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The gravitational lensing effect is important to the detection of electromagnetic signals in astrophysics.
The gravitational wave lensing effect has also been found significant to gravitational wave detection in the
past decade. Recent analysis shows that the lensing events for advanced detectors could be quite plausible.
The black holes in our Milky Way Galaxy may play the role of lens objects. These facts motivate us to study
the lensing effects on gravitational wave signals for advanced detectors. Taking advanced LIGO and
Einstein Telescope for examples, we investigate the lensing effects on the parameter extraction of
gravitational wave signals. Using the Markov chain Monte Carlo simulation together with matched filtering
methods, we find that the lensing effect for a lens object with small mass is negligible. But when the mass of
the lens object increases to larger than 1000M , the lensing effect becomes important. Using the template
without lensing corrections would result in loss of signal detections. In contrast if we consider templates
with lensing effects, the lensed signal may provide much information about the lens black hole. These facts
may give us a new way to determine the parameters of the lensing object. For example, this kind of signal
may also help us estimate the mass and the distance of the supermassive black hole hosted at the center

of our Galaxy.
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I. INTRODUCTION

Weak lensing is of capital importance in electromagnetic
observations. Due to the similarity between gravity and
electromagnetism, people have done analogous research
with optics approximation in the gravitational lensing of
gravitational waves in the 1970s [1,2]. Because the detect-
able gravitational wave event rates are small, the lensed
gravitational wave event rate is low. There have been few
motivations for a long time to consider the lensing effect on
gravitational waves. Until recently, the authors in [3,4]
realized that the gravitational lensing effect on gravitational
waves should be described by wave dynamics instead of
optics approximation. The features of wave dynamics make
the fraction of lensed events larger than that optics approxi-
mation has ever predicted. This fact motivated many authors
to study lensing effects on gravitational waves in the past
decade [3-16]. As noted in [4], the lensing effect is very
important for the space-based gravitational wave detector
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LISA [17]. Even for the coming generations of ground-based
gravitational wave detectors such as Advanced LIGO
and Einstein telescope (ET), lensing effects are also non-
negligible. This is because the detectable binary sources for
these detectors may reach redshifts z > 1 [18]. The authors
in [19] found that the gravitational lensing effects may be
significant to ET. They only considered neutron star-neutron
star (NS-NS) inspiral as a gravitational wave source and
event rate for gravitational wave lensing roughly tens per
year and one per decade in the most optimistic case and in
the most pessimistic case respectively.

The direct detection of gravitational wave signals is
important for fundamental science. Yet extracting informa-
tion from the gravitational wave signal is much more
useful, which is the foundation of the gravitational wave
astronomy. The accuracy of the parameter estimation in
gravitational wave detection will affect many aspects of
science study and will affect the development of gravita-
tional wave astronomy. For example, if we can extract the
distance and the angular position of the gravitational wave
source accurately, this information may provide insights
to the puzzle of the dark energy problem [20].

© 2014 American Physical Society
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Coalescing binary compact objects (CBC) are among
the most promising gravitational wave sources. There are
two common methods to determine the parameter estima-
tion accuracy for such gravitational wave signals. One is
the Fisher information matrix (FIM) method, which pro-
vides the Cramer-Rao bound. The other is the Markov
chain Monte Carlo (MCMC) method [21] which gives a
tighter accuracy estimate than the Fisher information matrix
method. The Fisher matrix method is valid for high signal-
to-noise ratio cases, while the MCMC method is free of
this limitation.

In [8], the authors used the Fisher matrix method to do
the parameter estimation of the lensed gravitational wave
signal for LISA. Their method is guaranteed by the high
signal to noise ratio (SNR) of LISA. Also, because the
detection event rate for LISA is quite high, it is not
interesting to consider the possible detection loss due to
using an unlensed gravitational wave template to analyze
lensed wave. Differently, for the coming generations of
ground based gravitational wave detectors, the detection
event rate is not high. So the possible signal loss due to
improper usage of gravitational wave form template
deserves to be considered. Due to the low SNR, the MCMC
method is necessary to ground based detectors for param-
eter estimation. In this paper we will consider the lensed
gravitational wave signals which may be detected by
Advanced LIGO and ET detectors. First, we will compare
the lensed gravitational wave form to the unlensed one in
detail. This comparison gives us some hints on the possible
signal loss if we only use templates without lensing
corrections for lensed signal. Then we will use MCMC
to estimate how much information we can extract from the
lensed gravitational wave signal if we use templates with
lensing effects.

