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It is known that a constant magnetic field is a strong catalyst of dynamical chiral symmetry breaking in
2þ 1 dimensions, leading to generating dynamical fermion mass even at weakest attraction. In this work
we investigate the collective modes associated with the dynamical chiral symmetry breaking in a constant
magnetic field in the (2þ 1)-dimensional Nambu–Jona-Lasinio model with continuous U(1) chiral
symmetry. We introduce a self-consistent scheme to evaluate the propagators of the collective modes at the
leading order in 1=N. The contributions from the vacuum and from the magnetic field are separated such
that we can employ the well-established regularization scheme for the case of vanishing magnetic field. The
same scheme can be applied to the study of the next-to-leading order correction in 1=N. We show that the
sigma mode is always a lightly bound state with its mass being twice the dynamical fermion mass for
arbitrary strength of the magnetic field. Since the dynamics of the collective modes is always 2þ 1

dimensional, the finite temperature transition should be of the Kosterlitz-Thouless (KT) type. We determine
the KT transition temperature TKT as well as the mass melting temperature T� as a function of the magnetic
field. It is found that the pseudogap domain TKT < T < T� is enlarged with increasing strength of the
magnetic field. The influence of a chiral imbalance or axial chemical potential μ5 is also studied. We find
that even a constant axial chemical potential μ5 can lead to inverse magnetic catalysis of the KT transition
temperature in 2þ 1 dimensions. The inverse magnetic catalysis behavior is actually the de Haas–van
Alphen oscillation induced by the interplay between the magnetic field and the Fermi surface.
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I. INTRODUCTION

Dynamical chiral symmetry breaking plays a crucial role
in understanding the ground state and particle spectroscopy
of quantum chromodynamics (QCD) [1]. For example, the
lightest mesons in the QCD spectra, the pions, are iden-
tified as pseudo-Goldstone bosons associated with the
dynamical chiral symmetry breaking. Dynamical chiral
symmetry breaking is also important for us to understand
the phase structure of strongly interacting matter in extreme
conditions, e.g., at high temperature and/or baryon density
[2–9]. It is generally believed that the broken chiral
symmetry gets restored at high temperature and/or density.
In general, dynamical chiral symmetry breaking is char-
acterized by the nonzero expectation value hψ̄ψi, where ψ
denotes the quark field. The chiral symmetry breaking
and its restoration at finite temperature/or density can
be successfully described by some QCD motivated
effective models, such as the Nambu–Jona-Lasinio (NJL)
model [10].
Good knowledge of QCD in extreme conditions is

therefore important for us to understand a wide range of
physical phenomena [9]. For example, to understand the

evolution of the early Universe in the first few seconds, the
nature of the QCD phase transition at high temperature and
nearly vanishing baryon density is needed. On the other
hand, to understand the physics of compact stars, we need
the knowledge of the equation of state and dynamics of
QCDmatter at high baryon density and low temperature. In
recent years, the phase structure of QCD matter in strong
magnetic field B promoted great interests [11–16]. A strong
magnetic field B can be realized in noncentral heavy ion
collisions at the Relativistic Heavy-Ion Collider (RHIC)
and the Large Hadron Collider (LHC). Some calculations
have estimated that the produced magnetic field can be as
large as

ffiffiffiffiffiffi
eB

p
∼ ΛQCD at the RHIC energy [17]. At the LHC

energy, even stronger B can be produced. On the other
hand, the great theoretical advantage is that there is no sign
problem for the Monte Carlo simulation of QCD at finite B.
The lattice simulation of QCD at finite temperature and
magnetic field B has been performed with almost physical
quark masses [18,19]. It has been found that the transition
temperature decreases with increasing magnetic field up toffiffiffiffiffiffi
eB

p ≃ 1 GeV. Some theoretical explanations for this
phenomenon (called inverse magnetic catalysis) have been
proposed [20–26].
The effects of magnetic fields on the dynamical chiral

symmetry breaking have been extensively studied in*lianyi@lanl.gov
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(2þ 1)- and (3þ 1)-dimensional four-fermion interaction
models [27,28]. In the absence of magnetic fields, dynami-
cal chiral symmetry breaking occurs only when the four-
fermion coupling strength is larger than a critical value,
which is known as a quantum critical phenomenon [29]. In
the presence of a constant magnetic field, it was first shown
by Klimenko and by Gusynin, Miransky, and Shovkovy
that to the leading order of the large-N expansion the
magnetic field plays the role of a strong catalysis of
dynamical chiral symmetry breaking, leading to generating
a dynamical fermion mass even at the weakest attraction
[27,28]. For four-fermion coupling stronger than the critical
value, the magnetic field enhances the dynamical chiral
symmetry breaking and hence the dynamical fermion mass.
This phenomenon is called magnetic catalysis [28]. To
understand the underlying physics, we note that the low
energy dynamics of pairing fermions undergoes dimension
reductionD → D − 2 (at the lowest Landau level) in strong
magnetic field, where D is the space-time dimension of the
system.
On the other hand, mesonic collective modes (the

massive σ mode and the Goldstone pion mode) should
appear associated with the spontaneous breaking of the
continuous chiral symmetry. The influence of a constant
magnetic field on the low energy spectra of the collective
modes at leading order in 1=N was studied by Gusynin,
Miransky, and Shovkovy by using the method of low
energy expansion [28]. The magnetic field strongly affects
the low energy spectra of the collective modes even though
these modes are electrically neutral. The dynamics of the
collective modes is still 2þ 1 dimensional even at strong
magnetic field, in contrast to the dynamics of the fermions.
However, to our knowledge, so far a self-consistent scheme
to study the full spectra of the collective modes is still
missing. For example, the properties of the sigma mode
obtained from the low energy expansion method cannot
reveal the fact that the sigma mode is a lightly bound state
with its mass equal to twice the dynamical fermion mass.
This inconsistency can be attributed to the commonly used
regularization scheme where a lower cutoff for the
Schwinger parameter is introduced. Such a regularization
scheme is proper to study the dynamical fermion mass
and the low energy spectrum of the Goldstone mode.
Inconsistency arises if we evaluate the full propagators of
the collective modes at leading order in 1=N. Different
cutoffs should be used to make the Goldstone mode
propagator compatible with the gap equation and therefore
the Goldstone theorem [30]. Moreover, such a scheme
becomes improper if we try to study the next-to-leading
order corrections in 1=N [31].
In the first part of this paper, we employ a self-consistent

scheme to evaluate the full propagators of the collective
modes at leading order in 1=N. Following the treatment of
Klimenko [27], we separate the leading-order effective
potential into the vacuum contribution and the contribution

