs considered here were not used in constructing the
fit, we nevertheless obtain a very accurate radius recovery.
This demonstrates that our method is robust.
As detailed in Sec. III, certain physical processes are not

included in this work, such as neutrino emission and
magnetic fields. These effects, however, are very unlikely
to significantly affect the peak frequency because they leave
an imprint only on secular time scales, i.e., they affect the
long-term behavior, while the peak frequency of the GW
spectrum is determined mostly by the nonlinear dynamical
oscillations within the first 10 ms. Thus, the peak frequency
is very likely to be reliably calculated by the current
numerical models. This has been already demonstrated in
Refs. [25,27], where the incorporation of an approximate
neutrino treatment or the inclusion of magnetic fields
resulted in essentially the same peak frequency. Another
possible effect is mass loss, but on dynamical time scales, it
is already included in our simulations (and on secular time
scales, it will leave a only a small imprint on the peak
frequencies). Finally, because of the long time scales
required for binary neutron star inspiral (and given rotational
slowdown due to electromagnetic losses), it is easy to show
that at merger time the neutron stars in binary systems will
only be slowly rotating; hence, neglecting premerger spins is
a realistic assumption. To close this discussion, we stress that
we have demonstrated here that the frequency recovery is
rather insensitive to the choice of the damping time scale and
the long-term frequency drifts that we adopted in construct-
ing the different hybrid waveforms. This shows that the exact
modelling of the long-term behavior will have only a
secondary effect on the frequency and radius determination.
From this, we conclude that the overall error is likely given
by the error bars listed in Table V.

V. CONCLUSION

This paper presents the first systematic study of the
expected detectability of high-frequency bursts of GWs
from the merger and postmerger phase of binary neutron
star coalescence in the second generation of ground-based
detectors, using the Coherent WaveBurst algorithm for
unmodeled transient searches followed by a classification
scheme.
We determine the distance reach and hence the expected

detection rates for the CWB analysis through a large-scale
Monte Carlo study in which simulated postmerger GW
signals are injected into realistic non-Gaussian, nonsta-
tionary detector data that have been recolored such that the

FIG. 11 (color online). Radius recovery for the waveforms
exhibiting delayed collapse: Top panel: the median recovered
radius vs the target radius for a 1.6M⊙ star with that EoS. Bottom
panel: the median (red lines), interquartile ranges (boxes), and the
minimum and maximum values within 1.5× the interquartile
range of the absolute error in the radius determination for each
waveform.
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noise power-spectral density matches the design goals of
aLIGO and AdV.
The results from the CWB Monte Carlo study are

compared with the expected range and rates for a com-
pletely optimal matched-filter analysis assuming stationary,
Gaussian noise. We find the effective range of the CWB
analysis is RCWB ∼ 4–12 Mpc, depending on the energy
content of the postmerger GW signal, corresponding to
an expected detection rate _NCWB

det ∼ 10−3-0.1 events per

year, assuming the realistic coalescence rate _N ¼
100 MWEG−1Myr−1 from Ref. [110]. If the waveform
is known exactly, permitting the use of an optimally
matched filter, the postmerger signals considered in this
paper may be detectable within a sphere of radius
ROpt ∼ 13–27 Mpc, depending on the energy content of
the postmerger GW signal, corresponding to an expected
detection rate _NOpt

det ∼ 0.03–0.3 events per year. Both results
assume that the threshold required for detection corre-
sponds to a false alarm probability of p ¼ 10−5, as required
for a statistical significance of approximately 3σ for the
followup ofOð100Þ events for which the inspiral part of the
GW signal has been detected.
While there is nearly an order of magnitude difference

