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It is known that a constant magnetic field is a strong catalyst of dynamical chiral symmetry breaking in
2 4 1 dimensions, leading to generating dynamical fermion mass even at weakest attraction. In this work
we investigate the collective modes associated with the dynamical chiral symmetry breaking in a constant
magnetic field in the (2 + 1)-dimensional Nambu—Jona-Lasinio model with continuous U(1) chiral
symmetry. We introduce a self-consistent scheme to evaluate the propagators of the collective modes at the
leading order in 1/N. The contributions from the vacuum and from the magnetic field are separated such
that we can employ the well-established regularization scheme for the case of vanishing magnetic field. The
same scheme can be applied to the study of the next-to-leading order correction in 1/N. We show that the
sigma mode is always a lightly bound state with its mass being twice the dynamical fermion mass for
arbitrary strength of the magnetic field. Since the dynamics of the collective modes is always 2 + 1
dimensional, the finite temperature transition should be of the Kosterlitz-Thouless (KT) type. We determine
the KT transition temperature 7t as well as the mass melting temperature 7 as a function of the magnetic
field. It is found that the pseudogap domain Tyt < T < T* is enlarged with increasing strength of the
magnetic field. The influence of a chiral imbalance or axial chemical potential us is also studied. We find
that even a constant axial chemical potential 5 can lead to inverse magnetic catalysis of the KT transition
temperature in 2 + 1 dimensions. The inverse magnetic catalysis behavior is actually the de Haas—van

Alphen oscillation induced by the interplay between the magnetic field and the Fermi surface.

DOI: 10.1103/PhysRevD.90.056005

I. INTRODUCTION

Dynamical chiral symmetry breaking plays a crucial role
in understanding the ground state and particle spectroscopy
of quantum chromodynamics (QCD) [1]. For example, the
lightest mesons in the QCD spectra, the pions, are iden-
tified as pseudo-Goldstone bosons associated with the
dynamical chiral symmetry breaking. Dynamical chiral
symmetry breaking is also important for us to understand
the phase structure of strongly interacting matter in extreme
conditions, e.g., at high temperature and/or baryon density
[2-9]. It is generally believed that the broken chiral
symmetry gets restored at high temperature and/or density.
In general, dynamical chiral symmetry breaking is char-
acterized by the nonzero expectation value (yy), where y
denotes the quark field. The chiral symmetry breaking
and its restoration at finite temperature/or density can
be successfully described by some QCD motivated
effective models, such as the Nambu—Jona-Lasinio (NJL)
model [10].

Good knowledge of QCD in extreme conditions is
therefore important for us to understand a wide range of
physical phenomena [9]. For example, to understand the
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evolution of the early Universe in the first few seconds, the
nature of the QCD phase transition at high temperature and
nearly vanishing baryon density is needed. On the other
hand, to understand the physics of compact stars, we need
the knowledge of the equation of state and dynamics of
QCD matter at high baryon density and low temperature. In
recent years, the phase structure of QCD matter in strong
magnetic field B promoted great interests [11-16]. A strong
magnetic field B can be realized in noncentral heavy ion
collisions at the Relativistic Heavy-lon Collider (RHIC)
and the Large Hadron Collider (LHC). Some calculations
have estimated that the produced magnetic field can be as
large as \/eB ~ Aqcp at the RHIC energy [17]. At the LHC
energy, even stronger B can be produced. On the other
hand, the great theoretical advantage is that there is no sign
problem for the Monte Carlo simulation of QCD at finite B.
The lattice simulation of QCD at finite temperature and
magnetic field B has been performed with almost physical
quark masses [18,19]. It has been found that the transition
temperature decreases with increasing magnetic field up to
VeB =1 GeV. Some theoretical explanations for this
phenomenon (called inverse magnetic catalysis) have been
proposed [20-26].

The effects of magnetic fields on the dynamical chiral
symmetry breaking have been extensively studied in
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(2 4+ 1)- and (3 + 1)-dimensional four-fermion interaction
models [27,28]. In the absence of magnetic fields, dynami-
cal chiral symmetry breaking occurs only when the four-
fermion coupling strength is larger than a critical value,
which is known as a quantum critical phenomenon [29]. In
the presence of a constant magnetic field, it was first shown
by Klimenko and by Gusynin, Miransky, and Shovkovy
that to the leading order of the large-N expansion the
magnetic field plays the role of a strong catalysis of
dynamical chiral symmetry breaking, leading to generating
a dynamical fermion mass even at the weakest attraction
[27,28]. For four-fermion coupling stronger than the critical
value, the magnetic field enhances the dynamical chiral
symmetry breaking and hence the dynamical fermion mass.
This phenomenon is called magnetic catalysis [28]. To
understand the underlying physics, we note that the low
energy dynamics of pairing fermions undergoes dimension
reduction D — D — 2 (at the lowest Landau level) in strong
magnetic field, where D is the space-time dimension of the
system.

On the other hand, mesonic collective modes (the
massive ¢ mode and the Goldstone pion mode) should
appear associated with the spontaneous breaking of the
continuous chiral symmetry. The influence of a constant
magnetic field on the low energy spectra of the collective
modes at leading order in 1/N was studied by Gusynin,
Miransky, and Shovkovy by using the method of low
energy expansion [28]. The magnetic field strongly affects
the low energy spectra of the collective modes even though
these modes are electrically neutral. The dynamics of the
collective modes is still 2 4+ 1 dimensional even at strong
magnetic field, in contrast to the dynamics of the fermions.
However, to our knowledge, so far a self-consistent scheme
to study the full spectra of the collective modes is still
missing. For example, the properties of the sigma mode
obtained from the low energy expansion method cannot
reveal the fact that the sigma mode is a lightly bound state
with its mass equal to twice the dynamical fermion mass.
This inconsistency can be attributed to the commonly used
regularization scheme where a lower cutoff for the
Schwinger parameter is introduced. Such a regularization
scheme is proper to study the dynamical fermion mass
and the low energy spectrum of the Goldstone mode.
Inconsistency arises if we evaluate the full propagators of
the collective modes at leading order in 1/N. Different
cutoffs should be used to make the Goldstone mode
propagator compatible with the gap equation and therefore
the Goldstone theorem [30]. Moreover, such a scheme
becomes improper if we try to study the next-to-leading
order corrections in 1/N [31].