from the magnetic field. Since the contribution from the
magnetic field is finite, we can employ the usual regulari-
zation scheme which is used at vanishing magnetic field,
where a cutoff for the Euclidean momentum is introduced.
Note that this usual regularization scheme will be helpful if
we need to calculate the next-to-leading order corrections.
It is expected that the next-to-leading order corrections in
1=N (contributions from the collective modes) will be
significant at strong magnetic field. It was shown in 3þ 1
dimensions that the next-to-leading order contributions
generally lead to an opposite effect, called magnetic
inhibition [21], which suppresses the magnetic catalysis
effect. For a realistic system with small N, the inhibition
effect may become competitive with or even dominant over
the catalysis effect.
In the large-N limit, phase fluctuations of the order

parameter are completely suppressed and the system
undergoes a second-order phase transition at a critical
temperature where the dynamical fermion mass vanishes.
However, for finite N, the CMWH theorem forbids any
long-range order and hence spontaneous breaking of the
U(1) chiral symmetry at any nonzero temperature [32].
Since the dynamics of the collective modes is 2þ 1
dimensional, the finite temperature transition at finite N
should be of the Kosterlitz-Thouless (KT) type [33]. The
KT transition temperature of the 2þ 1 dimensionalNambu–
Jona-Lasino model at vanishing magnetic field was studied
by Babaev [34]. In the second part of this paper, we study
the influence of a constant magnetic field on the KT
transition temperature. The effect of the chiral imbalance
will also be studied. We will show that even a constant axial
chemical potential leads to inverse magnetic catalysis of the
KT transition temperature in 2þ 1 dimensions. The inverse
magnetic catalysis behavior can be attributed to a reflection
of the de Haas–van Alphen oscillation [35].
The paper is organized as follows. We set up the model

and study the magnetic catalysis and collective modes at
zero temperature in Sec. II. The KT transition and influence
of the chiral imbalance are investigated in Sec. III. We
summarize in Sec. IV.

II. ZERO TEMPERATURE: MAGNETIC
CATALYSIS AND COLLECTIVE MODES

The Lagrangian density of the (2þ 1)-dimensional
Nambu–Jona-Lasinio (NJL3) model is given by [29]

L ¼ ψ̄i∂ψ þ G
2N

½ðψ̄ψÞ2 þ ðψ̄ iγ5ψÞ2�; ð1Þ

where ψ ¼ ðψ1;ψ2;…;ψNÞ denotes the N-flavor fermion
fields with each ψ i being a four-component spinor and G is
the coupling constant. The γ-matrices are 4 × 4 matrices
and can be defined as [36]
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γ0 ¼
�
σ3 0

0 −σ3

�
; γ1 ¼

�
iσ1 0

0 −iσ1

�
;

γ2 ¼
�
iσ2 0

0 −iσ2

�
; γ5 ¼ i

�
0 I

−I 0

�
: ð2Þ

Here σ1; σ2, and σ3 are 2 × 2 Pauli matrices and I is the
2 × 2 identity matrix. Note that the matrix γ5 anticommutes
with γ0; γ1, and γ2. The NJL3 model is symmetric under
the continuous chiral transformation ψ i → eiθγ5ψ i.
Spontaneous breaking of the chiral symmetry in this model
therefore leads to massless bosonic excitation, i.e., the
Goldstone mode. We assume the fermions are electrically
charged with a uniform charge e and there is an external
constant magnetic field B perpendicular to the planar
system. To couple the fermions with the magnetic field,
we replace the derivative ∂μ by the covariant derivative
Dμ ¼ ∂μ − ieAμ, where A0 ¼ 0 andA ¼ ð0; Bx1Þ. Without
loss of generality, we set eB > 0 in this paper.

A. Effective potential and magnetic catalysis

The calculation of the effective potential can be per-
formed in the 1=N expansion. For the NJL3 model, we
introduce two auxiliary fields, σ and π. The partition
function reads

Z ¼
Z

½dψ̄ �½dψ �½dσ�½dπ�

× exp

�
i
Z

d3x

�
ψ̄ðiD − σ − iγ5πÞψ

−
N
2G

ðσ2 þ π2Þ
��

: ð3Þ

Integrating out the fermion fields and introducing external
sources Jσ and Jπ , we obtain the generating functional
W½J�,

Z½J�¼eiW½J� ¼
Z

½dσ�½dπ�exp
�
i
Z

d3x½LBðσ;πÞ

þJσσþJππ�
�
;

Z
d3xLBðσ;πÞ¼−iNTrlnðiD−σ− iγ5πÞ

−
N
2G

Z
d3xðσ2þπ2Þ: ð4Þ

The classical fields are given by

σcl ¼
δW½J�
δJσ

				
Jσ ;Jπ¼0

; πcl ¼
δW½J�
δJπ

				
Jσ ;Jπ¼0

: ð5Þ

Since the Lagrangian of the NJL3 model is symmetric
under the Uð1Þ × Uð1Þ chiral transformation, the effective

potential should only depends on the combination σ2cl þ π2cl.
We can therefore choose σcl ¼ M and πcl ¼ 0 without loss
of generality. The quantityM serves as the order parameter
of spontaneous chiral symmetry breaking. Then making the
field shifts σ ¼ M þ ~σ and π ¼ 0þ ~π, we find that the 1=N
expansion corresponds to the expansion in powers of the
fluctuation fields ~σ and ~π. To the next-to-leading order, the
effective action ΓðMÞ reads

ΓðMÞ ¼ NΓð0ÞðMÞ þ Γð1ÞðMÞ þO

�
1

N

�
; ð6Þ

where

Γð0ÞðMÞ ¼ −iTrlnðiD −MÞ −
Z

d3x
M2

2G
;

Γð1ÞðMÞ ¼ i
2
ln det

�
δ2LB

δ ~σδ ~σ

�
~σ; ~π¼0

þ i
2
ln det

�
δ2LB

δ ~πδ ~π

�
~σ; ~π¼0

:

ð7Þ

The effective potential ΩðMÞ is given by ΩðMÞ ¼
−ΓðMÞ=V2þ1, where V2þ1 is the space-time volume in
(2þ 1) dimensions. To the next-to-leading order in the 1=N
expansion, the effective potential ΩðMÞ can be formally
expressed

ΩðMÞ ¼ NΩð0ÞðMÞ þΩð1ÞðMÞ þO

�
1

N

�
: ð8Þ

The leading-order contribution in 1=N expansion is given
by

Ωð0ÞðMÞ ¼ Ωð0Þ
0 ðMÞ þΩð0Þ

B ðMÞ; ð9Þ

where the B-independent vacuum part Ωð0Þ
0 ðMÞ reads

Ωð0Þ
0 ðMÞ ¼ M2

2G
−

1

π2

Z
Λ

0

dkk2 lnðk2 þM2Þ: ð10Þ

Here and in the following we work in the Euclidean space
for convenience. The vacuum part is divergent and we have
introduced a cutoff Λ for the Euclidean momentum k to
regularize the divergence. Neglecting the terms that
are independent of M and that vanish for Λ → ∞, we
obtain [29]