between the sensitivity of the CWB analysis and the
expectation for the idealized matched filter, it is important
to stress that the optimal sensitivity is highly unlikely to be
realized in practice; even if there were a sufficiently
accurate analytic form for the merger/postmerger signal
that would facilitate the construction of a matched filter, the
start time of the signal, the sky location, and the intrinsic
parameters of the source would still be unknown. Searching
over the unknown parameter space introduces a trials factor
into the SNR distribution, reducing the sensitivity of the
search. Furthermore, real detector data are rarely Gaussian
or stationary, which tends to increase the threshold required
for detection further. The CWB analysis, by contrast, makes
no assumptions regarding waveform morphology, uses an
existing and well-tested data analysis pipeline, and uses
recolored, initial-detector data that may plausibly be regarded
to share the characteristics of advanced detector data. The
optimal and CWB estimates may therefore be regarded as
absolute upper and realistic lower bounds on the detectability
of high-frequency GW signals from binary neutron star
coalescence, keeping in mind that the strength of the GW
emission is not exactly known from numerical simulations.
We have also developed and demonstrated the efficacy of

a simple model-selection and parameter estimation algo-
rithm that distinguishes between the postmerger scenarios
of prompt and delayed collapse to a black hole. This
procedure, which has negligible computational cost as
compared with the CWB analysis itself, assumes that
any statistically significant high-frequency signal power
following a binary neutron star inspiral is due to the merger/
postmerger GW emission from the coalescence. For

delayed collapse, we expect the reconstructed waveform
to resemble a power-law decay with a Gaussian peak
somewhere in ∼½2; 4� kHz, while no such peak is expected
in the case of prompt collapse to a black hole. We deploy
the Bayesian Information Criterion to select between these
models and find that, for most of the waveforms considered
in this study, the probability of correctly identifying the
postmerger scenario is greater than 95%. Delayed-collapse
waveforms in which the postmerger spectral peak comprises
a smaller fraction of the total SNR prove harder to correctly
classify since the spectrum is dominated by power from the
late inspiral and merger as is the case with prompt collapse.
When the outcome of the merger is identified as delayed

collapse, the reconstruction analysis also returns the
maximum-likelihood estimate of the center frequency for
the Gaussian peak, which we identify with the dominant
postmerger oscillation frequency. We find that the typical
magnitude of the error in this determination of the peak
frequency is ~δfpeak ∼ 1–10 Hz, with the highest accuracy
corresponding to waveforms in which the SNR is domi-
nated by the contribution from the postmerger oscillations.
In addition, the model selection stage used to distinguish
prompt and delayed collapse increases the robustness of
this frequency estimation by ensuring that there is indeed
evidence for postmerger oscillations before attempting to
measure their dominant frequency content.
Finally, following Ref. [29], we use the measured peak

frequency to estimate the radius of a 1.6M⊙ neutron star and
compare the result to the true radius of such a star with each
waveform’s equation of state. Using the fit described in
Ref. [29] [i.e., Eq. (1)], we find that the typical magnitude of
the error in this radius estimate is ~δR1.6 ∼ 100–200 m, where
the dominant source of error is in the fit itself associated
with the scatter of the fitted model results rather than the
measurement uncertainty. As remarked upon in Sec. IV B 2,
these estimates for the error in the recovered radius are based
on the fit for a specific set of simulations (symmetric mass
configuration with a total mass of 2.7M⊙) where the
fpeak-R1.6 relationship has been carefully studied. Further
surveys of the postmerger waveform, similar to that in
Ref. [29], will be important to obtain relationships similar to
the fpeak-R1.6 correlation for a variety of mass configurations
and to account for different approaches and detailed physics
used in various modeling codes.
We see then that the prospects for high-frequency

searches for the postmerger signal following BNS coales-
cence rely on serendipitous nearby events and optimistic
coalescence rates. While such a scenario may be unlikely,
even in the advanced detector era, it is difficult to overstate
the rewards of the detection and characterization of the
postmerger signal. Indeed, as we have shown in this work,
the combination of very simple modelling of the signal
spectrum and existing data analysis techniques allows one
to correctly identify the postmerger scenario and, in the
case of delayed collapse, accurately measure the dominant
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postmerger oscillation frequency. Furthermore, refinements
and advances in data analysis ranging from modifications
such as improved time-frequency clustering and the choice
of basis for the CWB algorithm used in this study to novel
Bayesian techniques for the robust detection and charac-
terization of unmodeled signals (e.g., Refs. [111,112]) may
lead to significant improvements in the prospects for
detecting the high-frequency GW emission following
binary neutron star coalescence. In particular, we consider
the development of analytic templates for the postmerger
signal such as in Ref. [31] and their deployment using
Bayesian inference algorithms such as those described in
Ref. [70] of paramount importance and a high-priority goal
for the followup of the imminent first detections of binary
neutron star inspiral signals in the advanced detector era.