The arrangement of this paper is as follows. We will
describe the wave form model with and without lensing
effects in the next section. The instruments’ features are
also presented there. After that, we compare the lensed
wave to an unlensed one in detail in Sec. III. We calculate
the corresponding SNR by using the unlensed gravitational
wave template to treat the lensed signal. Then possible SNR
loss is analyzed and we find that the unlensed wave form is
not good enough to treat the lensed gravitational wave.
Such SNR loss gives implications to possible signal loss for
improper template usage. In Sec. IV we focus on the effects
of lensing on the parameter extraction in gravitational wave
detection. We begin with the brief introduction of the data
analysis methods we adopted in this paper with the non-
lensing wave forms. Following that, we investigate how
much information we can get if we take the lensed wave
form template into consideration to search for the lensed
signal. We consider binary compact object parameters and
lens parameters separately first. Then we analyze the whole
set of parameters. Special attention is paid to the correlation
between the binary compact object parameters and lensing
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parameters. Interestingly, we find that the correlation is
negligible. This implies that we can treat these two groups
of parameters separately which can largely simplify the
data analysis for lensed gravitational wave. Last, we
summarize our results and give some discussions in Sec. V.
Throughout this paper we will use units c = G = 1.

II. GRAVITATIONAL WAVE FORM MODELS
WITH AND WITHOUT LENSING FOR
COMPACT BINARIES

In this paper we use the TaylorF2 wave form [22] (we
will refer to it as PN model afterwards) to model the binary
black hole, which is also called restricted wave form model
[23]. This model can even describe binaries with a neutron
star as a binary component [24] for the inspiralling stage
when the deformation effect is negligible. More specifically
the wave form is written as

M5/6

eff

h(f) = C——f7/6e"0), (1)

where f is the frequency, C is some constant relating to
observation time, M = M1?/% is the chirp mass with M the
total mass and v the symmetric mass ratio of the binary, D
is the effective distance and W is the phase. The explicit
expressions for Do and W(f) are listed in Appendix A. C
is determined by the signal-to-noise ratio (SNR). Following
[25] we set p = 10 in this paper for both advanced LIGO
detector and ET detector.

There are nine parameters (D, t.,¢., M,v,0,¢,1,y) in
this wave form model. The physical meanings of these
parameters are explained in Appendix A. The parameters
(D,0,¢,1,y) are hidden in our SNR assumption, so we
are only concerned with four parameters (7.,¢., M,v).
Following [25] we use parameters (7., ¢., M,v) instead.
We will choose ¢, = ¢, = 0 without losing any generalities
for this paper. We consider M = 20M,, and v = 0.25 for a
binary black hole with M ~ 8.7M and component mass
10M and 10Mo; M =11.4M, and v~ 0.1077 for a
black hole-neutron star binary with M ~2.99M, and
component mass 10M, for the black hole and 1.4M
for the neutron star. This setting is motivated by radio
and x-ray observations in our own Galaxy which have
strongly indicated that the mass distribution of neutron
stars in binaries is sharply peaked around 1.4M . We set
M =28M, and v = 0.25 for neutron star binary with
M=~122M, and component mass 1.4M, for both
neutron stars.

Due to the relatively short wavelengths of electromag-
netic radiation, the lensing effects of light mainly behave as
a light bending effect. For gravitational wave, due to its
long wavelengths, it behaves more like sound waves.
Compared to the lensing effects on light, the lensing effects
on gravitational wave include both the interference effect
and the diffraction effect. With the wave optics method,
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one can express the effects of lensing on gravitational wave
with a complex amplification factor as [8]

ht(f) = F(f)h(f). (2)

where hl(f) and h(f) denote the lensed wave and unlensed
wave in frequency domain respectively. F(f) is the
complex amplification factor of lensing effect. For the time
domain wave form £(t), we have to transform it to frequency
domain through Fourier transformation. Then multiply the
resultant wave form with this complex amplification factor.
Finally transform the resulted wave form in frequency
domain back to time domain. Since we have adopted the
frequency domain wave form model in this paper, we do not
need to follow this procedure. For lens object, we consider
both point mass—type model and singular isothermal sphere
(SIS) model in this paper. The explicit amplification factors
for these two lensing models are described in Appendix B.
If the lensing effect is found important for observation, it is
straightforward to generalize our results to more complicated
lens models with the method of [9].

There are two parameters describing lens objects, the
effective mass of the lens object M, and the normalized
distance y between the lens object and the joining line of
the Earth and the gravitational wave source. The normali-
zation is done with respect to the critical radius of the lens
object. We refer our readers to [8] for detailed explanations
of these two parameters. Parameter y plays the role of
impact distance and determines the strength of the lensing
effect. Roughly y < 1 corresponds to strong lensing in
which case multiple images will appear.

We consider three types of lensing objects which
correspond to stellar mass black hole, intermediate massive
black hole and super massive black hole. We use M, =
10M as a typical example of stellar mass black hole
lens object. In practice Cyg X-1 (8.7M ) may act as this
type of lensing case. There are several possible pathways to
intermediate massive black hole formation in a star cluster
[26-28]. Some observational candidates for an intermediate
massive black hole exist [29-31]. Here we use 1000M , as
a representative example to study intermediate massive
black holes as lens objects. For supermassive black hole,
we have SgrA* hosted in our Milky Way Galaxy which
may play the role of lens object acting on the gravitational
wave of binary compact objects for AdvLIGO and ET to
detect. So we set M;, = 4.4 x 10°M , for this situation.