In the first part of this paper, we employ a self-consistent
scheme to evaluate the full propagators of the collective
modes at leading order in 1/N. Following the treatment of
Klimenko [27], we separate the leading-order effective
potential into the vacuum contribution and the contribution
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from the magnetic field. Since the contribution from the
magnetic field is finite, we can employ the usual regulari-
zation scheme which is used at vanishing magnetic field,
where a cutoff for the Euclidean momentum is introduced.
Note that this usual regularization scheme will be helpful if
we need to calculate the next-to-leading order corrections.
It is expected that the next-to-leading order corrections in
1/N (contributions from the collective modes) will be
significant at strong magnetic field. It was shown in 3 + 1
dimensions that the next-to-leading order contributions
generally lead to an opposite effect, called magnetic
inhibition [21], which suppresses the magnetic catalysis
effect. For a realistic system with small N, the inhibition
effect may become competitive with or even dominant over
the catalysis effect.

In the large-N limit, phase fluctuations of the order
parameter are completely suppressed and the system
undergoes a second-order phase transition at a critical
temperature where the dynamical fermion mass vanishes.
However, for finite N, the CMWH theorem forbids any
long-range order and hence spontaneous breaking of the
U(1) chiral symmetry at any nonzero temperature [32].
Since the dynamics of the collective modes is 2+ 1
dimensional, the finite temperature transition at finite N
should be of the Kosterlitz-Thouless (KT) type [33]. The
KT transition temperature of the 2 + 1 dimensional Nambu—
Jona-Lasino model at vanishing magnetic field was studied
by Babaev [34]. In the second part of this paper, we study
the influence of a constant magnetic field on the KT
transition temperature. The effect of the chiral imbalance
will also be studied. We will show that even a constant axial
chemical potential leads to inverse magnetic catalysis of the
KT transition temperature in 2 + 1 dimensions. The inverse
magnetic catalysis behavior can be attributed to a reflection
of the de Haas—van Alphen oscillation [35].

The paper is organized as follows. We set up the model
and study the magnetic catalysis and collective modes at
zero temperature in Sec. II. The KT transition and influence
of the chiral imbalance are investigated in Sec. III. We
summarize in Sec. IV.

II. ZERO TEMPERATURE: MAGNETIC
CATALYSIS AND COLLECTIVE MODES

The Lagrangian density of the (2 + 1)-dimensional
Nambu—Jona-Lasinio (NJL;) model is given by [29]

L =yidy + % [(wy)? + (wirsy)?]. (1)

where y = (w, >, ..., wy) denotes the N-flavor fermion
fields with each y; being a four-component spinor and G is
the coupling constant. The y-matrices are 4 x 4 matrices
and can be defined as [36]
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Here 04, 0,, and o3 are 2 x 2 Pauli matrices and [ is the
2 x 2 identity matrix. Note that the matrix > anticommutes
with 7%, 7!, and y?. The NJL; model is symmetric under
the continuous chiral transformation y; — sy,
Spontaneous breaking of the chiral symmetry in this model
therefore leads to massless bosonic excitation, i.e., the
Goldstone mode. We assume the fermions are electrically
charged with a uniform charge e and there is an external
constant magnetic field B perpendicular to the planar
system. To couple the fermions with the magnetic field,
we replace the derivative d, by the covariant derivative
D, =0, —ieA,, where Ay = 0 and A = (0, Bx; ). Without
loss of generality, we set eB > 0 in this paper.

A. Effective potential and magnetic catalysis

The calculation of the effective potential can be per-
formed in the 1/N expansion. For the NJL; model, we
introduce two auxiliary fields, ¢ and z. The partition
function reads

2~ [ldp)ay)ldolax
X exp{i / d*x [y?(iD -0 —iysm)y

—%(GZ 4 ;ﬁ)] } 3)

Integrating out the fermion fields and introducing external
sources J, and J,, we obtain the generating functional
w[J],

2] = e / (do][dr] exp{i / BA[Ly(0.7)
04 ,7] }
/deEB (6,m) =—iNTrn(iD — 6 —iysm)

N[5 2, 2
G d’x(o*+n%). (4)

The classical fields are given by

oWl 5)
’ cl 5.],[ Jml,r:o'

W]

O¢] ST
[

7y =0

Since the Lagrangian of the NJL; model is symmetric
under the U(1) x U(1) chiral transformation, the effective
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potential should only depends on the combination ‘731 + ﬂgl.
We can therefore choose 6, = M and n, = 0 without loss
of generality. The quantity M serves as the order parameter
of spontaneous chiral symmetry breaking. Then making the
field shifts 6 = M + 6 and # = 0 + 7, we find that the 1/N
expansion corresponds to the expansion in powers of the
fluctuation fields ¢ and 7. To the next-to-leading order, the
effective action I'(M) reads

1
(M) =NTOM)+TO (M) + 0 (ﬁ) , (6)
where
0 3 M
rO(M) = —iTrn(iD - M) — | d®x~—.
(M) iTrln(i ) e
j SL i SL
(M) = Sindet |22 Uindet |28 .
(M) = lndet o). T2 G7ez ), .,

(7)

The effective potential Q(M) is given by Q(M) =
-I'(M)/V,,,, where V,,, is the space-time volume in
(2 4 1) dimensions. To the next-to-leading order in the 1 /N
expansion, the effective potential (M) can be formally
expressed

QM) = NQO(M) + Q1) (M) + O (%) (8)

The leading-order contribution in 1/N expansion is given
by

QM) = o (M) + Q) (M), 9)

where the B-independent vacuum part Q(()O> (M) reads

M2 1 (A
Q" (m) / dkk*In(kK* + M?).  (10)

T2G 2o

Here and in the following we work in the Euclidean space
for convenience. The vacuum part is divergent and we have
introduced a cutoff A for the Euclidean momentum k to
regularize the divergence. Neglecting the terms that
are independent of M and that vanish for A — oo, we
obtain [29]

0 1 2A M3
Qé)(M):E<5—?>MZ+§. (11)

The B-dependent part Qg)) (M) can be formally expressed
as

Q¥ (M) = Trln . (12)
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This contribution is finite and we evaluate it by using the
Schwinger approach [37]. We get [27]

1 © s 5 eBs
Q(O) M) — / M T
5 (M) 4732 J, 52 ¢ tanh eBs
E3
zﬁﬁ/z(ﬂ)’ (13)

where Eg = V/eB is the energy associated with the mag-
netic field and # = M/ Eg. The function f, () is defined as

odx . X
fn = [TSer(La-) a9

The renormalization of the effective potential at leading
order is simple. The bare coupling constant G(A) should be
fine-tuned such that [29]

M
= —2son(G - G,), (15)
T

where the critical coupling G, = #%/(2A) and My, > O is a
finite quantity. The quantity M, then serves as a natural
mass scale of the system. At B = 0, spontaneous chiral
symmetry breaking with M # 0 is only possible when the
coupling constant G is larger than the critical value G..
The dynamical fermion mass reads M = M. However, in
the presence of magnetic field, spontaneous chiral sym-
metry breaking occurs for arbitrarily weak coupling G. This
can be seen from the fact that at B # 0, M = 0 is no longer
a minimum of the effective potential Q) (M). Using the
fact that

1.
ﬁ%ﬂ%[ﬂfm(ﬂ)] =1 (16)
we obtain [28]
(0)
dATM)| B (17)

am |, 2=«

Therefore, at the leading order of the 1/N expansion, we
have the famous magnetic catalysis effect.