ACKNOWLEDGMENTS

The authors thank Francesco Pannarale for useful input
and careful reading of this manuscript and S. Klimenko,

I. S. Heng, and M. West for helpful exchanges and dis-
cussion. J. C. and L. C. gratefully acknowledge support from
NSF Grant No. PHY-0955773. C. P. gratefully acknowl-
edges NSF Grants No. PHY-0970074 and No. PHY-
1307429 and the UWM Research Growth Initiative. A. B.
is a Marie Curie Intra-European Fellow within the 7th
European Community Framework Programme (IEF
331873). This work was supported by the Deutsche
Forschungsgemeinschaft through Sonderforschungsbereich
Transregio 7 “Gravitational Wave Astronomy” and the
Cluster of Excellence EXC 153 “Origin and Structure of
the Universe.” Partial support comes from “NewCompStar,”
COST Action MP1304. The authors acknowledge support
through INT Program No. INT-14-2a “Binary Neutron Star
Coalescence as a Fundamental Physics Laboratory.” The
computations were performed at the Rechenzentrum
Garching of the Max-Planck-Gesellschaft, the Max Planck
Institute for Astrophysics, and the Cyprus Institute under the
LinkSCEEM/Cy-Tera project.

[1] LIGO Scientific Collaboration, Classical Quantum Gravity
27, 084006 (2010).

[2] T. Accadia et al., Classical Quantum Gravity 28, 114002
(2011).

[3] T. V. Collaboration, Virgo Tech. Rep. VIR-027A-09
(2009), https://tds.ego‑gw.it/itf/tds/file.php?callFile=VIR
‑0027A‑09.pdf.

[4] K. Kuroda (LCGT Collaboration), Classical Quantum
Gravity 27, 084004 (2010).

[5] J. Aasi et al. (LIGO Scientific Collaboration and Virgo
Collaboration), arXiv:1304.0670.

[6] J. M. Lattimer and M. Prakash, Phys. Rep. 442, 109
(2007).

[7] J. M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485
(2012).

[8] J. M. Lattimer, Gen. Relativ. Gravit. 46, 1713 (2014).
[9] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[10] É. É. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502

(2008).
[11] L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, and L.

Rezzolla, Phys. Rev. Lett. 105, 261101 (2010).
[12] S. Bernuzzi, A. Nagar, M. Thierfelder, and B. Brügmann,

Phys. Rev. D 86, 044030 (2012).
[13] J. S. Read, C. Markakis, M. Shibata, K. Uryū, J. D. E.

Creighton, and J. L. Friedman, Phys. Rev. D 79, 124033
(2009).

[14] X. Zhuge, J. M. Centrella, and S. L. W. McMillan, Phys.
Rev. D 50, 6247 (1994).

[15] M. Ruffert, H.-T. Janka, and G. Schaefer, Astron.
Astrophys. 311, 532 (1996).

[16] M. Shibata, Phys. Rev. Lett. 94, 201101 (2005).

[17] M. Shibata, K. Taniguchi, and K. Uryū, Phys. Rev. D 71,
084021 (2005).

[18] R. Oechslin, H.-T. Janka, and A. Marek, Astron.
Astrophys. 467, 395 (2007).

[19] R. Oechslin and H. -T. Janka, Phys. Rev. Lett. 99, 121102
(2007).

[20] M. Anderson, E. W. Hirschmann, L. Lehner, S. L.
Liebling, P. M. Motl, D. Neilsen, C. Palenzuela, and
J. E. Tohline, Phys. Rev. D 77, 024006 (2008).

[21] Y. T. Liu, S. L. Shapiro, Z. B. Etienne, and K. Taniguchi,
Phys. Rev. D 78, 024012 (2008).

[22] L. Baiotti, B. Giacomazzo, and L. Rezzolla, Phys. Rev. D
78, 084033 (2008).