We simulate the signal as s(f) = Ag(f) + n(f), where A
is the expectation of the SNR factor, n(f) is the Fourier
transform of the noise, and g(f) is the normalized wave
form with respect to the inner product,

fmax hl 1712

(i (£). ha(F)) = 49t /

Smin n

df, (3)

with f.;, and f .« the lower and upper frequency bound of
the detector in question, and S, is the one-sided noise power
spectrum density (PSD). The overbar denotes the complex
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conjugate. We use the data “ZERO_DET _high_P.txt” [32] as
the §,, for Advanced LIGO. For Einstein telescope we adopt
the following PSD [33]:

VS = 10725[2.39 x 1072771564 4 (034952145
+ 1.76x7012 4 0.409x™], (4)

x = £/100. (5)

III. SNR LOSS FOR LENSED GRAVITATIONAL
WAVE SIGNAL WITH UNLENSED TEMPLATE

Until now, the lensing effect on compact-binary-
coalescence (CBC) signals has not been thoroughly studied
for ground-based GW detectors. Ignoring such effects in
the searching wave form templates may cause SNR loss
and lead to systematic bias in the parameter estimation.
In this section, we will investigate these effects in detail.

The amplitude comparison between the unlensed wave
form and the lensed wave form corresponding to stellar
mass lens object, intermediate massive lens object and
supermassive lens object for AdvLIGO are shown in Fig. 1.
For ET the results are similar to Fig. 1 up to 1 order smaller
amplitude. The main features shown in Fig. | depend on the
wave form only and not on the properties of the detector.
The SIS lensing model results in quite similar plots as that
of the point lensing model shown here. For both the point
lensing model and the SIS lensing model, the lensing effect
can be neglected if w = 2zM,, f < 1, because the complex
amplifier of the lensing effect is roughly 1 in this situation
[8]. So we expect the lensing effect for M, = 10M
appears around f ~ 10* Hz. This explains why the two
lines for M;, = 10M, in Fig. 1 show little difference. So
we do not need to consider the lensing effect from the
stellar mass black hole for AdvLIGO and ET detection.
For M,, = 1000M , we expect the lensing effect will start
to show up around 100 Hz. From Fig. 1 we can see that this
is exactly the case. The amplitude modulation shows up at
about 100 Hz for all the BH-BH, BH-NS and NS-NS cases.
Interestingly, the signal in the sensitive frequency range of
LIGO (around 100 Hz) is increased a little bit by lensing.
Regarding M,;, = 4.4 x 10°M, we expect the lensing
effect will start to be important at 0.1 Hz. Because we
have w = 2zM,, f > 100 for the whole AdvLIGO and ET
frequency range, the optical approximation for the lensing
model can work well in this case. In Fig. 1 we do see that
for the whole frequency band of AdvLIGO there is a
significant amplitude modulation which comes from lens-
ing. This kind of modulation can be used to extract the
information of the supermassive black hole, which has
already been pointed out in [34]. We will analyze this
extraction quantitatively in the next section.

In order to estimate the possible detection loss when we
use the unlensed wave form template to treat the lensed
signal, we calculate the fitting factor between the unlensed
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FIG. 1 (color online).
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Amplitude comparison of the lensed wave form to the unlensed wave form. We have set SNR = 10 for

AdvLIGO and y = 0.1 for lensing strength. From the top row to the bottom row: The simulated signals for BH-BH, BH-NS and NS-NS
binaries respectively. From the left column to the right column: The lens mass M, equals to 10M, 1000M and 4.4 x 10°M
respectively. The subplots in the right column are the corresponding zoom-in for the frequency range [100,101]. For the x axis, we have
used log scale in the main plots while have used linear scale in the zoom-in plots of right column. For all of the y axis log scale is used.

wave form and the lensed one. Based on the inner product
(3), we define the fitting factor as [35]

FF = max (hu(tc’¢cvM’y)|h'l)’ (6)

lepeMov (hulhu)(hl|hl)
where h; represents the lensed gravitational wave corre-
sponding to some specific parameters (.9, ¢.o, Mo, o;
M, y0). The maxima is obtained by varying unlensed
wave form h,, template parameters (¢., ¢, M, v). There is
no simulated noise in either k, or h;. Let us denote the
parameters which correspond to the maxima as (., Poy»
M, v,). Then we define the parameters detection bias as

Moy = M,|
Ey=——1—717-——, 7
" M, )

=|U0_l/u|
E,=— = (8)

First, we check the fitting factor and parameters bias for
the CBC source with lensing mass M;, = 10M, in Table I.

In this table, we used the Advanced LIGO detector.
The results for the ET detector are similar. As we expect,
the lensing effect is negligible for M;, = 10M, in strong
lensing cases where y < 1. All of the fitting factors are
bigger than 0.97, and the parameters bias are less than
0.04%. This result quantitatively confirms the conclusion
we obtained above, which says that the lensing effect
introduced by solar massive lensing objects for ground
based detectors is negligible.