Ωð0Þ
0 ðMÞ ¼ 1

2

�
1

G
−
2Λ
π2

�
M2 þM3

3π
: ð11Þ

The B-dependent part Ωð0Þ
B ðMÞ can be formally expressed

as

Ωð0Þ
B ðMÞ ¼ −

1

V2þ1

Trln
DþM
∂ þM

: ð12Þ
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This contribution is finite and we evaluate it by using the
Schwinger approach [37]. We get [27]

Ωð0Þ
B ðMÞ ¼ 1

4π3=2

Z
∞

0

ds

s5=2
e−sM

2

�
eBs

tanh eBs
− 1

�

¼ E3
B

4π3=2
f5=2ðηÞ; ð13Þ

where EB ≡ ffiffiffiffiffiffi
eB

p
is the energy associated with the mag-

netic field and η≡M=EB. The function fnðηÞ is defined as

fnðηÞ ¼
Z

∞

0

dx
xn

e−η
2x

�
x

tanh x
− 1

�
: ð14Þ

The renormalization of the effective potential at leading
order is simple. The bare coupling constantGðΛÞ should be
fine-tuned such that [29]

1

GðΛÞ −
1

Gc
¼ −

M0

π
sgnðG −GcÞ; ð15Þ

where the critical coupling Gc ¼ π2=ð2ΛÞ and M0 > 0 is a
finite quantity. The quantity M0 then serves as a natural
mass scale of the system. At B ¼ 0, spontaneous chiral
symmetry breaking with M ≠ 0 is only possible when the
coupling constant G is larger than the critical value Gc.
The dynamical fermion mass reads M ¼ M0. However, in
the presence of magnetic field, spontaneous chiral sym-
metry breaking occurs for arbitrarily weak couplingG. This
can be seen from the fact that at B ≠ 0,M ¼ 0 is no longer
a minimum of the effective potential Ωð0ÞðMÞ. Using the
fact that

1ffiffiffi
π

p lim
η→0

½ηf3=2ðηÞ� ¼ 1; ð16Þ

we obtain [28]

dΩð0ÞðMÞ
dM

				
M¼0

¼ −
eB
2π

: ð17Þ

Therefore, at the leading order of the 1=N expansion, we
have the famous magnetic catalysis effect.
The gap equation that determines the dynamical fermion

mass M as a function of EB can be expressed as

η −
1

gB
sgnðG −GcÞ ¼

1

2
ffiffiffi
π

p f3=2ðηÞ: ð18Þ

Here the dimensionless parameter gB ≡ EB=M0, which
represents the strength of the magnetic field. The numerical
results for the cases G < Gc and G > Gc are shown in
Fig. 1. We find that M is always an increasing function of
the magnetic field in both cases. In the strong magnetic
field limit, the behavior of the dynamical fermion mass is

universal. For gB → ∞, the universal ratio η ¼ M=EB is
determined by the following equation:

η ¼ 1

2
ffiffiffi
π

p f3=2ðηÞ: ð19Þ

We obtain in the strong magnetic field limit

lim
B→∞

M
EB

¼ 0.4460: ð20Þ

B. Collective modes

At leading order in 1=N, the propagators of σ meson and
pion read

DσðKÞ ¼
1

N
G

1þ GΠσðKÞ
;

DπðKÞ ¼
1

N
G

1þ GΠπðKÞ ; ð21Þ

(a)

G Gc

G Gc

0 2 4 6 8 10
0

1

2
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gB

M
M

0

(b)
G Gc

G Gc

0 2 4 6 8 10

gB

Υ Π
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. (a) The dynamical fermion mass M scaled by M0 as a
function of gB ¼ EB=M0 for the supercritical case G > Gc and
subcritical case G < Gc. The dashed line denote the universal
limit M=EB ¼ 0.4460 for B → ∞. (b) The velocity of Goldstone
mode υπ as a function of gB for the supercritical case G > Gc and
subcritical case G < Gc. The dashed line denotes the universal
limit υπ ¼ 0.5875 for B → ∞.
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where the polarization functions Πσ;πðKÞ are given by

ΠσðKÞ ¼
Z

d3P
ð2πÞ3 tr½SðPÞSðPþ KÞ�;

ΠπðKÞ ¼
Z

d3P
ð2πÞ3 tr½SðPÞiγ5SðPþ KÞiγ5�: ð22Þ

Here SðPÞ is the fermion propagator up to a phase factor
and is given by [28]

SðPÞ ¼
Z

∞

0

ds exp

�
−sðM2 þ p2

3Þ − p2
fs
eB

�

× ½M − γμPμ − iðp2γ1 − p1γ2Þfs�ð1 − iγ1γ2fsÞ:
ð23Þ

Here and in the following we use the notation fs ¼
tanhðeBsÞ for convenience.
To evaluate the propagators of collective modes, we first

complete the trace in the spin space and get

ΠmðKÞ ¼ −
4

ð2πÞ3
Z

∞

0

ds
Z

∞

0

dte−ðsþtÞM2−Rðs;tÞ
Z

∞

−∞
dp1

×
Z

∞

−∞
dp2

Z
∞

−∞
dp3e−Aðp1;p2;p3ÞGmðp1; p2; p3Þ

ð24Þ

for m ¼ σ; π, where

Rðs; tÞ ¼ fsft
fs þ ft

k21 þ k22
eB

þ st
sþ t

k23; ð25Þ

Aðp1; p2; p3Þ ¼
fs þ ft
eB

�
p1 þ

ft
fs þ ft

k1

�
2

þ fs þ ft
eB

�
p2 þ

ft
fs þ ft

k2

�
2

þ ðsþ tÞ
�
p3 þ

t
sþ t

k3

�
2

; ð26Þ

and

Gmðp1; p2; p3Þ ¼ ½αmM2 þ p3ðp3 þ k3Þ�ð1þ fsftÞ
þ ½p1ðp1 þ k1Þ þ p2ðp2 þ k2Þ�
× ð1 − f2sÞð1 − f2t Þ: ð27Þ

Here ασ ¼ −1, απ ¼ 1. However, the integral over P is
divergent and we cannot simply shift the integration
variables. To this end, we consider the combined quantity
1=Gþ ΠmðKÞ, which is finite and hence independent of
the cutoff Λ. We therefore use the following trick,