The gap equation that determines the dynamical fermion
mass M as a function of Ey can be expressed as

1 1
7 ——sen(G —G,) = ——
1)) en( ) 2\/x

Here the dimensionless parameter gz = Eg/M,, which
represents the strength of the magnetic field. The numerical
results for the cases G < G, and G > G, are shown in
Fig. 1. We find that M is always an increasing function of
the magnetic field in both cases. In the strong magnetic
field limit, the behavior of the dynamical fermion mass is

f3/2(’7)~ (18)
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FIG. 1. (a) The dynamical fermion mass M scaled by M, as a

function of gg = Eg/M, for the supercritical case G > G, and
subcritical case G < G.. The dashed line denote the universal
limit M /Eg = 0.4460 for B — 0. (b) The velocity of Goldstone
mode v, as a function of gg for the supercritical case G > G, and
subcritical case G < G,. The dashed line denotes the universal
limit v, = 0.5875 for B — oo.

universal. For gz — oo, the universal ratio n = M/Ey is
determined by the following equation:

1
= . 19
1= 575 (19)
We obtain in the strong magnetic field limit
M
lim — = 0.4460. 20
Am (20)

B. Collective modes

At leading order in 1/N, the propagators of ¢ meson and
pion read

1 G
D (K) = N1+ GI,(K)’

1 G
bK) = N em. ) (21)
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where the polarization functions I, ,(K) are given by

I, (K) — / gTI;tr[S(P)S(P +K),

3
I (K) = / é;;tr[S(P)iysS(P+K)iy5]. (22)

Here S(P) is the fermion propagator up to a phase factor
and is given by [28]

2 fs

Py=[" —s(M? + p}) -
S(P) = [ dsexp |50 4 p3) -2 L3

x [M — YulPu— i(pary = pir2)fsJ(1 = ivirafs).
(23)

Here and in the following we use the notation f, =
tanh(eBs) for convenience.

To evaluate the propagators of collective modes, we first
complete the trace in the spin space and get

4 0 © o

X/ sz/ dpse=APr2rIG (py, py. p3)

(24)

Hm(K) =

for m = o, z, where
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fofi KB4k st

R(s,t):fs+ft B +s—|—tk%’ (25)
2
A(p1. p2. P3) :fse—;ft (Pl +f Jj_tf k1>
fs+[i S 2
T eB <m+ﬂ+ﬂb>
2
+(s+t)<p3+%+tk3> , (26)

and

Gn(P1. P2, P3) = [amM? + p3(p3 + k3)](1 + ff 1)
+pi(p1 + ki) + pa(pr + k)]
x (1= f5)(1=f7). (27)

Here a, = —1, a, = 1. However, the integral over P is
divergent and we cannot simply shift the integration
variables. To this end, we consider the combined quantity
1/G +11,(K), which is finite and hence independent of
the cutoff A. We therefore use the following trick,

1
E—FHm(K):Fl—i-FQ—i—Fm(K), (28)

where

1 d*P [ NP | d*P 1
F=——4 d —s(M+P):__4/_—’
TG / (2x)} A e G (21)} M? + P?

3 o0
F2 :4/(d_P/ ds[e‘S(MZJFPZ) _e—S(M2+p§+lem1€hBib’s>]’
= Jo

3p feo
Fp= 4/d P / dse=sM*+pitp
(27)* Jo

tanh eBs

) + T, (K). (29)

Then we find that only the integral in F; is divergent and can be removed by coupling constant renormalization. To be
consistent with the regularization scheme used in evaluating the effective potential, we introduce the cutoff A for
momentum P. Then we obtain

1 AN M M M
=——Y5en(G-G,). (30)
n

Fl=——— 42
"G w2

The term F, is finite. Completing the integral over P we get

1 © ds , eBs Eg M
F _ - —sM 1 -_— = - — . 31
2= 55 A o2 ¢ ( tanh eBs) 202 (EB) e

The term F, is also finite. Therefore we can safely shift the integration variables. Making use of the identity
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© 2tanh eBr’ + k)z
dte—1M>+(ps-ks)+(p+k)2ames] | 2y PR 1. 30
A ¢ Pyt k)" + cosh?eBt (32)

we can express F, in a symmetric form,

Fon (27)} / ds/ i _Rw)/ d‘ll/ dq2/wdCIse‘““(""Wh)Hm(qpqzﬂs% (33)

where
Algroaa ) =20 G4 @)+ (5403 (34)
and
2+ f7 ST =2f5 200 = )1 = ) fof
Hin(q1: G2, q43) = (f i fzft>(q%+q%)—fsf14§+fS+f foli 2 {)( Filfsf (kT + &3)
z(f\ +ft)
s +t2+2(1+f‘YfI)SZk§+M2—amM2(1+fsf,). (35)

2(s +1)?