Then we check the lensing effect with M,;,, = 1000M
and M. = 4.4 x 10°M, in Tables II and III. We find that
the fitting factor may decrease to about 0.8 for M,, =
1000M  and may decrease more to about 0.7 for M,;, =
4.4 x 10°M. At the same time we also note that the
parameters bias is still negligible. Among all of the cases,
the largest bias is less than 0.5%. This is because the mass
and mass ratio parameters are derived by matching the
frequency evolution for thousands of cycles, and that will not
change much because of the lensing magnification.
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TABLE I. The fitting factor and the parameters bias for lensing
mass M;, = 10M . The Advanced LIGO detector is used here.
Model CBC FF Ey E,
Point lens BH-BH 0.986 0.026% 0.001%
BH-NS 0.986 0.009% 0.027%
y=0.01 NS-NS 0.994 0.001% 0.001%
Point lens BH-BH 0.988 0.026% 0.001%
BH-NS 0.988 0.009% 0.026%
y=0.03 NS-NS 0.994 0.001% 0.001%
Point lens BH-BH 0.989 0.022% 0.001%
BH-NS 0.989 0.009% 0.023%
y=0.1 NS-NS 0.995 0.001% 0.001%
Point lens BH-BH 0.987 0.017% 0.001%
BH-NS 0.987 0.011% 0.024%
y=03 NS-NS 0.996 0.001% 0.001%
SIS lens BH-BH 0.992 0.038% 0.001%
BH-NS 0.992 0.009% 0.007%
y=0.01 NS-NS 0.992 0.001% 0.001%
SIS lens BH-BH 0.992 0.038% 0.001%
BH-NS 0.992 0.007% 0.023%
y =0.03 NS-NS 0.992 0.001% 0.001%
SIS lens BH-BH 0.992 0.035% 0.001%
BH-NS 0.993 0.008% 0.024%
y=0.1 NS-NS 0.993 0.001% 0.001%
SIS lens BH-BH 0.972 0.017% 0.001%
BH-NS 0.972 0.011% 0.023%
y=203 NS-NS 0.994 0.001% 0.001%
TABLEII.  The fitting factor and the parameters bias for lensing
mass M;, = 1000M . The Advanced LIGO detector is used here.
Model CBC FF Ey E,
Point lens BH-BH 0.954 0.048% 0.004%
BH-NS 0.955 0.023% 0.023%
y=0.01 NS-NS 0.955 0.002% 0.001%
Point lens BH-BH 0.973 0.048% 0.001%
BH-NS 0.954 0.023% 0.024%
y =0.03 NS-NS 0.950 0.009% 0.001%
Point lens BH-BH 0.832 0.157% 0.001%
BH-NS 0.833 0.040% 0.024%
y=0.1 NS-NS 0.833 0.006% 0.001%
Point lens BH-BH 0.792 0.024% 0.002%
BH-NS 0.792 0.011% 0.023%
y=03 NS-NS 0.792 0.001% 0.001%
SIS lens BH-BH 0.954 0.069% 0.004%
BH-NS 0.954 0.027% 0.023%
y=0.01 NS-NS 0.955 0.003% 0.001%
SIS lens BH-BH 0.974 0.038% 0.001%
BH-NS 0.954 0.022% 0.023%
y=0.03 NS-NS 0.950 0.010% 0.001%
SIS lens BH-BH 0.832 0.523% 0.001%
BH-NS 0.829 0.042% 0.024%
y=0.1 NS-NS 0.829 0.006% 0.001%
SIS lens BH-BH 0.800 0.028% 0.001%
BH-NS 0.800 0.008% 0.024%
y=03 NS-NS 0.800 0.001% 0.001%
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TABLE III. The fitting factor and the parameters bias for
lensing mass M, = 4.4 x 10°M . The Advanced LIGO detector
is used here.

Model CBC FF Ey E,
Point lens BH-BH 0.711 0.001% 0.001%
BH-NS 0.711 0.013% 0.023%
y =0.01 NS-NS 0.711 0.001% 0.001%
Point lens BH-BH 0.718 0.001% 0.001%
BH-NS 0.718 0.013% 0.023%
y =0.03 NS-NS 0.718 0.001% 0.001%
Point lens BH-BH 0.741 0.001% 0.001%
BH-NS 0.741 0.013% 0.023%
y=0.1 NS-NS 0.741 0.001% 0.001%
Point lens BH-BH 0.803 0.001% 0.001%
BH-NS 0.803 0.013% 0.023%
y=20.3 NS-NS 0.803 0.001% 0.001%
SIS lens BH-BH 0.711 0.001% 0.001%
BH-NS 0.711 0.013% 0.023%
y=0.01 NS-NS 0.711 0.001% 0.001%
SIS lens BH-BH 0.718 0.001% 0.001%
BH-NS 0.718 0.013% 0.023%
y=10.03 NS-NS 0.718 0.001% 0.001%
SIS lens BH-BH 0.741 0.001% 0.001%
BH-NS 0.741 0.013% 0.023%
y=0.1 NS-NS 0.741 0.001% 0.001%
SIS lens BH-BH 0.803 0.001% 0.001%
BH-NS 0.803 0.013% 0.023%
y=03 NS-NS 0.803 0.001% 0.001%