1

G
þ ΠmðKÞ ¼ F1 þ F2 þ FmðKÞ; ð28Þ

where

F1 ¼
1

G
− 4

Z
d3P
ð2πÞ3

Z
∞

0

dse−sðM2þP2Þ ¼ 1

G
− 4

Z
d3P
ð2πÞ3

1

M2 þ P2
;

F2 ¼ 4

Z
d3P
ð2πÞ3

Z
∞

0

ds½e−sðM2þP2Þ − e−sðM2þp2
3
þp2 tanh eBs

eBs Þ�;

Fm ¼ 4

Z
d3P
ð2πÞ3

Z
∞

0

dse−sðM2þp2
3
þp2 tanh eBs

eBs Þ þ ΠmðKÞ: ð29Þ

Then we find that only the integral in F1 is divergent and can be removed by coupling constant renormalization. To be
consistent with the regularization scheme used in evaluating the effective potential, we introduce the cutoff Λ for
momentum P. Then we obtain

F1 ¼
1

G
−

Λ
2π2

þM
π
¼ M

π
−
M0

π
sgnðG −GcÞ: ð30Þ

The term F2 is finite. Completing the integral over P we get

F2 ¼
1

2π3=2

Z
∞

0

ds

s3=2
e−sM

2

�
1 −

eBs
tanh eBs

�
¼ −

EB

2π3=2
f3=2

�
M
EB

�
: ð31Þ

The term Fm is also finite. Therefore we can safely shift the integration variables. Making use of the identity
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Z
∞

0

dte−t½M2þðp3þk3Þ2þðpþkÞ2 tanh eBteBt �
�
M2 þ ðp3 þ k3Þ2 þ

ðpþ kÞ2
cosh2eBt

�
¼ 1; ð32Þ

we can express Fm in a symmetric form,

Fm ¼ 4

ð2πÞ3
Z

∞

0

ds
Z

∞

0

dte−ðsþtÞM2−Rðs;tÞ
Z

∞

−∞
dq1

Z
∞

−∞
dq2

Z
∞

−∞
dq3e−Aðq1;q2;q3ÞHmðq1; q2; q3Þ; ð33Þ

where

Aðq1; q2; q3Þ ¼
fs þ ft
eB

ðq21 þ q22Þ þ ðsþ tÞq23 ð34Þ

and

Hmðq1; q2; q3Þ ¼
�
f2s þ f2t

2
− f2sf2t

�
ðq21 þ q22Þ − fsftq23 þ

f2s þ f2t − 2f2sf2t þ 2ð1 − f2sÞð1 − f2t Þfsft
2ðfs þ ftÞ2

ðk21 þ k22Þ

þ s2 þ t2 þ 2ð1þ fsftÞst
2ðsþ tÞ2 k23 þM2 − αmM2ð1þ fsftÞ: ð35Þ

Completing the integral over q1; q2; q3 we get

Z
∞

−∞
dq1

Z
∞

−∞
dq2

Z
∞

−∞
dq3e−Aðq1;q2;q3ÞHmðq1; q2; q3Þ

¼ π3=2ffiffiffiffiffiffiffiffiffiffi
sþ t

p eB
fs þ ft

�
eB

fs þ ft

�
f2s þ f2t

2
− f2sf2t

�
−

fsft
2ðsþ tÞ þM2 − αmM2ð1þ fsftÞ

þ f2s þ f2t − 2f2sf2t þ 2ð1 − f2sÞð1 − f2t Þfsft
2ðfs þ ftÞ2

k2 þ s2 þ t2 þ 2ð1þ fsftÞst
2ðsþ tÞ2 k23

�
: ð36Þ

Next, we define two new variables z ¼ sþ t and u ¼ ðs − tÞ=ðsþ tÞ and obtain

FmðKÞ ¼ eB

2π3=2

Z
1

0

du
Z

∞

0

dz
ffiffiffi
z

p
e−zM

2−z
4
ð1−u2Þk2

3
−C0k2ðCm þ C1k2 þ C2k23Þ; ð37Þ

where

C0 ¼
cosh ðeBzÞ − cosh ðeBzuÞ

2eB sinh ðeBzÞ ; Cm ¼ eB
2

cosh ðeBzÞ cosh ðeBzuÞ − 1

sinh2ðeBzÞ −
�
1

2z
þM2

�
eBC0 þ

ð1 − αmÞM2

tanhðeBzÞ ;

C1 ¼
3 cosh ðeBzuÞ
4 sinh ðeBzÞ þ ð2eBC0Þ2 − 1

4 tanh ðeBzÞ ; C2 ¼
1

2 tanh ðeBzÞ −
1þ u2

4
eBC0: ð38Þ

At leading order in 1=N, we find F1 þ F2 ¼ 0 from the gap equation. The propagators of the collective modes are
given by

DσðKÞ ¼ 1

N
1

FσðKÞ ; DπðKÞ ¼ 1

N
1

FπðKÞ
: ð39Þ

For the pionic excitation (αm ¼ 1), we obtain

Fπð0Þ ¼
EB

4π3=2

Z
1

0

du
Z

∞

0

dx
ffiffiffi
x

p
e−η

2x

�
cosh x cosh ux − 1

sinh2x
−
cosh x − cosh ux

sinh x

�
1

2x
þ η2

��

¼ EB

8π3=2

Z
∞

0

dx

x3=2
e−η

2x

�
1þ 2η2xþ x − 2η2x2

tanh x
−

2x2

sinh2x

�
: ð40Þ
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Completing the integral over x, we find that Fπð0Þ≡ 0 for
arbitrary nonzero value of η. Hence the Goldstone’s
theorem holds for arbitrary magnetic field. On the other
hand, for vanishing magnetic field, the propagators reduce
to [29]

DσðKÞ ¼ 2π

N
k

ðk2 þ 4M2Þ arctan k
2M

;

DπðKÞ ¼ 2π

N
1

k arctan k
2M

;
ð41Þ

where k2 ¼ k23 þ k2. Therefore, our results are consistent
with the known expressions at B ¼ 0 [29].
To study the properties of the collective modes, we

convert k3 back to −ik0. The velocity of the Goldstone
mode can be determined by making use of the small
momentum expansion,

1

N
D−1

π ðKÞ ¼ ξ1k2 − ξ2k20 þ � � � : ð42Þ

The expansion coefficients can be evaluated as

ξ1 ¼
1

2π3=2EB

Z
1

0

du
Z

∞

0

dx
ffiffiffi
x

p
e−η

2x

�
3 cosh ux
4 sinh x

þ 1

4 tanh x

��
cosh x − cosh ux

sinh x

�
2

− 1

�

−
cosh x − coshux

4 sinh x

�
cosh x cosh ux − 1

sinh2x
−
cosh x − coshux

sinh x

�
1

2x
þ η2

���
;