Completing the integral over ¢, ¢», g3 we get

o0 [s9) o0 A
/ dﬂh/ d612/ dgze AN 25IH, (g, g5, q3)

/
272 eB LeB C%+ﬁ fqﬁ__fff+4ﬂ—aﬁﬂﬂ+fjﬂ

RV A VR AN 2s+1)
+f?+f%—2f2f2+2( fz)(l—fz)fsfzk2+s + 7 +2(1 + f,f,)st (36)
2fs+ 1) 2s +1)° )
Next, we define two new variables z = s + ¢ and u = (s — #)/(s + t) and obtain
FulK) = 5o [ du [T deyre R 0, 0 1 0. (37
where
_ cosh (eBz) — cosh (eBzu) o eB cosh (eBz) cosh (eBzu) =1 (1 w2 ) eBen + (1 — ay,)M?
0 2eB sinh (¢Bz) ’ ™2 sinh?(eBz) 2z %" tanh(eBz) °
3cosh (eBzu) (2eBCy)* — 1 1 1+u?
= = - BC,.
' i (eBz) | 4umh(eBz) " 2unh(eBz) 4 <BO (38)

At leading order in 1/N, we find F| + F, = 0 from the gap equation. The propagators of the collective modes are
given by

I 1 I 1

D, (K)=———, D, (K)=— . 39

K) = N F®) (K) = N F-®) (39)
For the pionic excitation (a,, = 1), we obtain

coshxcoshux —1 coshx —coshux /1
F,(0) d d A - —
+(0) T 3/2 / ! / xxe { sinh?x sinh x <2x + >]
© (x x=22x> 2x?
— B [T o] o2 T _ . 40
8713/2/) PN < A nh X sinh2x> (40)
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Completing the integral over x, we find that F,(0) = 0 for
arbitrary nonzero value of 7. Hence the Goldstone’s
theorem holds for arbitrary magnetic field. On the other
hand, for vanishing magnetic field, the propagators reduce
to [29]

PHYSICAL REVIEW D 90, 056005 (2014)

where k* = k3 + k. Therefore, our results are consistent
with the known expressions at B = 0 [29].

To study the properties of the collective modes, we
convert ks back to —iky. The velocity of the Goldstone
mode can be determined by making use of the small
momentum expansion,

2 k
D,(K) = N (K2 + 4M?) arctan 5 | ) )
(41) § Dr (K) =&k =Gk +- (42)
2 1
DalK) = Nt arctan £ . .
arctan 7,7 The expansion coefficients can be evaluated as
|
1 1 © > [3coshux 1 cosh x — cosh ux 2
S d d. —nx -1
d 27[3/2EB/) u/) xxe { 4 sinh x +4tanhx [( sinh x > }
coshx — coshux [coshxcoshux —1 coshx —coshux /1 g
4 sinh x sinh?x sinh x TR ’
1 o dx 21°x + 2xcothx + 1 2i°x + 4xcothx — 1
= [T (12 p a2 -3 3
327232 Ey /) e ( s tanh x o sinh?x
1 1 o ) 1 1 4 u? cosh x — cosh ux
= du |7 dxyxe -
2 =000, A ! A xxe {Ztanhx 8 sinh x
1 —u? [coshxcoshux —1 coshx —coshux /1 e
8 sinh?x sinh x 2 ’
1 © dx _, 2n%x3 4 9x% — 61°x — 3 x> =3
=— ——e (9 + 62 2x% . 43
48732 Ey A e ( oy tanh x ¥ sinhZx (43)
The integral over x in &; can be completed to get & = lim v, = 0.5875. (44)
B—oo

1/(4zM) [28], which indicates that the dynamics of the
pion mode is not suppressed by the magnetic field. The
Goldstone mode velocity is given by v, = /& /&. In
Fig. 2, we show the results of v, for both the subcritical and
supercritical cases. For G > G, we have  — oo and hence
v, — 1 for B — 0. While for G < G, we have n — 0 and
hence v, — 0 for B — 0. In the large magnetic field limit,
the velocity approaches a universal limit. This limit velocity
can be determined by using the result # — 0.4460 for
B — co. We obtain

|

F(r(kO = C())

coshxcoshux — 1

Next we determine the mass and spectral property of the
sigma meson. To this end, we consider the case of k = 0.
At vanishing magnetic field, the sigma meson is a slightly
bound state with mass m, = 2M coincident with the two-
fermion threshold [29]. At nonzero magnetic field, the
inverse of the sigma meson propagator at k = 0 can be
evaluated as

4’ (1 - b)

Eg /1 /°° 2 (1 2\ 2
=—— [ du dx\/xe T 1=(1-u?)b’]
473/ Jo 0

cosh x — cosh ux
X .— b
sinh x

where b= w/(2M). We note that the branching cut
remains @ € (2M, +o0) and the two-fermion threshold is
still wg, = 2M at nonzero magnetic field. Therefore, the
sigma meson is an unstable resonance if m, > 2M and a
bound state if m, < 2M. Actually, we can show that at

sinh2x

1
2b2 1 2y - .2
tanh x + <’1 (1+u) ST >

(45)

[

B # 0, the sigma meson is still a slightly bound state and its
mass always coincides with the two-fermion threshold, i.e.,
m, = 2M for arbitrary magnetic field. The integral form of
(45) is singular at @ = 2M and its principal value is hard to
obtain. We therefore turn to another form of F,(w). By
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FIG. 2 (color online). The KT transition temperature Tt and
the mass melting temperature 7* as a function of g5 = Eg /M, for
G > G, (a) and G < G, (b). For KT transition temperature, the
results for N = 3 and N = 10 are shown with blue dot-dashed
lines and red dashed lines, respectively.

using the Ritus method which will be introduced in the next
section, we can express F () as a summation over all
Landau levels. The result is

Folw) = ;i’:an [i_ 8neB(1 — O(w — 2¢,))

=0 €n (483 - a)z)gn
2(w? —4M?)O(w — 28,,):|

w(4e? — w?)

(46)

where €, = VM? + 2neB and O(w —2¢,) is the step
function which equals 1 for @ > 2¢, and equals O for
o < 2¢,. The degeneracy a,, = 1 forn = 0 and a,, = 2 for
n > 1. From this expression, we see obviously that @ =
2M is always a pole of the sigma meson propagator.
Therefore, the sigma meson is always a lightly bound state
for arbitrary magnetic field, with its mass coincident with
the two-fermion threshold.

In this section, we have studied the magnetic catalysis of
dynamical chiral symmetry and its influence on the
collective modes. While the magnetic catalysis [27,28]
and the properties of the collective modes [28] were studied
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long ago, here we have proposed a self-consistent scheme
to study the properties of the collective modes. The
propagators of the sigma and pion modes clearly recover
the known results at vanishing magnetic field [Eq. (41)].
The mass of the sigma mode was investigated by using the
method of low-energy expansion [28]. However, for heavy
modes, the low-energy expansion becomes improper. Here,
by using the explicit form of the inverse sigma propagator
[Eq. (46)], we have shown that the sigma mode is a lightly
bound state for arbitrary magnetic field, with its mass
coincident with the two-fermion threshold.