The corresponding SNR by using the PN wave form
model (1) as a template while using the lensed gravitational
wave together with instrumental noise as the signal roughly
equals the fitting factor times the real SNR of the lensed
signal. We have also confirmed this relation through
numerical simulation. Based on this relation, the above
fitting factor results imply that the lensing effect affects
significantly on the gravitational waves emitted from binary
compact objects. The resulted SNR may decrease 20%
for lensing mass M, = 1000M . For lensing mass M,;, =
4.4 x 10°M ,, the SNR may decrease even 30%. Therefore
using the unlensed template to treat the lensed signal may
result in significant signal loss. For example, to ET the
event rates may decrease from tens per year [19] to less than
ten for lensing mass M, = 1000M, and to roughly
one per year for lensing mass M, = 4.4 x 10°M.
Regarding Advanced LIGO, the unlensed template may
turn the lensing detection from possible to impossible.

IV. PARAMETER ESTIMATION OF LENSED
GRAVITATIONAL WAVE FOR
COMPACT BINARIES

A. Parameter estimation methods

In this paper, we only concentrate on the parameters
estimate accuracy. So we use the true value for the
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parameters as the starting point for MCMC chains. This
setting saves us the burn-in stage of the simulation.

Both the unlensed gravitational wave form model (1) and
the lensed one (2) can be written as

h(f:0.1c.¢c) = H(f;©)e? 1m0, ©)

where © denotes the rest of the wave form parameters
excluding 7. and ¢,.. The log likelihood (up to a constant) is

A(®v fe ¢L‘) = (S’ h<®v Ic, ¢c)>’
fmax _H . .
— 4% / 2T eafisive g, (10)
f

min n

The constant phase ¢, and the coalescence time 7. can be
maximized over as follows:

A©) = IrnaxA(G, testbe),

/f SH et g
!

min n

= 4max
I

9

~ 2max
t,

/wz_Heiszt,.df , (11)

n

which can be simply approximated by twice the largest
absolute value of the Fourier transform of SS—H This
technique is called F-statistics [36]. This scheme has been
widely adopted in gravitational wave data analysis, and we
will use this method to eliminate the parameters 7. and ¢,
from our parameters list. For MCMC algorithms, we
calculate the transition probability through

P(©,]0;) = MO)=AO, (12)

Based on the above transition probability, the Metropolis-
Hastings scheme is adopted. In our implementation of
MCMC, we employ 5 x 10° or 2 x 10° iterations for
different cases to make sure the chains converge. During
the simulation we use the proposal distribution

00" 2

1 —
Homee & (13)

where 95") is the parameter at the nth step and 6, is the

proposed parameter. We set €; equal to the tenth of the
estimated measurement errors through the Fisher matrix
method.

Regarding the Fisher matrix, since we mainly concern
the parameters M and v, we can use the projector method to
reduce ¢, and ¢,

B fab
Fij=Fij— Fi FF;, (14)
where i and j run over M and v, and @ and b run over ¢, and

¢.. F is the full Fisher matrix for four parameters, F is the
block matrix of F for t. and ¢, parts, and F is the reduced
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TABLE IV. With the Fisher matrix and projector method (14)
we estimate the parameter extraction errors. Here we have
assumed SNR = 10.

IFO CBC AM/M Av
BH-BH 0.084% 0.0025
BH-NS 0.014% 0.00043

AdvLIGO NS-NS 0.0033% 0.0013
BH-BH 0.040% 0.0017
BH-NS 0.0080% 0.00028

ET NS-NS 0.0029% 0.0016

Fisher matrix for the intrinsic parameters M and v. Here we
have used F“® to denote the inverse matrix of F .« and the
Einstein summation rule is also adopted. For later com-
parison we list the results in Table IV. Our result is
consistent to the parameter estimation in [25].

We use the parameters M and v in the MCMC
simulations. We have checked the chain traces. As we
expected, the trace of SNR oscillates below but around the
setting value 10, and the parameters M and v oscillate
around the true values. In Fig. 2 we plot out the probability
density function (PDF). In this plot we also mark out the
1 — o parameter region for both Fisher matrix method and
MCMC method. The 1 — ¢ parameter region is defined by
OT(F~')0 = 1, where F is the Fisher information matrix
and @ represents the vector composed with the parameters
in question. This corresponds to the probability 68.3%
in the one-dimensional case and 39.3% in the two-
dimensional case respectively. For ET, the 1 — ¢ parameter
regions for these two methods are roughly the same. But for
AdvLIGO, we find that the Fisher matrix method under-
estimates such region a little bit. This result is consistent to
[37]. The most possible parameters (M, v) got by MCMC
are (8.704M, 0.2496), (2.994M, 0.1076), (1.219M 5,
0.2497) for BH-BH, BH-NS, NS-NS with AdvLIGO, and
(8.706M, 0.2497), (2.994M,, 0.1077), (1.219M,
0.2498) for BH-BH, BH-NS, NS-NS with ET.

