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We develop the modification of the top-quark condensation scenario, in which the Higgs boson is
composed of all Standard Model fermions. Within this scenario, we suggest the phenomenological model
with nonlocal four-fermion interactions in which at the distances of the order of ∼1=100 GeV the theory is
represented in terms of only one Majorana spinor that carries the Uð12Þ index and, in addition, belongs to
the spinor representation of Oð4Þ. The Standard Model fermions are the components of this spinor. The
symmetry Uð12Þ ⊗ Oð4Þ is responsible for the one-loop relation between the Higgs boson mass and
the top-quark mass M2

H ¼ m2
t =2. At the distances ≫ 1=100 GeV, the mentioned symmetry is broken, and

the interaction term dominates that provides the nonzero mass of the top quark. Our phenomenological
model should be considered in zeta or dimensional regularization. In conventional cutoff regularization,
this is equivalent to the existence of the additional counterterms that cancel all quadratic divergences. As a
result, the 1=N expansion may be applied.
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I. INTRODUCTION

The original idea of top-quark condensation [1–6]
implied that the Higgs boson is composed of the top
quark. In Ref. [7], we suggested the modification of this
scenario, in which the 125 GeV h boson [8,9] is composed
of all known quarks and leptons of the Standard Model
(SM) (see also Ref. [10], where it was suggested that the
Higgs boson is composed of the SM fermions). In our
approach, the Wand Z boson masses as well as the h-boson
mass and SM fermion masses are determined by the
condensate of the 125 GeV h boson according to the
Higgs mechanism [11,12]. The important difference from
the conventional models of top-quark condensation is that
the new strong dynamics is rather complicated and is not
described by the pointlike four-fermion interaction [13].
Unlike the conventional models, where the scale of the new
dynamics is assumed to be at about Λ ∼ 1015 GeV, in our
scenario, the scale of the new strong dynamics is supposed
to be of the order of several TeV. The conventional top-
quark condensation models typically predict the Higgs
boson mass not very different from 2mt ≈ 350 GeV and
are excluded by the present experimental data [14]. It is
worth mentioning that recently the modification of the top-
condensation scenario was suggested [15], in which the
125 GeV Higgs boson appears as the pseudo-Goldstone
boson. In this scenario, the value of the Higgs boson mass is
suppressed naturally, but the inclusion of extra fermions is
necessary.
In Ref. [7], it was shown that the nontrivial form factors

for the interaction between the Higgs boson and the SM
fermions are able to provide the composite Higgs boson
mass MH ¼ mt=

ffiffiffi
2

p
≈ 125 GeV provided that at the

distances ∼1=100 GeV all SM fermions interact with the
composite Higgs boson field in an equal way. Following
this scenario, in the present paper, we suggest the particular
model, in which all SM fermions are arranged within one
Majorana spinor. This Majorana spinor carries the Uð12Þ
index. In addition, it belongs to the four-dimensional spinor
representation of Oð4Þ. The fermions of different Oð4Þ
chiralities may be transformed to each other with the
emission of the 125 GeV Higgs boson. The Higgs boson
in this model appears as the real - valued vector from the
representation of Oð4Þ≃ SUð2ÞL ⊗ SUð2ÞR. In the SM,
only the SUð2ÞL component and the Uð1ÞY ⊂ SUð2ÞR
component of Oð4Þ are gauged. Using the SUð2ÞL trans-
formations, we are able to bring the Higgs field to the
simple form with only one nonvanishing real component
(the analog of the unitary gauge of the Standard Model).
At distances much larger, than 1=100 GeV, the inter-

action becomes more complicated. We consider the
simplified scenario, in which the global symmetry Oð4Þ ⊗
Uð12Þ of the interaction between the composite Higgs
boson and the fermions is broken, and one of the possible
interaction terms dominates that provides the top-quark
mass. The other fermions remain massless on this level of
understanding. We assume that they acquire masses due to
the perturbations above the considered pattern.
The low-energy effective model with the four-fermion