Finally, we point out that the above scheme of evaluating
the propagators of the collective modes has its advantage if
we compute the next-to-leading order corrections in 1/N.
The next-to-leading order contributions to the effective
potential can be written as [31]

QM) = U,(M) + UL (M), (47)

where the two contributions U, (M) and U,(M) read

3
U,(M) = %/éT[;ln [1 + GII,(K)].

3
U.(M) = % / (‘;Tl;ln 14 GIL(K).  (48)

To renormalize the total effective potential, it is natural to
use the same cutoff A to regularize the integrals over the
Euclidean momenta K. Meanwhile, it is also convenient to
separate Q1) into a vacuum part and a B-dependent part.
The next-to-leading corrections in 1/N enable us to
quantitatively study the competition between the magnetic
catalysis and the magnetic inhibition [21] in the planar NJL
model. The results will be reported elsewhere.

III. FINITE TEMPERATURE: KOSTERLITZ-
THOULESS TRANSITION

From the properties of the collective modes at zero
temperature, we find that the dynamics of the collective
modes is still (2 + 1)-dimensional even in the strong
magnetic field limit. In the large-N limit, phase fluctuations
of the order parameter are completely suppressed and the
system undergoes a second-order phase transition at which
the dynamical fermion mass is generated. However, for
finite N, the CMWH theorem forbids any long-range order
and hence spontaneous breaking of the U(1) chiral sym-
metry at any nonzero temperature [32]. Since the system is
still effectively (2 + 1)-dimensional, we expect that there
exists a phase transition of the Kosterlitz-Thouless (KT)
type [33]. The KT transition temperature of the NJL;
model at vanishing magnetic field has been studied by
Babaev [34]. In this section, we study the magnetic
field dependence of the KT transition temperature. Since
we employ four-component spinor, we can introduce a
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chemical potential ps which corresponds to a chiral
imbalance. To this end, we add a chemical potential term
uswy’y>w. The meaning of the chiral imbalance or chiral
chemical potential becomes explicit if we define the left-
and right-handed fermion fields as yi g =1 (1 Fys)y.
Then the chiral chemical potential term becomes

usiy°r w = us(wwr — wiwL). (49)

Therefore, us is the chemical potential associated with the
imbalance between the left- and right-handed fermions.

In some planar condensed matter systems such as
graphene, ps corresponds to the chemical potential of
doped Dirac electrons [38]. To understand this, we intro-
duce a new field W =1(1+ys)y +4(1 —ys)y,. [39],
where y, = C" with C = —iy?y" being the charge con-
jugate matrix. The chemical potential term usyy’y y turns
to be the usual one usWUy*W. Meanwhile, we can show that
the planar NJL model Eq. (1) is equivalent to the following
BCS model of ultrarelativistic fermions [40],

_ G - _

Therefore, our studies in this section will also be relevant to
the superconducting phenomenon of Dirac electrons in
planar condensed matter systems.

A. Phase Fluctuations and Kosterlitz-Thouless
Transition

At finite temperature, the partition function of the NJL;
model is given by

2= [ lapiaylidelian exp{ [la | dzrﬁeff},

. , N
Leg =@ (iD + psy’y® — o — iysn)y —E(Gz +7%), (51)

where = 1/T with T being the temperature. The KT
transition temperature 7'kt of the system can be determined
by studying the low-energy effective theory of the phase
0(x) of the order parameter field A (x), which by employing
the “modulus-phase” variables [41] is defined as

A(x) = o(x) + in(x) = p(x)e?™). (52)

The order parameter field A(x) corresponds to the expect-
ation value of the bilinear field W_.iys¥ in the BCS
Lagrangian Eq. (50). In terms of A(x), chiral symmetry
can be written as A — Ae*? or @ — 0 + c. In terms of the
modulus-phase variables, the effective action reads

PHYSICAL REVIEW D 90, 056005 (2014)
Teitlp, 0] = =NTrIn[iD + pusy’y° — p(x)ers9)]

Z p*(x)
N d 42 .
+ /) T/ r G

To study the KT transition, we need only to analyze the
infrared behavior of the theory. To this end, we can just
replace p(x) by its expectation value (p(x)) =M and
neglect its fluctuations. Because of strong phase fluctua-
tions, the expectation value of the order parameter always
vanishes at finite temperature, i.e.,

(53)

(A(x)) = (p(x)e”™)) = 0. (54)

Therefore, a nonzero expectation value M does not break
the chiral symmetry, in contrast to the zero temperature
case. The effective potential for M can be evaluated by
setting € = 0. We obtain

N N
QM) = 2—M2 - Trln(iD + usy%° — M).  (55)
G Vo

Minimizing the effective potential, we obtain the expect-
ation value M.

The infrared behavior of the theory is determined by the
quasi-massless field 0. The next step is to obtain an
effective Hamiltonian for the phase field 6. It is obvious
that only the term proportional to (V#)? is important, since
other terms which have higher dimensions are suppressed
in the infrared limit. We also note that terms like * and
6?(V0)? are forbidden by the chiral symmetry 6 — 6 + c.
Finally, the low-energy effective Hamiltonian of the theory
can be expressed as

Ha = [ dxivow) (56)

where J is the stiffness of the phase fluctuations. This is
nothing but the continuum version of the two-dimensional
XY model which was first used to study the KT transition.
The difference is that the phase stiffness J here is not a
constant but depends on temperature and other parameters
of the system, i.e.,

J=J(T,M, us, Eg). (57)

The critical temperature of the KT transition is then
given by

pis
Txr :EJ(TKTvMs/JS’EB)' (58)

This equation should be solved together with the gap
equation for M to obtain the KT transition temperature Ty
at given external parameters Ep and ps.
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At finite N, we will have three phases at nonzero
temperature: (i) 0 < T < Txr—the low-temperature qua-
siordered KT phase. In this phase, the correlation function
of the order parameter field decays algebraically at large
distance (Jr; — ry| > o),

(A(ry)A(rs)) ~ 1) — 1|0, (59)

The correlation length £ in this phase can be shown to be
E(T) = T/(2xJ). We therefore have quasi long-range order
in this phase. It is well known that bound vortex-antivortex
pairs will form in this phase. (i) Txr < T < T*—the
intermediate-temperature pseudogap phase. In this phase,
the correlator decays exponentially,

(A(r1)A(ry)) ~ emInrl/em), (60)

In this phase, we have a nonzero modulus of the order
parameter which plays the role of a local fermion mass.
However, free vortices form and forbid chiral symmetry
breaking. (iii) 7 > T*—the high-temperature normal phase
with vanishing modulus of the order parameter.