Through reducing the full PDF to marginal PDF, we can
estimate the parameters measurement errors which are
listed in Table V. Compared to Table IV we can see that
for advLIGO the MCMC errors in the chirp mass deter-
mination are roughly a factor 3-4 higher than FIM
estimates, whereas they are in general comparable for
ET. The errors in mass ratio for MCMC and FIM are
roughly the same for both AdvLIGO and ET. In this kind of
situation, MCMC results are more trustable [37,38]. In the
following analysis of this paper we will use MCMC to do a
detailed estimate while applying the Fisher matrix method
to give a guideline for the analysis.

We have seen the importance of including lensing
corrections to the templates to analyze the lensed signal
in the above section. In the following we will investigate
what kind of information we can get from the lensed signal
if we use lensed templates. As described in the above
section, we have six parameters (M,_, y, t.,¢., M,v) to be
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estimated for the lensed gravitational wave form model.
Because we are treating the strong lensing case, we chose
y =0.1 as an example for all of the rest of the inves-
tigations. First, we will consider how M, and y affect the
parameter estimation for binary compact sources.

B. Fixing lens parameters case

In this subsection we assume the lens parameters M, and
y are known a priori. First, we use the Fisher matrix

method to estimate the extraction error for the parameters
M and v. We list the results for AdvLIGO and ET in
Table VI. Compared to the unlensed case, we find that the
errors determination now are in general a factor 2—3 larger
than that in the unlensed cases. Especially, the lensing
effect makes AM larger in all situations. This result is
consistent to the finding of [8].

In Fig. 3 we plot out the MCMC resulted joint PDFs for
M;, = 1000M and point lensing model with AdvLIGO
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ZHOUIJIAN CAO, LI-FANG LI, AND YAN WANG

TABLE V. With MCMC we estimate the parameter extraction
error for gravitational wave model (1). Here we have assumed
SNR = 10. The errors correspond to the 15.9 and 84.2 percentile
of the posterior distribution which gives a 68.3% (16) posterior
credibility.

IFO CBC AM/ M Av
BH-BH 0.39% 0.0038
BH-NS 0.064% 0.00097
AdvLIGO NS-NS 0.0094% 0.0014
BH-BH 0.059% 0.0015
BH-NS 0.013% 0.00040
ET NS-NS 0.0025% 0.00055
TABLE VI. With the Fisher matrix method we estimate the

parameter extraction error for the PN gravitational wave model
(1). As in Table IV, we have assumed SNR = 10. Here we used

the point lensing model (B1) and M;, = 1000M .

IFO CBC AM/M Av
BH-BH 0.11% 0.0031

AdvLIGO BH-NS 0.046% 0.0020
NS-NS 0.0045% 0.0016
BH-BH 0.14% 0.0039

ET BH-NS 0.025% 0.00066
NS-NS 0.0055% 0.0019

detector. The results for the ET, SIS lensing model and
M,;, = 4.4 x 10°M, are similar. Similar to the results in
Fig. 2, the 1 — o region of parameters for ET is smaller than
that for AdvLIGO. Corresponding to Fig. 3, the most
possible parameters (M, v) are (8.705M, 0.2495),
(2.994M , 0.1075), (1.219M , 0.2497) respectively. The
corresponding parameter estimation error is listed in
Table VII. Compared to Table V, we find that the meas-
urement error of binary parameters is only mildly affected
by lensing. This result confirms the one obtained above via
the Fisher matrix method.
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C. Fixing compact binary parameters case

We have seen in the above subsection that the lensing
effect of a known lensing object makes the parameter
extraction a little harder for CBC gravitational wave
sources. In this subsection we will check if we can benefit
from the lensed signal and get some information of lens
object with a known CBC source. To investigate this
problem we assume the parameters (7.,¢.,M,v) are
known a priori. We use the Fisher matrix method as a
guideline for MCMC simulation to estimate the lens
parameters M, and y. We list the result in Table VIIIL.
The relative accuracy of both M, and y measurement is
roughly 20%. Note that y is related to D;, the distance to
the lensing object, and Dy, the distance to the binary
objects; we expect that one can use the information of y to
determine D;. This determination will roughly result in
20% confidence. This kind of error level is comparable to
the accuracy level obtained with other methods [39]. This
result is consistent to the one in [8].