[23] K. Kiuchi, Y. Sekiguchi, M. Shibata, and K. Taniguchi,
Phys. Rev. D 80, 064037 (2009).

[24] N. Stergioulas, A. Bauswein, K. Zagkouris, and
H. -T. Janka, Mon. Not. R. Astron. Soc. 418, 427 (2011).

[25] B. Giacomazzo, L. Rezzolla, and L. Baiotti, Phys. Rev. D
83, 044014 (2011).

[26] K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, and
K. Kiuchi, Phys. Rev. D 83, 124008 (2011).

[27] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, and M. Shibata,
Phys. Rev. Lett. 107, 051102 (2011).

[28] A. Bauswein and H.-T. Janka, Phys. Rev. Lett. 108,
011101 (2012).

[29] A. Bauswein, H.-T. Janka, K. Hebeler, and A. Schwenk,
Phys. Rev. D 86, 063001 (2012).

[30] A. Bauswein, T. W. Baumgarte, and H.-T. Janka, Phys.
Rev. Lett. 111, 131101 (2013).

[31] K. Hotokezaka, K. Kiuchi, K. Kyutoku, T. Muranushi,
Y. Sekiguchi, M. Shibata, and K. Taniguchi, Phys. Rev. D
88, 044026 (2013).

J. CLARK et al. PHYSICAL REVIEW D 90, 062004 (2014)

062004-20

http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://dx.doi.org/10.1088/0264-9381/28/11/114002
http://dx.doi.org/10.1088/0264-9381/28/11/114002
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
http://dx.doi.org/10.1088/0264-9381/27/8/084004
http://dx.doi.org/10.1088/0264-9381/27/8/084004
http://arXiv.org/abs/1304.0670
http://dx.doi.org/10.1016/j.physrep.2007.02.003
http://dx.doi.org/10.1016/j.physrep.2007.02.003
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1007/s10714-014-1713-3
http://dx.doi.org/10.1088/0004-637X/773/1/11
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevLett.105.261101
http://dx.doi.org/10.1103/PhysRevD.86.044030
http://dx.doi.org/10.1103/PhysRevD.79.124033
http://dx.doi.org/10.1103/PhysRevD.79.124033
http://dx.doi.org/10.1103/PhysRevD.50.6247
http://dx.doi.org/10.1103/PhysRevD.50.6247
http://dx.doi.org/10.1103/PhysRevLett.94.201101
http://dx.doi.org/10.1103/PhysRevD.71.084021
http://dx.doi.org/10.1103/PhysRevD.71.084021
http://dx.doi.org/10.1051/0004-6361:20066682
http://dx.doi.org/10.1051/0004-6361:20066682
http://dx.doi.org/10.1103/PhysRevLett.99.121102
http://dx.doi.org/10.1103/PhysRevLett.99.121102
http://dx.doi.org/10.1103/PhysRevD.77.024006
http://dx.doi.org/10.1103/PhysRevD.78.024012
http://dx.doi.org/10.1103/PhysRevD.78.084033
http://dx.doi.org/10.1103/PhysRevD.78.084033
http://dx.doi.org/10.1103/PhysRevD.80.064037
http://dx.doi.org/10.1111/j.1365-2966.2011.19493.x
http://dx.doi.org/10.1103/PhysRevD.83.044014
http://dx.doi.org/10.1103/PhysRevD.83.044014
http://dx.doi.org/10.1103/PhysRevD.83.124008
http://dx.doi.org/10.1103/PhysRevLett.107.051102
http://dx.doi.org/10.1103/PhysRevLett.108.011101
http://dx.doi.org/10.1103/PhysRevLett.108.011101
http://dx.doi.org/10.1103/PhysRevD.86.063001
http://dx.doi.org/10.1103/PhysRevLett.111.131101
http://dx.doi.org/10.1103/PhysRevLett.111.131101
http://dx.doi.org/10.1103/PhysRevD.88.044026
http://dx.doi.org/10.1103/PhysRevD.88.044026


[32] S. Bernuzzi, T. Dietrich, W. Tichy, and B. Bruegmann,
Phys. Rev. D 89, 104021 (2014).