B. The gap equation and phase stiffness

There are two approaches to deal with the problem of a
relativistic fermionic system in an external magnetic field.
One is the famous Schwinger approach [37] which puts the
fermion propagator in the form of the integration of the
auxiliary proper-time over a complex function, the other is
Ritus method [42] which solves Dirac equation directly and
finds the eigenfunctions and eigenvalues. For us # O the
generalization of the fermion propagator is obscure in
Schwinger approach. We therefore employ the Ritus
method to evaluate the gap equation and the phase stiffness
J. There is a good example [43] showing how the Dirac
equation with an constant external magnetic field can be
solved by using the Ritus method in 3 4 1 dimensions and
the generalization to 2 4+ 1 dimensions is straightforward.

In a uniform external magnetic field B, the Dirac
equation in the mean-field approximation takes the form

[iy°0y — iy' 0, — iy* (D, + ieBx;)
+ usy’y> = My (x) = 0. (61)

Since the time dimension x and the space dimension x, do
not couple with the external magnetic field, the eigenfunc-
tions should be proportional to the plane waves e=¢ 0Pz
Therefore, the eigensolutions of the Dirac equation take the
form

—igSxy+i P2
W?(X) — i€ XoJrlesz(x] _£> Uy,

- ie Sxo+i p
v (@) = el G( —72) o, (62)
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where x = (xg,x;,X,) and s = £ which are related to the
chirality. Here u, and v, are spinors for particle and anti-
particle solutions respectively and we take their momenta to
be both p, for convenience. The 4 x 4 matrix G(x; — £2) is
related to the Landau levels. Substituting these formal
solutions into the Dirac equation, we obtain

(& —iy'0y + y*eBy + usy’y’ = M)G(y)us =0,
(=& %y° —iy'0, +y*eBy + usy®y> —M)G(y)vo, =0, (63)

where y = x; — p,/(eB). To get the solutions of u, and v,
we use the Ritus ansatz for the matrix G(y),

(iy'dy — r*eBy)G(y) = 2G(y)r*. (64)

Without loss of generality we can choose the matrix G(y) to
be diagonal and commute with other terms. Then we get the
equations for u, and oy,

(7" = Ay* + usy’r’ = M)u, = 0,
(=% = r* + psy’r’ = M)v, = 0. (65)

Let G(y) = diag(g1(), 92(). 93(). 94(y)), we get

92(y) = 94(y) and g3(y) = g(y). The functions g,(y)
and g,(y) are determined by the coupled equations

(Oy + eBy)gi(y) = Ag4(y),
(0y — eBY)ga(y) = =491 (). (66)

Substituting one equation into the other, we obtain two
decoupled equations,

[0 + (eBy)?]g1(y) = (2> + eB)g; (v).
(22 — eB)ga(y). (67)

R
QD
<
_|_
—
Q
S
~
~—
.
2
—
=
~—
|

Then we can write 2> = A2 = 2neB with n =0,1,2, ....
The full solution of G(y) can be found by using the fact that
g1(y) and g4(y) must have the same value of 1%>. We obtain
g1(y) = c1¢a(y) and g4(y) = c4¢,-1(y). The function
¢,(y) is given by

\/% (%) " Hy(VeBy) exp (— % eBy2> ,
(68)

a(y) =

where H,(z) denotes a Hermite polynomial of degree n.
For convenience we define ¢_;(y) = 0. From Eq. (62) we
get ¢, = ¢4 = 1. The diagonal matrix G(y) = G, (y) can be
written in a compact form,

1+ iy'y? 1 —iy'y?
6,00 = g0+ 12 ),

$n(y) + (69)
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According to the properties of the function ¢, (y), we have

> G ()G, () =8y -,
/dyGn(y)Gm(y) = bpm- (70)

The solutions of the eigenenergy &° = ¢;, are given by

e = /(o + s5)? + M. (71)

For n = 0, we have ¢ = &y = /puZ + M?*. At vanishing s, it becomes & = &, = V2neB + M?. The solutions of the
spinors u, and v, can be expressed as

i€, + ps + s, i€, — ls + si,
1 S\/8§l+/‘5+5/1n 1 _SVS;IS_/"S_FS/In
Uy =— M , Dy =— =M . (72)
\/2 V £f1+ﬂ5+51n \/E V 6‘;,5—}15-'1-51,1
sM sM
V £;+FS+SAI1 \Y4 E-ns_ﬂ5+5/1n
Using these results, we obtain
v 1 .
ugus = S [en (L= isy'y®) = (us + s2)(r* +s1°7°) + MG +57°7)];
P .
vws =5 [& (1 =isy'y?) + (us + 54) (7 +57°7") = M(y° + 57°7%)]. (73)

These results are useful in evaluating the fermion and pion propagators.
To evaluate the gap equation for M, we need to evaluate the fermion Green’s function. First, the retarded Green’s function
for xy — x{, > 0 can be evaluated as

Sr(x,x') = (Oly (x)w (x') 0)

Y [ g Wl

ocdp2 1 e_iei,(xo—x('))wLipz(xz—x’z)Gn xl_& ugui-Gn xl]_& },O
eB) ° eB

=t n=0 / o 27 2¢,
R o de 1 . s A / ) 2) p2
— - —lS,,(xO—)C )+tp2(x2—x ) G —_—— G / j, 0,5 M
— ’;:0 /_oo e 48;8 0 2 { n(xl ¢B n|\ X1~ ¢eB [811}/ + (MS + s n)}/ 4 + ]
p p T8 :
+Ga(10=22)11G, (4 = L2 )0 16 = (s + i) = Misy ') . (74)

Therefore, the Feynman Green’s function is given by

Sg(x, x) / dpo/ dp2 i PR e~ iPo(xo=x()+ipy(x2—x))
s= :I: n=0 2” 2p - ) ]

p p
X {Gn (xl —j) G, <X’1 é) [Por® + (us + s4,)7°7° + M|

+Ga(x0 = 22) 16, (4, = 22 ) /) ot = s + st = (i) . (75)
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At finite temperature, we replace py, — iw, = i(2v + 1)zT and ffm% — T > ® . Then the gap equation at finite
temperature is given by the self-consistent Green’s function relation

N dpz P2 P2
oM = TrSg(x,x) N%}ZTE%O / Tr i (SM Tr {G,, (x1 eB> G, (xl 63)} (76)