Since 20% is dangerously close to 100%, the above
result means we can get little information of lens object
from the lensed gravitational wave. One may hope that the
Fisher matrix overestimates estimation errors a bit, and
MCMC might result in smaller estimation errors, but this
turns out to be not the case. Through MCMC, we find that
the measurement error is even worse. When the lensing
parameters are turned on, the MCMC chain converges
much slower. Through tests, we find that 2 x 10° iterations
are enough for convergence. The uncertainty becomes near
100%. This means we cannot determine M, and y through
lensed gravitational wave detection. But this does not mean
we cannot get any information of lens object from the
lensed gravitational wave detection. The result for MCMC
is more complicated than simple numbers to indicate the
measurement error. We plot out the joint PDF gotten by
MCMC simulation in Fig. 4. This plot corresponds to
M;, = 1000M and the point lensing model. It is for
BH-BH with the Advanced LIGO detector. The results for
ET, M;, = 4.4 x 10°M, and the SIS lensing model are

>é1o'3
0.01
0.008

0.006

Chirp Mass M

0.004

0.002

2183
0 0.247 0.2475 0.248 0.2485 0.249 0.2495 0.25

v

0.108 0.109

Joint PDFs for parameters M and v. From left to right the plots correspond to BH-BH, BH-NS and NS-NS

respectively. Here we used M;, = 1000M , and the point lensing model. These plots are for Advanced LIGO. The plot convention is the

same as Fig. 2.
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TABLE VII.  With MCMC we estimate the parameter extraction
error for the PN gravitational wave model (1) with two different
lensing effects. Here we again have assumed SNR = 10. The
errors correspond to the 15.9 and 84.2 percentile of the posterior
distribution which gives a 68.3% (1) posterior credibility.

IFO CBC AM/M Av
Point lensing source (B1) M,;, = 1000M
BH-BH 0.38% 0.0031
AdvLIGO BH-NS 0.089% 0.0014
NS-NS 0.012% 0.0010
BH-BH 0.061% 0.0017
ET BH-NS 0.016% 0.00041
NS-NS 0.0021% 0.0051
SIS lensing source (B2) M;, = 1000M
BH-BH 0.40% 0.0032
AdvLIGO BH-NS 0.094% 0.0011
NS-NS 0.0094% 0.0036
BH-BH 0.0064% 0.0012
ET BH-NS 0.016% 0.0038
NS-NS 0.0026% 0.00051
Point lensing source (B1) M;, = 4.4 x 10°M
BH-BH 0.32% 0.0031
AdvLIGO BH-NS 0.084% 0.0011
NS-NS 0.0096% 0.0012
BH-BH 0.063% 0.0016
ET BH-NS 0.012% 0.00042
NS-NS 0.0023% 0.00061
SIS lensing source (B2) M. = 4.4 x 10°M
BH-BH 0.33% 0.0039
AdvLIGO BH-NS 0.069% 0.0011
NS-NS 0.0096% 0.0015
BH-BH 0.062% 0.0015
ET BH-NS 0.015% 0.0043
NS-NS 0.0024% 0.0060
TABLE VIII. With the Fisher matrix method we estimate the

parameter measurement error for the PN gravitational wave
model (1). We have again assumed SNR = 10. Different to
Table VI, we fix 7., ¢., M and v, and estimate lensing parameters
AM;,/M,, and Ay. Here we used point lensing model (B1) and
M Iz - 1000M ol

IFO CBC AM, /M, Ay
BH-BH 20% 0.020

AdvVLIGO BH-NS 21% 0.020
NS-NS 20% 0.020
BH-BH 20% 0.020

ET BH-NS 20% 0.020
NS-NS 20% 0.020

similar. From this plot we can see that the PDF ranges along
all of the parameters. That explains why the parameter
extraction error mentioned above is large. Also we notice
that the PDF is limited in a narrow band, which means the
lensed signal gives us very stringent correlation relation

PHYSICAL REVIEW D 90, 062003 (2014)

Lensing Mass M.

FIG. 4 (color online). Joint PDFs for the parameters M, and y.
Here we used M;, = 1000M , and the point lensing model. This
plot is for BH-BH with the Advanced LIGO detector. The plot
convention is the same as Fig. 2.

between lens mass M, and lensing strength parameter y.
The combination of this correlation information and other
observation result may do better science. For example, the
optical observation may give us the mass of the lens object.
With the mass M/, looking through the correlation curve,
we may extract some parameters accurately, say the
distance parameter D;. This implies the importance of
multimessenger astronomy for the coming generations of
ground based detectors.

D. Full parameters set estimation

In the above two subsections, we have investigated the
lensing effect on binary parameters part and lens param-
eters part individually. But in many cases we cannot know
any part of the parameters in advance. So in this subsection
we will consider the four parameters M,,, y, M and v
altogether.

First, we use the Fisher matrix method to estimate
roughly the parameters extraction error. We can find out
that the error estimate for the full parameters set is roughly
the same as the individual binary parameters subset and
lens parameters subset. The correlation matrix reduced
from the Fisher matrix also shows that the correlation
between these two parameter sets is weak. As an example,
for the case of BH-BH, M,;, = 1000M, y = 0.1 with the
AdvLIGO detector, the correlation coefficient between M,
and y is 0.964, the coefficient between M and v is —0.870.
While the correlation coefficient between M and M, is
0.0095, the coefficient between M and y is —0.0035,
the coefficient between v and M,, is —0.0044, and the
coefficient between v and y is 0.0075. Here the correlation
coefficient is defined as F;;/\/F;F;; with F;; the element
of the Fisher matrix.
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In these plots, M;,, = 1000M , and the point lensing model are used. These plots are for BH-BH sources and Advanced LIGO. The plot

convention is the same as Fig. 2.