¼ 1

32π3=2EB

Z
∞

0

dx

x3=2
e−η

2x

�
12xþ 4η2x2 − 3

2η2xþ 2x coth xþ 1

tanh x
þ 3x

2η2xþ 4x coth x − 1

sinh2x

�

ξ2 ¼
1

2π3=2EB

Z
1

0

du
Z

∞

0

dx
ffiffiffi
x

p
e−η

2x

�
1

2 tanh x
−
1þ u2

8

cosh x − coshux
sinh x

−
1 − u2

8

�
cosh x coshux − 1

sinh2x
−
cosh x − cosh ux

sinh x

�
1

2x
þ η2

���
;

¼ 1

48π3=2EB

Z
∞

0

dx

x5=2
e−η

2x

�
9þ 6η2xþ x

2η2x3 þ 9x2 − 6η2x − 3

tanh x
þ 2x2

x2 − 3

sinh2x

�
: ð43Þ

The integral over x in ξ1 can be completed to get ξ1 ¼
1=ð4πMÞ [28], which indicates that the dynamics of the
pion mode is not suppressed by the magnetic field. The
Goldstone mode velocity is given by υπ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ξ1=ξ2

p
. In

Fig. 2, we show the results of υπ for both the subcritical and
supercritical cases. ForG > Gc, we have η → ∞ and hence
υπ → 1 for B → 0. While for G < Gc, we have η → 0 and
hence υπ → 0 for B → 0. In the large magnetic field limit,
the velocity approaches a universal limit. This limit velocity
can be determined by using the result η → 0.4460 for
B → ∞. We obtain

lim
B→∞

υπ ¼ 0.5875: ð44Þ

Next we determine the mass and spectral property of the
sigma meson. To this end, we consider the case of k ¼ 0.
At vanishing magnetic field, the sigma meson is a slightly
bound state with mass mσ ¼ 2M coincident with the two-
fermion threshold [29]. At nonzero magnetic field, the
inverse of the sigma meson propagator at k ¼ 0 can be
evaluated as

Fσðk0 ¼ ωÞ ¼ EB

4π3=2

Z
1

0

du
Z

∞

0

dx
ffiffiffi
x

p
e−η

2x½1−ð1−u2Þb2�
�
cosh x cosh ux − 1

sinh2x
þ 4η2ð1 − b2Þ

tanh x
þ
�
η2b2ð1þ u2Þ − 1

2x
− η2

�

×
cosh x − coshux

sinh x

�
; ð45Þ

where b≡ ω=ð2MÞ. We note that the branching cut
remains ω ∈ ð2M;þ∞Þ and the two-fermion threshold is
still ωth ¼ 2M at nonzero magnetic field. Therefore, the
sigma meson is an unstable resonance if mσ > 2M and a
bound state if mσ < 2M. Actually, we can show that at

B ≠ 0, the sigma meson is still a slightly bound state and its
mass always coincides with the two-fermion threshold, i.e.,
mσ ¼ 2M for arbitrary magnetic field. The integral form of
(45) is singular at ω ¼ 2M and its principal value is hard to
obtain. We therefore turn to another form of FσðωÞ. By
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using the Ritus method which will be introduced in the next
section, we can express FσðωÞ as a summation over all
Landau levels. The result is

FσðωÞ ¼
eB
2π

X∞
n¼0

αn

�
1

εn
−
8neBð1 − Θðω − 2εnÞÞ

ð4ε2n − ω2Þεn

þ 2ðω2 − 4M2ÞΘðω − 2εnÞ
ωð4ε2n − ω2Þ

�
; ð46Þ

where εn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2neB

p
and Θðω − 2εnÞ is the step

function which equals 1 for ω ≥ 2εn and equals 0 for
ω < 2εn. The degeneracy αn ¼ 1 for n ¼ 0 and αn ¼ 2 for
n ≥ 1. From this expression, we see obviously that ω ¼
2M is always a pole of the sigma meson propagator.
Therefore, the sigma meson is always a lightly bound state
for arbitrary magnetic field, with its mass coincident with
the two-fermion threshold.
In this section, we have studied the magnetic catalysis of

dynamical chiral symmetry and its influence on the
collective modes. While the magnetic catalysis [27,28]
and the properties of the collective modes [28] were studied

long ago, here we have proposed a self-consistent scheme
to study the properties of the collective modes. The
propagators of the sigma and pion modes clearly recover
the known results at vanishing magnetic field [Eq. (41)].
The mass of the sigma mode was investigated by using the
method of low-energy expansion [28]. However, for heavy
modes, the low-energy expansion becomes improper. Here,
by using the explicit form of the inverse sigma propagator
[Eq. (46)], we have shown that the sigma mode is a lightly
bound state for arbitrary magnetic field, with its mass
coincident with the two-fermion threshold.
Finally, we point out that the above scheme of evaluating

the propagators of the collective modes has its advantage if
we compute the next-to-leading order corrections in 1=N.
The next-to-leading order contributions to the effective
potential can be written as [31]

Ωð1ÞðMÞ ¼ UσðMÞ þ UπðMÞ; ð47Þ

where the two contributions UσðMÞ and UπðMÞ read

UσðMÞ ¼ 1

2

Z
d3K
ð2πÞ3 ln ½1þGΠσðKÞ�;

UπðMÞ ¼ 1

2

Z
d3K
ð2πÞ3 ln ½1þGΠπðKÞ�: ð48Þ

To renormalize the total effective potential, it is natural to
use the same cutoff Λ to regularize the integrals over the
Euclidean momenta K. Meanwhile, it is also convenient to
separate Ωð1Þ into a vacuum part and a B-dependent part.
The next-to-leading corrections in 1=N enable us to
quantitatively study the competition between the magnetic
catalysis and the magnetic inhibition [21] in the planar NJL
model. The results will be reported elsewhere.