interaction is not renormalizable. It is the effective theory
only, and its output strongly depends on the regularization
scheme. We imply the use of zeta regularization (see,
for example, Refs. [16,17]) or dimensional regularization
(see, for example, Ref. [18]) to give sense to the expres-
sions for the observables. The 1=N expansion works good
enough in the effective theory because of the chosen
regularization. This is well known, that the ultraviolet
divergences break the 1=N expansion in the Nambu-
Jona-Lasinio (NJL) models defined in ordinary cutoff
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regularization (see, for example, Ref. [19]). However, in
zeta regularization, the ultraviolet divergences do not
appear at all, while in dimensional regularization, only
the logarithmic divergences appear while the quadratic
ones are absent. This is the reason why the leading-order
1=N approximation to various quantities does gives the
reasonable estimates. The zeta/dimensionally regularized
NJL model is equivalent to the NJL model in ordinary
cutoff regularization with the additional counterterms that
cancel all quadratic divergences. As a result of this
subtraction, in particular, the sign of the four-fermion
coupling constant is formally changed. For the relation
between the values of this coupling constant before and
after the subtraction, see, for example, Ref. [20], Appendix,
Sec. 4.2. That is why the attractive four-fermion inter-
action in the bare Lagrangian of the zeta/dimensionally
regularized model has the unusual sign (that naively looks
like that of the repulsive interaction). There, presumably,
exists the class of renormalizable theories with attractive
interaction between the fermions that are approximated
well by such NJL models defined in zeta/dimensional
regularization. We imply that the theory standing behind
the SM belongs to this class of theories. Therefore, while
considering the four-fermion approximation to this
unknown theory in the present paper, we rely on zeta/
dimensional regularization. Notice that the existence of
such theories, in which the quadratic divergences of the
NJL approximation are to be subtracted, was mentioned in
Ref. [21], in which this subtraction was related to the
existence of a certain stability principle similar to that of
the condensed matter theories in which the divergences in
the vacuum energy of the hydrodynamic description are
subtracted by the complete theory due to the thermody-
namical stability of vacuum (see Refs. [22–25] and recent
review [26]).

II. MODEL AT THE DISTANCES ∼1=100 GeV:
THE STANDARD MODEL FERMIONS

AS THE COMPONENTS OF THE
ONLY MAJORANA SPINOR

We adopt the notations used in Ref. [7]. For complete-
ness, we describe them here briefly. Left-handed doublets
and right-handed doublets of quarks are denoted by La

K
and Ra

K , where a is the generation index while K is the
color index. The left-handed doublets and the right-handed
doublets of leptons are La and Ra, respectively. It will be
useful to identify the lepton of each generation as the fourth
component of the colored quark. Then, La

a;4 ¼ La
a and

Ra
a;4 ¼ Ra

a. So, later, we consider the lepton number as the
fourth color in the symmetric expressions. We define the
analog of the Nambu–Gorkov spinor

LaA
aiU ¼

�
LaA
ai

L̄aB
c0iϵc0aϵ

BA

�
; RaA

aiU ¼
�
R̄aB
bi ϵbaϵ

BA

RaA
a;i

�
;

where A is the usual spin index, U is the Nambu–Gorkov
spin index (U ¼ 1, 2 and A ¼ 1, 2), i is the SUð4Þ Pati–
Salam color index (the lepton number is the fourth color), a
is the generation index, and a; b are the SUð2ÞL, SUð2ÞR
indices. BothRaA

aiU andLaA
aiU for the fixed values of a, i, and

a compose the four-component Dirac spinors Ra
ai and La

ai.
These spinors for the fixed value of a have ðNcþ1Þ×Ng¼
12 components. Both R and L belong to the fundamental
representation of UððNc þ 1Þ × NgÞ, where Nc ¼ 3 is the
number of colors and Ng ¼ 3 is the number of generations.
Notice, that L and L̄ (R and R̄) are not independent:
L̄a

ai¼ϵabðLa
biÞTiγ2γ5γ0, R̄a

ai ¼ ϵabðRa
biÞTiγ2γ5γ0.

Next, we arrange the Dirac spinorsLa
ai,R

a
ai in the SOð4Þ

spinor Ψ:

Ψa
i ¼

�
La

ai

Ra
ai

�
:

We introduce the Euclidean SOð4Þ gamma matrices Γa

(in chiral representation). The action of the SM gauge fields
eiθ ∈ Uð1ÞY ⊂ SUð2ÞR, UðLÞ ∈ SUð2ÞL,

UðRÞ ¼
�
eiθ 0

0 e−iθ

�
∈ SUð2ÞR;

and

V ¼
�
Qeiθ=3 0

0 e−iθ

�
∈ SUð4ÞPati Salam ⊂ Uð12Þ

[where Q ∈ SUð3Þ] on the given Majorana spinor is

Ψa
i →

�
Vij

1þ Γ5γ5

2
þ V̄ij

1 − Γ5γ5

2

��
UðLÞ 0

0 UðRÞ

�
Ψa

j :