We have used MCMC simulation to confirm the above
result. Based on the MCMC chain, we can calculate the
correlation matrix which has elements X;;/,/2;X;;, an
=13V 16(")95-"), where 01" is the value of the ith
parameter at the nth drop during the MCMC simulation.
For the case of BH-BH, M, = 1000M, y = 0.1 with the
AdvLIGO detector, the correlation coefficient between M,
and y is 0.81, and the coefficient between M and v is
—0.82. While the correlation coefficient between M and
M, is —0.19, the coefficient between M and y is —0.19, the
coefficient between v and M, is —0.11, and the coefficient
between v and y is —0.11. In Fig. 5 we show the MCMC
resulted joint PDFs of two parameters, one of which comes
from the binary parameters subset and the another of which
comes from the lensing parameters subset. In this plot we
use the PN wave form model together with the point
lensing model and M,, = 1000M . This figure is for the
BH-BH source and AdvLIGO. For other cases, the result is
similar. From these plots, all of the PDFs show a weak
particular direction. This implies that the correlation
between these parameters is weak. This is consistent to
the finding with the above correlation coefficients. The
measurement error estimate obtained in the above two
subsections is roughly the same as the one gotten through
full parameters MCMC simulations. The cases investigated
here imply that for the lensed gravitational signal, one can
treat the binary parameters and the lensing parameters
individually.

V. SUMMARY AND DISCUSSION

General relativity describes light bending which results
in gravitational lensing of optics. Such a phenomena has
been widely used in astronomy and cosmology. The
analogous mechanism also happens to gravitational waves.
Due to the long wavelength property of gravitational wave,
the lensing effect of gravitational wave is stronger than that
of electromagnetical waves in a similar condition. Recent
studies in the literature imply that the event rate for
gravitational lensing of gravitational wave may not be
ignored for the space based gravitational wave detector and
for the next generations of ground based detectors.

Assuming the lensed gravitational wave signal has come
into the detector, we investigated the possible loss if we use
the gravitational wave form template without lensing to do
the matched filtering. Currently the lensing effect has not
been taken into serious consideration by the LIGO com-
munity. So using an unlensed template to analyze lensed
wave signal is very possible to happen in the near future.
Our results imply that this kind of treatment may result in
severe loss of signal detection for the lensed gravitational
wave when the lens object is massive (>103M®). In
contrast, if the lensed wave form model is used for the
template, useful information can be extracted via lensed
gravitational wave detection. Regarding this problem, we
investigated how the lensing effect may affect the param-
eter extraction for the binary objects sector. Our result
shows lensing effect mildly affects this parameter estima-
tion. As one expects, the lensing effect allows one to
constrain the lens parameters. But this happens in a
nontrivial way. If the gravitational wave detection is used
alone, the parameter extraction gives large error which
makes the information extraction quite hard. Instead the
lensed gravitational wave detection may result in a stringent
relation between the lensing mass M, and lensing strength
parameter y. So if one can combine this result with other
observation results, say the mass M, coming from an
optical observation, the parameters of lens source can be
determined accurately. Our result implies the importance
of multimessenger astronomy in the coming advanced
detector era.
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APPENDIX A: PN WAVE FORM MODEL

The related quantities in the PN wave form model (A1) can be explicitly written as

D

M=MA5, D Al
o VFE(1 + cos?t) /4 + Ficost’ (A1)
1 ’ . .
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(A3)

where v = (zM )3 and vy, = 1/ /6. In the above expressions, M = m, + mj, is the total mass of the binary, D is the
distance between the binary and the earth, (0, ¢) is the sky location of the binary, y is the polarization angle, and 1 is the
inclination angle between the rotation axis of the binary system and the direction of observation.

APPENDIX B: LENSING MODELS FOR GRAVITATIONAL WAVE

The lensing model can be described with a complex amplify function F. In this paper we consider the point mass lens
model and the singular isothermal sphere (SIS) lens model. For the point mass lens model we have

F(f) = exp{?—}- i% [m(%—z(/)fn)] }r<1 —%W)lFl (;w 1,2 wy > (B1)

where w = 82M,_f, ¢ = (x,, — v)?/2 — Inx,, with x,, = e fa , M, is the effective lens mass and | F(-,-;-) is the
confluent hypergeometric function which is also called complex Kummer function. For the singular isothermal sphere
model, we have

F(f) = —iwe™*/2 /oo xJo(wxy) exp{iw {x; —x+ ¢fn] } (B2)
0

where J, is the Bessel function of zeroth order, ¢35, =y + 1/2.
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