Obviously, the gap equation is essentially the extreme condition 9Q2/OM = 0. Completing the integral over p, and the
summation over the Matsubara frequency iw, and employing the same regularization method as in Sec. II, we obtain

1o M _ MM, eBnfyn(n) eB - 1-2np(e) 1
G-G,)———>220 = M| ———" | =0, 77
Wk = sen(0 =0 ST ST [ <>

8}1 8}'[
where ng(x) = 1/(1 + ¢/) is the Fermi distribution function. Note that unlike the zero temperature case, at finite
temperature M = 0 is always an extreme of the effective potential, i.e.,

1 0Q
- =0. (78)
NOM|,,_,
To evaluate the phase stiffness, we need to evaluate the inverse of the pion propagator and make the small momentum
expansion. We have

Dk =0.k)

—

(79)
The inverse of the pion propagator in coordinate representation can be evaluated as

15%%f)=g5@—XU—ﬂﬂh8ﬂLﬂWﬁ%@ﬁﬂ]

= Zol=2) + 2P / dpy / dpj / dp; / dp} el p02< );]é)ng :;)2]>
x[Mz—pop6+(u5+s/1n)(u5+mm)}[¢n< —>¢n<’1 Z§>¢m<xl_5§>¢m<x&_£>
S T (B e
oo oo (-5
o 1(’” )¢"</ 5_;)¢m—1(x1‘5_§>¢m<xi—f—§)} (80)

The momentum representation of the inverse pion propagator can be obtained by Fourier transformation. We note that
D;!(x,x’) should only be a function of x — x’. Then we obtain

D=1 (ko k) = /d3xe ko (=) ~k1 (1 =3~k (a=4)] 1 (¢ — ), (81)

After a lengthy calculation, the phase stiffness at finite temperature can be expressed as

w (s + 52) (05 + )
S IDIDY (i = @I, — (@]

st +nm=0 v=—00 m

X [(ﬁ +stvn — 1) 6m.n—1(an - 1) + (\/;l’ +stvn + 1)25m.n+1 - 4}’1(1 + St)émn<an - 1) - 5mn5n0]' (82)
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Completing the summation over ¢ and m and the summation over the Matsubara frequency, we finally obtain

J M —eB 1 6 Z /11 + Sis 1
N 4r 2/1 —eB 80 2T ~ A+ 2sps 51 2T
2n(eB)? + eBus(2 A 8nu? Y ) &
ZZ{ n(e +e ps(2ps + sh,) — Wzs(ﬂ5+sn) —t nh £
16”5 + n=1 ) - 4/45(/'45 + Sj’n) 2T
_ (ﬂS + Sﬂn-&-l)[z(zn + )/’lS + S/1n+1] 1 heiwrl _ (”5 + Sﬂn—l)[z(zn - 1)/"5 - Sﬂn—l] Ltanhg;—_l (83)
2u% + 2spsh, 1 + eB e 2T 2u% + 2spsh, | — eB e, 2T |-

Using the same method, the sigma meson propagator
D,(ky, k) can be evaluated. The result for k =0 and
T = 0 has been presented in Sec. II.

C. Results for pus =0

At vanishing chiral imbalance, us; = 0, we have

1 0Q M2 MM B
0 5en(G - G,) _eBnf3p(n)
NoM ~ x T 2r  \/«m
eB 2¢eB M
+—np(M) + == —ng(e,). (84)
n T e,

Unlike the zero temperature case, at finite but low
temperature 7 < T*, the gap equation 0Q/0OM = 0 has
two solutions M =0 and M # 0. The solution M =0
corresponds to a maximum. At 7 = T*, the two extremes
merge. The temperature 7 is then determined by

1 9°Q

We obtain
1
y——sgn(G-G,)
9B

Z \/;e\/Z_n/f* + 1 (86)

where t* = T*/+/eB and

2 -
v — lim 20°f1)2(n) = f32(n) _ 10326, (87)

n—0 2\/7_7.'

In the strong magnetic field limit, we have
=0.2411. (88)
B—>oo e
The phase stiffness at us = 0 can be simplified to
N
=—Mt h—

J 1, Mtanh > (89)

The KT transition temperature Tkt is determined by the
equation

——tanh =— (90)

together with the gap equation

1 9Q
—— =0. 1
NOM|y_r.. Ol

For N — oo, we have M(T = Tyr) — 0 and therefore the
KT transition temperature coincides with 7. For finite N
we obtain

M(T = Txr) = xo(N)Tkr, (92)
where xo(N) is the solution of the equation

xtanh(x/2) = 8/N. Then the KT transition temperature
is determined by

1 1
Xolgr — —sgn(G -G.) - mfm (xotkr)

1
= 93
> o

tzKT 1 2n oVt 2/t 4

where tgr = Txr/v/eB. In the strong magnetic field limit,
txt also approaches a constant depending on the value of
N. Therefore, with increasing magnetic field, the domain of
the pseudogap phase Txr < T < T* is enlarged.

The numerical results for 7* and the KT transition
temperature Tgr for N =3 and N = 10 are shown in
Fig. 3. Note that 7" is independent of N. We find that for a
given value of N, the pseudogap domain Txr < T < T*
becomes larger and larger with increasing magnetic field.

D. Results for ps # 0

For nonvanishing ps, the effective potential at B = 0 and
T = 0 can be evaluated as
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FIG. 3. The dynamical fermion mass M (scaled by M) as a

function of us/M, for G > G, and G < G,.

1 1 © pdp
QM) = —Q(M,us =0 —[2 24 M2
Q00 = Qs =)+ [TE 2/

- \/(p — ps)* + M? — \/(p +ps)? +M2}.
(94)

The fermionic excitation spectra \/(p =+ us)* + M?* mean
that the chiral imbalance us actually plays the role of a
Fermi surface of left- or right-handed fermions. Completing
the integral over p, we obtain

1 MoM> (2M? = p3)\ [ M? + 413
—QM) =-—"""sen(G-G,) + ’ ’
N 67
psM? A\ M? + 13+ ps
e nal Y . (95)
2n M

For ps # 0, we find that

1 0Q 1 9’°Q (96)

—— =0, — = —o00.

NoM|,_, NoM?|,,_,

Therefore, the minimum of the effective potential is always
located at M # 0, no matter G > G, or G < G,. The
numerical results are shown in Fig. 3. It is obvious that
Hs also catalyzes dynamical chiral symmetry breaking
because of the Fermi surface effect. We note that the above
result is similar to the chemical potential effect on the
superconducting phenomenon of Dirac electrons in planar
condensed matter systems [38].