III. FINITE TEMPERATURE: KOSTERLITZ-
THOULESS TRANSITION

From the properties of the collective modes at zero
temperature, we find that the dynamics of the collective
modes is still (2þ 1)-dimensional even in the strong
magnetic field limit. In the large-N limit, phase fluctuations
of the order parameter are completely suppressed and the
system undergoes a second-order phase transition at which
the dynamical fermion mass is generated. However, for
finite N, the CMWH theorem forbids any long-range order
and hence spontaneous breaking of the U(1) chiral sym-
metry at any nonzero temperature [32]. Since the system is
still effectively (2þ 1)-dimensional, we expect that there
exists a phase transition of the Kosterlitz-Thouless (KT)
type [33]. The KT transition temperature of the NJL3

model at vanishing magnetic field has been studied by
Babaev [34]. In this section, we study the magnetic
field dependence of the KT transition temperature. Since
we employ four-component spinor, we can introduce a

G Gc

T

0 2 4 6 8 10 12 14
0

1

2

3

4

gB

T
M

0

G Gc

T

0 2 4 6 8 10 12 14
0

1

2

3

4

gB

T
M

0

N=10

N=10

N=3

N=3

FIG. 2 (color online). The KT transition temperature TKT and
the mass melting temperature T� as a function of gB ¼ EB=M0 for
G > Gc (a) and G < Gc (b). For KT transition temperature, the
results for N ¼ 3 and N ¼ 10 are shown with blue dot-dashed
lines and red dashed lines, respectively.
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chemical potential μ5 which corresponds to a chiral
imbalance. To this end, we add a chemical potential term
μ5ψ̄γ

0γ5ψ . The meaning of the chiral imbalance or chiral
chemical potential becomes explicit if we define the left-
and right-handed fermion fields as ψL;R ¼ 1

2
ð1∓ γ5Þψ .

Then the chiral chemical potential term becomes

μ5ψ̄γ
0γ5ψ ¼ μ5ðψ†

RψR − ψ†
LψLÞ: ð49Þ

Therefore, μ5 is the chemical potential associated with the
imbalance between the left- and right-handed fermions.
In some planar condensed matter systems such as

graphene, μ5 corresponds to the chemical potential of
doped Dirac electrons [38]. To understand this, we intro-
duce a new field Ψ ¼ 1

2
ð1þ γ5Þψ þ 1

2
ð1 − γ5Þψc [39],

where ψc ¼ Cψ̄T with C ¼ −iγ2γ0 being the charge con-
jugate matrix. The chemical potential term μ5ψ̄γ

0γ5ψ turns
to be the usual one μ5Ψ̄γ0Ψ. Meanwhile, we can show that
the planar NJL model Eq. (1) is equivalent to the following
BCS model of ultrarelativistic fermions [40],

LBCS ¼ Ψ̄i∂Ψþ G
2N

ðΨ̄iγ5ΨcÞðΨ̄ciγ5ΨÞ: ð50Þ

Therefore, our studies in this section will also be relevant to
the superconducting phenomenon of Dirac electrons in
planar condensed matter systems.

A. Phase Fluctuations and Kosterlitz-Thouless
Transition

At finite temperature, the partition function of the NJL3

model is given by

Z ¼
Z

½dψ̄ �½dψ �½dσ�½dπ�exp
�Z

β

0

dτ
Z

d2rLeff

�
;

Leff ¼ ψ̄ðiDþ μ5γ
0γ5 − σ − iγ5πÞψ −

N
2G

ðσ2 þ π2Þ; ð51Þ

where β ¼ 1=T with T being the temperature. The KT
transition temperature TKT of the system can be determined
by studying the low-energy effective theory of the phase
θðxÞ of the order parameter fieldΔðxÞ, which by employing
the “modulus-phase” variables [41] is defined as

ΔðxÞ ¼ σðxÞ þ iπðxÞ ¼ ρðxÞeiθðxÞ: ð52Þ

The order parameter field ΔðxÞ corresponds to the expect-
ation value of the bilinear field Ψ̄ciγ5Ψ in the BCS
Lagrangian Eq. (50). In terms of ΔðxÞ, chiral symmetry
can be written as Δ → Δe2iϕ or θ → θ þ c. In terms of the
modulus-phase variables, the effective action reads

Γeff ½ρ; θ� ¼ −NTrln½iDþ μ5γ
0γ5 − ρðxÞeiγ5θðxÞ�

þ N
Z

β

0

dτ
Z

d2r
ρ2ðxÞ
2G

: ð53Þ

To study the KT transition, we need only to analyze the
infrared behavior of the theory. To this end, we can just
replace ρðxÞ by its expectation value hρðxÞi ¼ M and
neglect its fluctuations. Because of strong phase fluctua-
tions, the expectation value of the order parameter always
vanishes at finite temperature, i.e.,

hΔðxÞi ¼ hρðxÞeiθðxÞi ¼ 0: ð54Þ

Therefore, a nonzero expectation value M does not break
the chiral symmetry, in contrast to the zero temperature
case. The effective potential for M can be evaluated by
setting θ ¼ 0. We obtain

ΩðMÞ ¼ N
2G

M2 −
N

V2þ1

TrlnðiDþ μ5γ
0γ5 −MÞ: ð55Þ

Minimizing the effective potential, we obtain the expect-
ation value M.
The infrared behavior of the theory is determined by the

quasi-massless field θ. The next step is to obtain an
effective Hamiltonian for the phase field θ. It is obvious
that only the term proportional to ð∇θÞ2 is important, since
other terms which have higher dimensions are suppressed
in the infrared limit. We also note that terms like θ4 and
θ2ð∇θÞ2 are forbidden by the chiral symmetry θ → θ þ c.
Finally, the low-energy effective Hamiltonian of the theory
can be expressed as

Heff ¼
J
2

Z
d2r½∇θðrÞ�2; ð56Þ

where J is the stiffness of the phase fluctuations. This is
nothing but the continuum version of the two-dimensional
XY model which was first used to study the KT transition.
The difference is that the phase stiffness J here is not a
constant but depends on temperature and other parameters
of the system, i.e.,

J ¼ JðT;M; μ5; EBÞ: ð57Þ

The critical temperature of the KT transition is then
given by

TKT ¼ π

2
JðTKT;M; μ5; EBÞ: ð58Þ

This equation should be solved together with the gap
equation forM to obtain the KT transition temperature TKT
at given external parameters EB and μ5.
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At finite N, we will have three phases at nonzero
temperature: (i) 0 < T < TKT—the low-temperature qua-
siordered KT phase. In this phase, the correlation function
of the order parameter field decays algebraically at large
distance (jr1 − r2j → ∞),

hΔðr1ÞΔðr2Þi ∼ jr1 − r2j−ξðTÞ: ð59Þ

The correlation length ξ in this phase can be shown to be
ξðTÞ ¼ T=ð2πJÞ. We therefore have quasi long-range order
in this phase. It is well known that bound vortex-antivortex
pairs will form in this phase. (ii) TKT < T < T�—the
intermediate-temperature pseudogap phase. In this phase,
the correlator decays exponentially,

hΔðr1ÞΔðr2Þi ∼ e−jr1−r2j=ξðTÞ: ð60Þ

In this phase, we have a nonzero modulus of the order
parameter which plays the role of a local fermion mass.
However, free vortices form and forbid chiral symmetry
breaking. (iii) T > T�—the high-temperature normal phase
with vanishing modulus of the order parameter.