[33] K. Takami, L. Rezzolla, and L. Baiotti, arXiv:1403.5672.
[34] T. W. Baumgarte, S. L. Shapiro, and M. Shibata,

Astrophys. J. Lett. 528, L29 (2000).
[35] W. Del Pozzo, T. G. F. Li, M. Agathos, C. Van Den Broeck,

and S. Vitale, Phys. Rev. Lett. 111, 071101 (2013).
[36] M. Favata, Phys. Rev. Lett. 112, 101101 (2014).
[37] L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey,

B. F. Farr, T. B. Littenberg, and V. Raymond, Phys. Rev. D
89, 103012 (2014).

[38] A. Bauswein, N. Stergioulas, and H.-T. Janka, Phys. Rev.
D 90, 023002 (2014).

[39] M. Punturo et al., Classical Quantum Gravity 27, 084007
(2010).

[40] C. Messenger, K. Takami, S. Gossan, L. Rezzolla, and
B. S. Sathyaprakash, arXiv:1312.1862.

[41] B. F. Schutz, Nature (London) 323, 310 (1986).
[42] W. G. Anderson, P. R. Brady, J. D. Creighton, and É. É.

Flanagan, Phys. Rev. D 63, 042003 (2001).
[43] S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis,

Classical Quantum Gravity 21, S1809 (2004).
[44] S. Klimenko and G. Mitselmakher, Classical Quantum

Gravity 21, S1819 (2004).
[45] P. J. Sutton et al., New J. Phys. 12, 053034 (2010).
[46] S. Klimenko, S. Mohanty, M. Rakhmanov, and G.

Mitselmakher, Phys. Rev. D 72, 122002 (2005).
[47] S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher,

Classical Quantum Gravity 25, 114029 (2008).
[48] T. Z. Summerscales, A. Burrows, L. S. Finn, and C. D. Ott,

Astrophys. J. 678, 1142 (2008).
[49] C.Röver,M.-A. Bizouard, N. Christensen,H.Dimmelmeier,

I. S. Heng, and R. Meyer, Phys. Rev. D 80, 102004 (2009).
[50] J. Logue, C. D. Ott, I. S. Heng, P. Kalmus, and J. H. C.

Scargill, Phys. Rev. D 86, 044023 (2012).
[51] K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A.

Sundararajan, Phys. Rev. D 71, 084008 (2005).
[52] S. Fairhurst, Classical Quantum Gravity 28, 105021 (2011).
[53] J. Abadie et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Phys. Rev. D 85, 122007 (2012).
[54] J. Abadie et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Phys. Rev. D 85, 102004 (2012).
[55] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and

J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012).
[56] J. Abadie et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Phys. Rev. D 85, 082002 (2012).
[57] J. Aasi et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Phys. Rev. D 87, 022002 (2013).
[58] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[59] A. Buonanno, Y. Pan, J. G. Baker, J. Centrella, B. J. Kelly,

S. T. McWilliams, and J. R. van Meter, Phys. Rev. D 76,
104049 (2007).

[60] P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011).
[61] F. Echeverria, Phys. Rev. D 40, 3194 (1989).
[62] P. Jaranowski, A. Królak, and B. F. Schutz, Phys. Rev. D

58, 063001 (1998).
[63] C. Pankow, S. Klimenko, G. Mitselmakher, I. Yakushin, G.

Vedovato, M. Drago, R. A. Mercer, and P. Ajith, Classical
Quantum Gravity 26, 204004 (2009).

[64] LIGO Scientific Collaboration, Phys. Rev. D 80, 102001
(2009).

[65] L. S. Finn and D. F. Chernoff, Phys. Rev. D 47, 2198
(1993).

[66] C. Cutler and É. E. Flanagan, Phys. Rev. D 49, 2658
(1994).

[67] P. Jaranowski, K. D. Kokkotas, A. Królak, and G. Tsegas,
Classical Quantum Gravity 13, 1279 (1996).

[68] J. Veitch, I. Mandel, B. Aylott, B. Farr, V. Raymond, C.
Rodriguez, M. van der Sluys, V. Kalogera, and A. Vecchio,
Phys. Rev. D 85, 104045 (2012).