Thus, UðLÞ, UðRÞ realize the representation of Oð4Þ≃
SUð2ÞL ⊗ SUð2ÞR, while V realizes the representation
of the subgroup SUð4Þ of Uð12Þ. The action of the
element R ∈ Uð12Þ of the latter group on the spinor Ψa

i

is Ψa
i → ðRab

ij
1þΓ5γ5

2
þ R̄ab

ij
1−Γ5γ5

2
ÞΨb

j .
Again, Ψ and Ψ̄ are not independent: Ψ̄a

i ¼
ðΨa

i ÞTiγ2γ5γ0Γ4Γ2Γ5. The partition function for the SM
fermions in the presence of the SM gauge fields has the

form Z ¼ R
DΨeiS. The action S ¼ SK þ Sð4ÞI contains two

terms. The first one is the kinetic term

SK ¼ i
2

Z
d4xðΨ̄a

i γ
μ∇μΨa

i Þ: ð1Þ

One can check that this term being written in terms of the
original SM fermions is reduced to the conventional SM
fermion action (without the mass term). Here, ∇μ is the
covariant derivative that includes the gauge field of
the model.
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Sð4ÞI is the four-fermion interaction term

Sð4ÞI ¼ 1

16M2
I

Z
d4xðΨ̄a

i γ
5Γ5ΓKΨa

i ÞðΨ̄b
j γ

5Γ5ΓKΨb
j Þ: ð2Þ

The given four-fermion interaction describes the dynamics
at the electroweak scale but already is not relevant at the
energies much smaller than 100 GeV.
As usual, the auxiliary scalar field of the Higgs boson

may be introduced. In our case, it appears in the form

H ¼
X

K¼1;2;3;4

hKΓK;

where hK ∈ R. Thus, in our model, the Higgs boson is the
four-component real vector that is transformed under the
action of Oð4Þ≃ SUð2ÞL ⊗ SUð2ÞR. As a result, we have
the action that consists of three terms S ¼ SK þ SI þ SH,
where

SI ¼
1

2

Z
d4xðΨ̄a

i γ
5Γ5HΨa

i Þ; ð3Þ

while the pure bare scalar field action is

SH ¼ −
Z

d4x
M2

I

4
TrH2: ð4Þ

It will be seen below that the valuable kinetic term for the
scalar field arises dynamically through the integration over
fermions. We may rewrite the interaction term as follows:

SI ¼ −
1

2

Z
d4xðL̄aA

bi R
aA
ai Hab þ R̄aA

ci L
aA
c0iϵc0bϵcaHab

þ ðH:c:ÞÞ: ð5Þ

Here, the scalar field is represented in the form

Hab ¼ h4δab þ i
X

K¼1;2;3

hKτKab ¼ HUh

Uh ¼
�
ĥ41þ i

X
K¼1;2;3

ĥKτK
�
ab

∈ SUð2Þ;

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k¼1;2;3;4

h2
k

s
; ĥK ¼ 1

H
hK; ð6Þ

where τK are the Pauli matrices. Using local SUð2ÞL trans-
formation LaA

ai → ½Uh�abLaA
bi , we fix the gauge, in which

H ¼ HΓ4; Hab ¼ Hδab; H ¼ vþ h ∈ R; ð7Þ

where h is the real-valued field of the 125 GeV Higgs
boson while v is the condensate. Since the obtained
expressions are to be considered for the momenta of all
particles involved of the order of MH, we may omit the

condensate in the interaction term (as it contributes to the
zero momentum component Hp¼0) and arrive at

SI ¼ −
Z

d4xðL̄aA
1i R

aA
1i hþ R̄aA

2i L
aA
2i hþ ðH:c:ÞÞ:

In this form, the interaction term coincides with that of
Ref. [7] written in the unitary gauge for small distan-
ces (∼1=MH).

III. MODEL AT THE DISTANCES ≫ 1=100 GeV:
THE APPEARANCE OF THE TOP-QUARK MASS

We suppose that the interaction between the fermions
and the composite Higgs boson of the form of Eq. (3) works
for the distances ∼1=MH, i.e., for the momenta squared
of all three participating fields (Higgs field and the two
fermionic fields) jp2j ∼M2

H. At larger distances ≫ 1=MH,
the global Uð12Þ ⊗ Oð4Þ symmetry is broken. In addition
to the interaction term of the form of Eq. (2), in particular,
the interaction term

Sð4Þ0I ¼ α2

M2
I

Z
d4xðL̄ðtbÞA

aK tAR;KÞðt̄BR;NLðtbÞB
aN Þ; ð8Þ

is allowed, where α is a dimensionless constant.