B. The gap equation and phase stiffness

There are two approaches to deal with the problem of a
relativistic fermionic system in an external magnetic field.
One is the famous Schwinger approach [37] which puts the
fermion propagator in the form of the integration of the
auxiliary proper-time over a complex function, the other is
Ritus method [42] which solves Dirac equation directly and
finds the eigenfunctions and eigenvalues. For μ5 ≠ 0 the
generalization of the fermion propagator is obscure in
Schwinger approach. We therefore employ the Ritus
method to evaluate the gap equation and the phase stiffness
J. There is a good example [43] showing how the Dirac
equation with an constant external magnetic field can be
solved by using the Ritus method in 3þ 1 dimensions and
the generalization to 2þ 1 dimensions is straightforward.
In a uniform external magnetic field B, the Dirac

equation in the mean-field approximation takes the form

½iγ0∂0 − iγ1∂1 − iγ2ð∂2 þ ieBx1Þ
þ μ5γ

0γ5 −M�ψðxÞ ¼ 0. ð61Þ

Since the time dimension x0 and the space dimension x2 do
not couple with the external magnetic field, the eigenfunc-
tions should be proportional to the plane waves e�εsx0þip2x2 .
Therefore, the eigensolutions of the Dirac equation take the
form

ψþ
s ðxÞ ¼ e−iε

sx0þip2x2G

�
x1 −

p2

eB

�
us;

ψ−
s ðxÞ ¼ eiε

- sx0þip2x2G

�
x1 −

p2

eB

�
υs; ð62Þ

where x ¼ ðx0; x1; x2Þ and s ¼ � which are related to the
chirality. Here us and υs are spinors for particle and anti-
particle solutions respectively and we take their momenta to
be both p2 for convenience. The 4 × 4 matrix Gðx1 − p2

eBÞ is
related to the Landau levels. Substituting these formal
solutions into the Dirac equation, we obtain

ðεsγ0 − iγ1∂y þ γ2eByþ μ5γ
0γ5 −MÞGðyÞus ¼ 0;

ð−ε- sγ0 − iγ1∂y þ γ2eByþ μ5γ
0γ5 −MÞGðyÞυs ¼ 0; ð63Þ

where y≡ x1 − p2=ðeBÞ. To get the solutions of us and υs
we use the Ritus ansatz for the matrix GðyÞ,

ðiγ1∂y − γ2eByÞGðyÞ ¼ λGðyÞγ2: ð64Þ

Without loss of generality we can choose the matrixGðyÞ to
be diagonal and commute with other terms. Then we get the
equations for us and υs,

ðεsγ0 − λγ2 þ μ5γ
0γ5 −MÞus ¼ 0;

ð−ε- sγ0 − λγ2 þ μ5γ
0γ5 −MÞυs ¼ 0: ð65Þ

Let GðyÞ ¼ diagðg1ðyÞ; g2ðyÞ; g3ðyÞ; g4ðyÞÞ, we get
g2ðyÞ ¼ g4ðyÞ and g3ðyÞ ¼ g1ðyÞ. The functions g1ðyÞ
and g4ðyÞ are determined by the coupled equations

ð∂y þ eByÞg1ðyÞ ¼ λg4ðyÞ;
ð∂y − eByÞg4ðyÞ ¼ −λg1ðyÞ: ð66Þ

Substituting one equation into the other, we obtain two
decoupled equations,

½−∂2
y þ ðeByÞ2�g1ðyÞ ¼ ðλ2 þ eBÞg1ðyÞ;

½−∂2
y þ ðeByÞ2�g4ðyÞ ¼ ðλ2 − eBÞg4ðyÞ: ð67Þ

Then we can write λ2 ¼ λ2n ≡ 2neB with n ¼ 0; 1; 2;….
The full solution ofGðyÞ can be found by using the fact that
g1ðyÞ and g4ðyÞ must have the same value of λ2. We obtain
g1ðyÞ ¼ c1ϕnðyÞ and g4ðyÞ ¼ c4ϕn−1ðyÞ. The function
ϕnðyÞ is given by

ϕnðyÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p
�
eB
π

�
1=4

Hnð
ffiffiffiffiffiffi
eB

p
yÞ exp

�
−
1

2
eBy2

�
;

ð68Þ

where HnðzÞ denotes a Hermite polynomial of degree n.
For convenience we define ϕ−1ðyÞ ¼ 0. From Eq. (62) we
get c1 ¼ c4 ¼ 1. The diagonal matrixGðyÞ≡GnðyÞ can be
written in a compact form,

GnðyÞ ¼
1þ iγ1γ2

2
ϕnðyÞ þ

1 − iγ1γ2

2
ϕn−1ðyÞ: ð69Þ
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According to the properties of the function ϕnðyÞ, we have

X
n

GnðyÞGnðy0Þ ¼ δðy − y0Þ;
Z

dyGnðyÞGmðyÞ ¼ δnm: ð70Þ

The solutions of the eigenenergy εs ≡ εsn are given by

εsn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλn þ sμ5Þ2 þM2

q
: ð71Þ

For n ¼ 0, we have ε�0 ≡ ε0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ25 þM2

q
. At vanishing μ5, it becomes ε�n ¼ εn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2neBþM2

p
. The solutions of the

spinors us and υs can be expressed as

us ¼
1ffiffiffi
2

p

0
BBBBBB@

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εsn þ μ5 þ sλn

p

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εsn þ μ5 þ sλn

p
iMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εsnþμ5þsλn
p

sMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εsnþμ5þsλn

p

1
CCCCCCA
; υs ¼

1ffiffiffi
2

p

0
BBBBBB@

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε- sn − μ5 þ sλn

p

−s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε- sn − μ5 þ sλn

p
−iMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε- sn −μ5þsλn
p

sMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε- sn −μ5þsλn

p

1
CCCCCCA
: ð72Þ

Using these results, we obtain

usu
†
s ¼ 1

2
½εsnð1 − isγ1γ3Þ − ðμ5 þ sλnÞðγ5 þ sγ2γ0Þ þMðγ0 þ sγ5γ2Þ�;