[69] M. Hannam, D. A. Brown, S. Fairhurst, C. L. Fryer, and
I. W. Harry, Astrophys. J. Lett. 766, L14 (2013).

[70] J. Aasi et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. D 88, 062001 (2013).

[71] G. Schwarz, Ann. Stat. 6, 461 (1978).
[72] J. Aasi et al. (LIGO Scientific Collaboration, Virgo

Collaboration, and NINJA-2 Collaboration), Classical
Quantum Gravity 31, 115004 (2014).

[73] LIGO Scientific Collaboration, https://dcc.ligo.org/LIGO
‑T0900288/public.

[74] T. Accadia et al., https://tds.ego‑gw.it/ql/?c=8940.
[75] LIGO Scientific Collaboration, Phys. Rev. D 80, 102002

(2009).
[76] J. Abadie et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Phys. Rev. D 81, 102001 (2010).
[77] J. Isenberg and J. Nester, in General Relativity and

Gravitation (Plenum, New York, 1980), p. 23.
[78] J. R. Wilson, G. J. Mathews, and P. Marronetti, Phys. Rev.

D 54, 1317 (1996).
[79] R. Oechslin, S. Rosswog, and F.-K. Thielemann, Phys.

Rev. D 65, 103005 (2002).
[80] A. Bauswein, H.-T. Janka, and R. Oechslin, Phys. Rev. D

82, 084043 (2010).
[81] D. S. Balsara, J. Comput. Phys. 121, 357 (1995).
[82] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E.

Roberts, and J. W. T. Hessels, Nature (London) 467,
1081 (2010).

[83] J. Antoniadis et al., Science 340, 448 (2013).
[84] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall,

Phys. Rev. C 58, 1804 (1998).
[85] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55,

540 (1997).
[86] M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A837,

210 (2010).
[87] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H.

Wolter, Phys. Rev. C 81, 015803 (2010).
[88] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nucl.

Phys. A637, 435 (1998).
[89] Y. Sugahara and H. Toki, Nucl. Phys. A579, 557 (1994).
[90] M. Hempel, T. Fischer, J. Schaffner-Bielich, and M.

Liebendörfer, Astrophys. J. 748, 70 (2012).
[91] A. W. Steiner, M. Hempel, and T. Fischer, Astrophys. J.

774, 17 (2013).
[92] H. Toki, D. Hirata, Y. Sugahara, K. Sumiyoshi, and

I. Tanihata, Nucl. Phys. A588, c357 (1995).
[93] L. Bildsten and C. Cutler, Astrophys. J. 400, 175

(1992).
[94] C. S. Kochanek, Astrophys. J. 398, 234 (1992).

PROSPECTS FOR HIGH FREQUENCY BURST SEARCHES … PHYSICAL REVIEW D 90, 062004 (2014)