LðtbÞA
aK ¼

� tAL;K
bAL;K

�

and tAR;K are the left-handed doublet of the top and bottom
quarks and the right-handed singlet of the top quark.
K ¼ 1, 2, 3 is the color index. Equation (8) appears as a
result of the integration over the Higgs boson field in the
theory with action S ¼ SK þ SH þ S0I, where

S0I ¼
α

2

Z
d4xðΨ̄3

Kγ
5Γ5ðΠ̂þHþHΠ̂−ðΨ3

KÞ: ð9Þ

Here, Π̂� is the projector that distinguishes the components
of Ψ corresponding to the right-handed top quark tR:

Π̂� ¼ 1� 1
2i ½Γ1;Γ2�γ5

2
×
1 − Γ5

2
:

We assume that at the distances much larger than 1=MH
the interaction term of the form of Eq. (9) dominates, while
at the distances of the order of 1=MH, the interaction term
of Eq. (3) dominates. We are able to use the action that
interpolates between the two,

SI ¼
1

2

Z
d4xd4yd4zΨ̄a

i ðxÞγ5Γ5HðzÞΨa
i ðyÞGðx; y; zÞ

þ 1

2

Z
d4xd4yd4zΨ̄3

KðxÞγ5Γ5ðΠ̂þHðzÞ þHðzÞΠ̂−Þ

×Ψ3
KðyÞðδðx − zÞδðy − zÞ −Gðx; y; zÞÞ; ð10Þ
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where the form factor G is introduced. We require
that in momentum space it is given by Gðp; k; qÞ ¼R
dxdydzGðx; y; zÞeipxþikyþiqz ¼ ð2πÞ4δðq þ p þ kÞgðp2;

k2; q2Þ with the function g that tends to 1 at jp2j ∼ jq2j ∼
jk2j ∼M2

H and to zero if the absolute value of at least one of
the three arguments is much smaller than ½100 GeV�2. For
example, we may choose Gðp;k;qÞ¼ ð2πÞ4δðqþpþkÞ×

p2

p2þM2
k2

k2þM2

q2

q2þM2, where M ≪ 100 GeV. In coordinate

space, this form factor depends on three scalar parameters
W1¼ðx−zÞ2, W2¼ðy−zÞ2, and W3 ¼ ðx − yÞ2. Function
Gðx; y; zÞ is concentrated within the region MW1 ∼
MW2 ∼MW2 ∼ 1 and decreases fast at MjW1j;MjW2j;
MjW2j → ∞. It is worth mentioning that the gauge
(SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY) is to be fixed to define
the particular form of the function Gðx; y; zÞ. Notice that
we impose the requirement that the constant α of Eq. (8) is
equal to unity. As a result the interaction between the top
quark and the Higgs boson is given by Eq. (9) with α ¼ 1 at
any distances. At the same time, the interaction of the other
fermions with the Higgs boson is concentrated at the
distances ∼1=100 GeV.
In the following, we assume that the unitary gauge

Eq. (7) that givesHab ¼ ðvþ hÞδab is fixed, where v is the
vacuum average of the scalar field H. We denote the Dirac
four-component spinors in this gauge corresponding to the
SM fermions by ψ. We omit angle degrees of freedom to
be eaten by the gauge bosons. We take into account only the
top-quark mass. It follows from Eq. (8) that mt ¼ v. The
value of v is to be calculated using the gap equation that
is the extremum condition for the effective action as a
function of h. The action can be rewritten as

S ¼
Z

d4xðψ̄ðxÞði∂γ −MÞψðxÞ − ψ̄ðxÞĜhψðxÞ

−M2
I ðvþ hðxÞÞ2Þ; ð11Þ

where M is the mass matrix. It is diagonal, with the
only nonzero component mt. By Gh the h-depending
operator is denoted. Its action is given by ½Ĝhξ�ðx1Þ ¼R
d4zd4x2ξðx2ÞGðx1; x2; zÞhðzÞ for all fermions except for

the top quark. For the top quark, Ĝh ≡ h.
In Ref. [7], the theory with the action of the type of

Eq. (11) was analyzed. The one-loop effective action for the
Higgs boson is given by Eq. (3.5) of Ref. [7]. In our
notations, we have

S½H� ¼
Z

d4x

�
Z2
h

2
TrHþðxÞð−D2wðD2ÞÞHðxÞ

−
Z2
h

8
ðjHj2 − v2Þ2

�
; ð12Þ

where jHj2 ¼ 1
2
TrHþH, and Hab is the 2 × 2 matrix in the

representation of Eq. (6). Here, the gauge fields of the SM
are already restored. As a result, the usual derivative ∂ of

the field H is substituted by the covariant one D ¼ ∂ þ iA
with the Standard Model SUð2ÞL ⊗ Uð1ÞY gauge field
A ¼ ðAK

SUð2Þτ
K; AUð1ÞÞ. Function w obeys

wð−p2Þ → 1ðjp2j ∼ ½90 GeV�2Þ;
wð−p2Þ → Nc=Ntotal ¼ 1=8ðjp2j ≪ ½90 GeV�2Þ: ð13Þ

Constant Zh is given by Z2
h ¼ Ntotal

16π2
log μ2

m2
t
.