Now we turn on the magnetic field. The temperature 7*
is determined by

PHYSICAL REVIEW D 90, 056005 (2014)

1
y ——sgn(G - G,)
98

tanh
z “\/2n(2n — &%)
©_ /21 4 \/2neV/" cosh & + seV2nlr sinh 2

n=1

2 (2n — 8%)(eV81/"" 4 2eV2/" coshd 4 1)
(97)

where 8 = us/+/eB. Note that the singularities at § = v/2n
are removable. The KT transition temperature Tgr is
determined by solving the equation Tt = nJ/2 together
with the gap equation Eq. (74). We shall focus on the case
G > G, and N =3. The result for G < G, is similar
because ps catalyzes dynamical chiral symmetry breaking.

The numerical results of 7%, Ty, and Mgy = M(T =
Txr) for us/My = 5 and ps/M, = 10 are shown in Fig. 4.
We find that there exists a regime of the magnetic field
where these quantities first decrease and then increase, in
contrast to the case of ys = 0 where these quantities always
increase with \/eB. This phenomenon is more visible for
the KT transition temperature T'x and Myr. The decreas-
ing behavior is therefore confusing since we have shown
that either B # 0 or us #0 enhances dynamical chiral
symmetry breaking.

To understand the decreasing behavior or inverse mag-
netic catalysis of the transition temperatures, we note that
the chiral imbalance y5 plays the role of an effective Fermi
surface. It is well known that the combined effect of Fermi
surface and magnetic field leads to the famous de Haas—van
Alphen (dHvVA) oscillation [35]. The dHVA effect was first
found in nonrelativistic systems such as metallic materials.
It was also found to exist in relativistic dense matter, such
as dense quark matter [10,35,44,45]. In the present system,
we only find a minimum rather than multiple oscillations.
As we will show in the following, this is because only the
first excited Landau level is effective for the dHVA effect in
the present system.

To understand the dHvA effect quantitatively in the
present system, we note that the dHvA effect is dominated
by the terms which contain the negative branch of the
excitation spectra, i.e.,

€, = \/(\/ZneB — ps)* + M2, (98)

with n > 1. The dHVA oscillations are expected to occur

when v/eB ~ ys/+/2n. However, we find that the oscil-

lations corresponding to n > 2 are absent and only the one

corresponding to n = 1 exists in the present system. To
understand this fact, we discuss three regimes of VeB.

(i) Weak magnetic field. This is roughly the regime

0 < veB/us < 1/+/2. In this regime we expect that

the Landau levels with n > 2 will induce dHvVA
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FIG. 4 (color online). Dependence of the mass melting temper-
ature 7™ (a), KT transition temperature Tt (b), and the effective
mass Mgy at T = Tgr (c) on the magnetic field. 7%, Tkr, and
My are all scaled by their values at B = 0. The magnetic field
strength is denoted by v/eB/us. The black solid lines and the red
dashed lines show the results for ys/My =5 and us/M, = 10,
respectively.

oscillations. However, us dominates the behavior of
this weak magnetic field regime. As a result, we
obtain a plateau structure of Ty, Mgr, and T* in
this regime.

(i1) Intermediate magnetic field. It corresponds roughly
to the regime 1/v/2 < veB/us < 2. We find that

PHYSICAL REVIEW D 90, 056005 (2014)

the first excited Landau level becomes effective and
induces dHvVA oscillation. The excitation spectrum
of the first excited Landau level is & =

\/(\/263 — pis)* + M?. Because of the dHvVA effect

induced by the interplay between the magnetic field
and the Fermi surface, the KT transition temperature
(as well as Mgt and T*) first decreases and then
increases, inducing a minimum at the middle of
this regime. The dHVA oscillation is more visible
for the KT transition temperature, since it depends
not only on the gap equation but also on the phase
stiffness.

(iii) Strong magnetic field. At large +/eB, roughly
corresponding to v/eB/us > 2, only the lowest
Landau level is effective and the magnetic catalysis
effect dominates the behavior of the system. As a
result, the KT transition temperature becomes nearly
an increasing function of VeB. In the strong
magnetic field limit we have Tkt « \/eB, because
the influence of y5 can be safely neglected.

In this section, we have studied the influence of a
constant external magnetic field on the KT transition
temperature. In the absence of chiral imbalance us, we
find that the KT transition temperature Ty as well as the
mass melting temperature 7™ is a monotonically increasing
function of v/eB. For a given value of N, the pseudogap
region becomes larger for stronger magnetic field. In the
presence of chiral imbalance s, however, the KT transition
temperature Ty as well as the mass melting temperature
T* goes nonmonotonically with \/eB. This behavior is
similar to the inverse magnetic catalysis of the QCD chiral
transition temperature [18,19]. In the present planar NJL
model, it is evident that the nonmonotonic behavior of the
KT transition temperature is actually a de Haas—van Alphen
oscillation phenomenon induced by the interplay between
the magnetic field and the chiral imbalance.

IV. SUMMARY

In the first part of this work we investigated the
collective modes associated with the dynamical chiral
symmetry breaking in a constant magnetic field in the
(2 4+ 1)-dimensional Nambu—Jona-Lasinio model with con-
tinuous U(1) chiral symmetry. We introduced a self-
consistent scheme to evaluate the propagators of the
collective modes at the leading order in 1/N. The scheme
is proper to study the next-to-leading order corrections in
1/N. We analytically proved that the sigma mode is always
a lightly bound state with its mass coincident with the two-
fermion threshold for arbitrary strength of the magnetic
field. Because the dynamics of the collective modes is
always 2 4 1 dimensional, the finite temperature transition
should be of the KT type for finite N.

We also investigated the KT transition temperature Txr
as well as the mass melting temperature 7* in a constant
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magnetic field and with an axial chemical potential y5 in
the second part of this work. The expression of the phase
stiffness was derived by using the Ritus method. For
vanishing chiral asymmetry ps, we found that the pseudo-
gap region Tyt <T < T* is enlarged with increasing
strength of the magnetic field. For nonzero us, we showed
that it can lead to inverse magnetic catalysis of the KT
transition temperature in 2 + 1 dimensions. This phenome-
non can be attributed to the de Haas—van Alphen oscillation
induced by the interplay between the magnetic field and
Fermi surface. These results are also relevant to the
superconducting phenomenon of Dirac electrons in planar
condensed matter systems, such as graphene layers.
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