062004-21

http://dx.doi.org/10.1103/PhysRevD.89.104021
http://arXiv.org/abs/1403.5672
http://dx.doi.org/10.1086/312425
http://dx.doi.org/10.1103/PhysRevLett.111.071101
http://dx.doi.org/10.1103/PhysRevLett.112.101101
http://dx.doi.org/10.1103/PhysRevD.89.103012
http://dx.doi.org/10.1103/PhysRevD.89.103012
http://dx.doi.org/10.1103/PhysRevD.90.023002
http://dx.doi.org/10.1103/PhysRevD.90.023002
http://dx.doi.org/10.1088/0264-9381/27/8/084007
http://dx.doi.org/10.1088/0264-9381/27/8/084007
http://arXiv.org/abs/1312.1862
http://dx.doi.org/10.1038/323310a0
http://dx.doi.org/10.1103/PhysRevD.63.042003
http://dx.doi.org/10.1088/0264-9381/21/20/024
http://dx.doi.org/10.1088/0264-9381/21/20/025
http://dx.doi.org/10.1088/0264-9381/21/20/025
http://dx.doi.org/10.1088/1367-2630/12/5/053034
http://dx.doi.org/10.1103/PhysRevD.72.122002
http://dx.doi.org/10.1088/0264-9381/25/11/114029
http://dx.doi.org/10.1086/528362
http://dx.doi.org/10.1103/PhysRevD.80.102004
http://dx.doi.org/10.1103/PhysRevD.86.044023
http://dx.doi.org/10.1103/PhysRevD.71.084008
http://dx.doi.org/10.1088/0264-9381/28/10/105021
http://dx.doi.org/10.1103/PhysRevD.85.122007
http://dx.doi.org/10.1103/PhysRevD.85.102004
http://dx.doi.org/10.1103/PhysRevD.85.122006
http://dx.doi.org/10.1103/PhysRevD.85.082002
http://dx.doi.org/10.1103/PhysRevD.87.022002
http://dx.doi.org/10.12942/lrr-2014-2
http://dx.doi.org/10.1103/PhysRevD.76.104049
http://dx.doi.org/10.1103/PhysRevD.76.104049
http://dx.doi.org/10.1103/PhysRevLett.106.241101
http://dx.doi.org/10.1103/PhysRevD.40.3194
http://dx.doi.org/10.1103/PhysRevD.58.063001
http://dx.doi.org/10.1103/PhysRevD.58.063001
http://dx.doi.org/10.1088/0264-9381/26/20/204004
http://dx.doi.org/10.1088/0264-9381/26/20/204004
http://dx.doi.org/10.1103/PhysRevD.80.102001
http://dx.doi.org/10.1103/PhysRevD.80.102001
http://dx.doi.org/10.1103/PhysRevD.47.2198
http://dx.doi.org/10.1103/PhysRevD.47.2198
http://dx.doi.org/10.1103/PhysRevD.49.2658
http://dx.doi.org/10.1103/PhysRevD.49.2658
http://dx.doi.org/10.1088/0264-9381/13/6/004
http://dx.doi.org/10.1103/PhysRevD.85.104045
http://dx.doi.org/10.1088/2041-8205/766/1/L14
http://dx.doi.org/10.1103/PhysRevD.88.062001
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1088/0264-9381/31/11/115004
http://dx.doi.org/10.1088/0264-9381/31/11/115004
https://dcc.ligo.org/LIGO-T0900288/public
https://dcc.ligo.org/LIGO-T0900288/public
https://dcc.ligo.org/LIGO-T0900288/public
https://dcc.ligo.org/LIGO-T0900288/public
https://tds.ego-gw.it/ql/?c=8940
https://tds.ego-gw.it/ql/?c=8940
https://tds.ego-gw.it/ql/?c=8940
http://dx.doi.org/10.1103/PhysRevD.80.102002
http://dx.doi.org/10.1103/PhysRevD.80.102002
http://dx.doi.org/10.1103/PhysRevD.81.102001
http://dx.doi.org/10.1103/PhysRevD.54.1317
http://dx.doi.org/10.1103/PhysRevD.54.1317
http://dx.doi.org/10.1103/PhysRevD.65.103005
http://dx.doi.org/10.1103/PhysRevD.65.103005
http://dx.doi.org/10.1103/PhysRevD.82.084043
http://dx.doi.org/10.1103/PhysRevD.82.084043
http://dx.doi.org/10.1016/S0021-9991(95)90221-X
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1103/PhysRevC.55.540
http://dx.doi.org/10.1103/PhysRevC.55.540
http://dx.doi.org/10.1016/j.nuclphysa.2010.02.010
http://dx.doi.org/10.1016/j.nuclphysa.2010.02.010
http://dx.doi.org/10.1103/PhysRevC.81.015803
http://dx.doi.org/10.1016/S0375-9474(98)00236-X
http://dx.doi.org/10.1016/S0375-9474(98)00236-X
http://dx.doi.org/10.1016/0375-9474(94)90923-7
http://dx.doi.org/10.1088/0004-637X/748/1/70
http://dx.doi.org/10.1088/0004-637X/774/1/17
http://dx.doi.org/10.1088/0004-637X/774/1/17
http://dx.doi.org/10.1016/0375-9474(95)00161-S
http://dx.doi.org/10.1086/171983
http://dx.doi.org/10.1086/171983
http://dx.doi.org/10.1086/171851


[95] M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti,
T. Bulik, I. Mandel, and R. O’Shaughnessy, Astrophys. J.
759, 52 (2012).