Notice that in our case the effective action Eq. (12) is
valid in the leading order in 1=Ntotal ¼ 1=24 for the
energies ≫ 100 GeV and in the leading order in 1=Nc ¼
1=3 at low energies ≪ 100 GeV. The expressions for
various quantities in zeta regularization (or dimensional
regularization) contain scale parameter μ. We identify
this parameter with the typical scale of the interaction
that is responsible for the formation of the composite
Higgs boson. The vacuum value v of H satisfies gap

equation δ
δh S½h� ¼ 0. It gives [7] M2

I ¼ − Nc
8π2

m2
t log

μ2

m2
t
¼

− 2Nc
Ntotal

m2
t Z2

h.
To derive the Higgs boson mass from Eq. (12), we

should expand Hab around its vacuum average Hab ¼
ðvþ hÞδab (the angular Goldstone modes and the gauge
fields are to be disregarded). Then, up to the terms
quadratic in h, we have the effective Lagrangian
Lh ≈ Z2

hhðð−∂2Þwð∂2Þ −m2
t =2Þh. From Eq. (13), it fol-

lows that the propagator ðp2wð−p2Þ −m2
t =2Þ−1 has the

only pole at p2 ¼ m2
t =2. This gives

M2
H ≈ m2

t =2 ≈ 125 GeV: ð14Þ

To evaluate the gauge boson masses in the given model,
we should substitute H in the form of Eq. (7) to Eq. (12)
and cannot neglect nontrivial dependence of wð∥A∥2Þ
on A (we denote ∥A∥2 ¼ ðA3

SUð2Þ − AUð1ÞÞ2 þ ½A1
SUð2Þ�2þ

½A2
SUð2Þ�2). The typical value of A is given by MZ. As a

result, we may substitute wðM2
ZÞ ≈ 1 instead of wð∥A∥2Þ.

This gives the effective potential for the field A:

SA ≈
η2

2
∥A∥2 ≈

Ntotal

16π2
m2

t log
μ2

m2
t
∥A∥2:

That is why we arrive at the following expression
for the renormalized vacuum average of the Higgs
field η (which is to be equal to η ¼ 246 GeV in order to
provide the observed masses of the gauge bosons):

η2 ≈ 2Z2
hv

2 ¼ 2Ntotal
16π2

m2
t log

μ2

m2
t
. From here, we obtain μ ∼

5 TeV and M2
I ≈ −½90 GeV�2.

IV. CONCLUSIONS

We suggest that there is the hidden Uð12Þ ⊗ Oð4Þ
symmetry behind the formation of the 125 GeV Higgs
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boson. It gives rise to the Uð12Þ ⊗ Oð4Þ symmetric
four-fermion interaction term at the momenta transfer
∼100 GeV. The main output of the present paper is the
hypothesis (which is supported by the considered model)
that the ultraviolet completion of the Standard Model
manifests itself already at the distances ∼1=MH, and the
theory may be represented as the theory of only one
Majorana spinor Ψ interacting with the Higgs boson field.
The interaction between the fermions and the scalar field at
the distances ∼1=100 GeV receives the form of Eq. (3).
In the opposite limit at the distances ≫ 1=100 GeV, the

interaction term of Eq. (9) with α ¼ 1 that provides the
nonzero mass for the top quark dominates. The other
fermions on this level of understanding are massless. We
assume that their masses appear as the perturbations
over the suggested pattern. Altogether, this construction
provides the effective action, which gives rise to the
relation between the Higgs boson mass MH and the

top-quark mass mt of Eq. (14). It is worth mentioning
that the requirement α ¼ 1 is essential for this relation to
be valid. This prompts that there is, possibly, more
symmetry behind the formation of the 125 GeV Higgs
boson than is noticed in the present paper.
It is also worth mentioning that, according to the

calculations of Sec. 3.C of Ref. [7], the particular form
of the form factor G entering Eq. (10) may be chosen in
such a way that the Higgs boson branching ratios and its
production cross section calculated using the given model
match the present experimental data.
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