[96] A. Bauswein, H.-T. Janka, K. Hebeler, and A. Schwenk,
Phys. Rev. D 86, 063001 (2012).

[97] M. Shibata and K. Taniguchi, Phys. Rev. D 73, 064027
(2006).

[98] S. L. Shapiro, Astrophys. J. 544, 397 (2000).
[99] V. Paschalidis, Z. B. Etienne, and S. L. Shapiro, Phys. Rev.

D 86, 064032 (2012).
[100] A. Reisenegger and A. Bonacic, in Proceedings of the

International Workshop Pulsars, AXPs and SGRs
Observed with BeppoSAX and Other Observatories,
Marsala, Italy, 2002, edited by G. Cusumano and E.
Massaro (Aracne, Italy, 2003), pp. 231.

[101] N. Andersson and K. D. Kokkotas, Mon. Not. R. Astron.
Soc. 299, 1059 (1998).

[102] J. L. Friedman and N. Stergioulas, Rotating Relativistic
Stars (Cambridge University Press, Cambridge, England,
2013).

[103] E. Gaertig and K. D. Kokkotas, Phys. Rev. D 83, 064031
(2011).

[104] D. D. Doneva, E. Gaertig, K. D. Kokkotas, and C. Krüger,
Phys. Rev. D 88, 044052 (2013).

[105] B. Zink, O. Korobkin, E. Schnetter, and N. Stergioulas,
Phys. Rev. D 81, 084055 (2010).

[106] C. Krüger, E. Gaertig, and K. D. Kokkotas, Phys. Rev. D
81, 084019 (2010).

[107] G. F. Burgio, V. Ferrari, L. Gualtieri, and H.-J. Schulze,
Phys. Rev. D 84, 044017 (2011).

[108] P. Jaranowski and A. Królak, Living Rev. Relativity 15, 4
(2012).

[109] P. J. Sutton, arXiv:1304.0210.
[110] J. Abadie et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Classical Quantum Gravity 27, 173001
(2010).

[111] T. B. Littenberg and N. J. Cornish, Phys. Rev. D 82,
103007 (2010).

[112] N. J. Cornish, Phil. Trans. R. Soc. A 371, 20110540
(2013).

J. CLARK et al. PHYSICAL REVIEW D 90, 062004 (2014)

062004-22

http://dx.doi.org/10.1088/0004-637X/759/1/52
http://dx.doi.org/10.1088/0004-637X/759/1/52
http://dx.doi.org/10.1103/PhysRevD.86.063001
http://dx.doi.org/10.1103/PhysRevD.73.064027
http://dx.doi.org/10.1103/PhysRevD.73.064027
http://dx.doi.org/10.1086/317209
http://dx.doi.org/10.1103/PhysRevD.86.064032
http://dx.doi.org/10.1103/PhysRevD.86.064032
http://dx.doi.org/10.1046/j.1365-8711.1998.01840.x
http://dx.doi.org/10.1046/j.1365-8711.1998.01840.x
http://dx.doi.org/10.1103/PhysRevD.83.064031
http://dx.doi.org/10.1103/PhysRevD.83.064031
http://dx.doi.org/10.1103/PhysRevD.88.044052
http://dx.doi.org/10.1103/PhysRevD.81.084055
http://dx.doi.org/10.1103/PhysRevD.81.084019
http://dx.doi.org/10.1103/PhysRevD.81.084019
http://dx.doi.org/10.1103/PhysRevD.84.044017
http://dx.doi.org/10.12942/lrr-2012-4
http://dx.doi.org/10.12942/lrr-2012-4
http://arXiv.org/abs/1304.0210
http://dx.doi.org/10.1088/0264-9381/27/17/173001
http://dx.doi.org/10.1088/0264-9381/27/17/173001
http://dx.doi.org/10.1103/PhysRevD.82.103007
http://dx.doi.org/10.1103/PhysRevD.82.103007
http://dx.doi.org/10.1098/rsta.2011.0540
http://dx.doi.org/10.1098/rsta.2011.0540