υsυ
†
s ¼ 1

2
½ε- sn ð1 − isγ1γ3Þ þ ðμ5 þ sλnÞðγ5 þ sγ2γ0Þ −Mðγ0 þ sγ5γ2Þ�: ð73Þ

These results are useful in evaluating the fermion and pion propagators.
To evaluate the gap equation forM, we need to evaluate the fermion Green’s function. First, the retarded Green’s function

for x0 − x00 > 0 can be evaluated as

SRðx; x0Þ≡ h0jψðxÞψ̄ðx0Þj0i

¼
X
s¼�

X∞
n¼0

Z
∞

−∞

dp2

2π

1

2εsn
½ψþ

s ðxÞ�½ψþ
s ðx0Þ�†γ0

¼
X
s¼�

X∞
n¼0

Z
∞

−∞

dp2

2π

1

2εsn
e−iε

s
nðx0−x00Þþip2ðx2−x02ÞGn

�
x1 −

p2

eB

�
usu

†
sGn

�
x01 −

p2

eB

�
γ0

¼
X
s¼�

X∞
n¼0

Z
∞

−∞

dp2

2π

1

4εsn
e−iε

s
nðx0−x00Þþip2ðx2−x02Þ

�
Gn

�
x1 −

p2

eB

�
Gn

�
x01 −

p2

eB

�
½εsnγ0 þ ðμ5 þ sλnÞγ0γ5 þM�

þGn

�
x1 −

p2

eB

�
γ1Gn

�
x01 −

p2

eB

�
ðγ1Þ†½εsnγ0 − ðμ5 þ sλnÞγ0γ5 −M�ð−isγ1γ3Þ

�
: ð74Þ

Therefore, the Feynman Green’s function is given by

SFðx; x0Þ ¼
X
s¼�

X∞
n¼0

Z
∞

−∞

dp0

2π

Z
∞

−∞

dp2

2π

i
2½p2

0 − ðεsnÞ2�
e−ip0ðx0−x00Þþip2ðx2−x02Þ

×

�
Gn

�
x1 −

p2

eB

�
Gn

�
x01 −

p2

eB

�
½p0γ

0 þ ðμ5 þ sλnÞγ0γ5 þM�

þ Gn

�
x1 −

p2

eB

�
γ1Gn

�
x01 −

p2

eB

�
ðγ1Þ†½p0γ

0 − ðμ5 þ sλnÞγ0γ5 −M�ð−isγ1γ3Þ
�
: ð75Þ
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At finite temperature, we replace p0 → iων ≡ ið2νþ 1ÞπT and
R∞
−∞

dp0

2π → T
P∞

ν¼−∞. Then the gap equation at finite
temperature is given by the self-consistent Green’s function relation

N
G
M ¼ TrSFðx; xÞ ¼ N

X
s¼�

X∞
n¼0

T
X∞
ν¼−∞

Z
∞

−∞

dp2

2π

M
2½ðiωνÞ2 − ðεsnÞ2�

Tr

�
Gn

�
x1 −

p2

eB

�
Gn

�
x1 −

p2

eB

��
: ð76Þ

Obviously, the gap equation is essentially the extreme condition ∂Ω=∂M ¼ 0. Completing the integral over p2 and the
summation over the Matsubara frequency iων and employing the same regularization method as in Sec. II, we obtain

1

N
∂Ω
∂M ¼ M2

π
−
MM0

π
sgnðG −GcÞ −

eB
2π

ηf3=2ðηÞffiffiffi
π

p −
eB
4π

X
s¼�

X∞
n¼0

αnM

�
1 − 2nFðεsnÞ

εsn
−

1

εn

�
¼ 0; ð77Þ

where nFðxÞ ¼ 1=ð1þ eβxÞ is the Fermi distribution function. Note that unlike the zero temperature case, at finite
temperature M ¼ 0 is always an extreme of the effective potential, i.e.,

1

N
∂Ω
∂M

				
M¼0

¼ 0: ð78Þ

To evaluate the phase stiffness, we need to evaluate the inverse of the pion propagator and make the small momentum
expansion. We have

J ¼ M2 lim
k→0

D−1
π ðk0 ¼ 0;kÞ

k2
: ð79Þ

The inverse of the pion propagator in coordinate representation can be evaluated as

D−1
π ðx; x0Þ ¼ N

G
δðx − x0Þ − iTr½γ5SFðx; x0Þγ5SFðx0; xÞ�

¼ N
G
δðx − x0Þ þ i

2

X
s;t¼�

X∞
n;m¼0

Z
∞

−∞

dp0

2π

Z
∞

−∞

dp0
0

2π

Z
∞

−∞

dp2

2π

Z
∞

−∞

dp0
2

2π

e−iðp0−p0
0
Þðx0−x00Þþiðp2−p0

2
Þðx2−x02Þ

½p2
0 − ðεsnÞ2�½p02

0 − ðεtmÞ2�

× ½M2 − p0p0
0 þ ðμ5 þ sλnÞðμ5 þ tλmÞ�

�
ϕn

�
x1 −

p2

eB

�
ϕn

�
x01 −

p2

eB

�
ϕm

�
x1 −

p0
2

eB

�
ϕm

�
x01 −

p0
2

eB

�

þ ϕn−1

�
x1 −

p2

eB

�
ϕn−1

�
x01 −

p2

eB

�
ϕm−1

�
x1 −

p0
2

eB

�
ϕm−1

�
x01 −

p0
2

eB

�

þ stϕn

�
x1 −

p2

eB

�
ϕn−1

�
x01 −

p2

eB

�
ϕm

�
x1 −

p0
2

eB

�
ϕm−1

�
x01 −

p0
2

eB

�

þ stϕn−1

�
x1 −

p2

eB

�
ϕn

�
x01 −

p2

eB

�
ϕm−1

�
x1 −

p0
2

eB

�
ϕm

�
x01 −

p0
2

eB

��
: ð80Þ

The momentum representation of the inverse pion propagator can be obtained by Fourier transformation. We note that
D−1

π ðx; x0Þ should only be a function of x − x0. Then we obtain

D−1
π ðk0;kÞ ¼

Z
d3xei½k0ðx0−x00Þ−k1ðx1−x01Þ−k2ðx2−x02Þ�D−1

π ðx − x0Þ: ð81Þ

After a lengthy calculation, the phase stiffness at finite temperature can be expressed as

J
N

¼ M2

8π

X
s;t¼�

X∞
n;m¼0

T
X∞
ν¼−∞

ðiωνÞ2 −M2 − ðμ5 þ sλnÞðμ5 þ tλmÞ
½ðiωνÞ2 − ðεsnÞ2�½ðiωνÞ2 − ðεtmÞ2�

× ½ð ffiffiffi
n

p þ st
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
Þ2δm;n−1ðαn − 1Þ þ ð ffiffiffi

n
p þ st

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Þ2δm;nþ1 − 4nð1þ stÞδmnðαn − 1Þ − δmnδn0�: ð82Þ

GAOQING CAO, LIANYI HE, AND PENGFEI ZHUANG PHYSICAL REVIEW D 90, 056005 (2014)

056005-12



Completing the summation over t and m and the summation over the Matsubara frequency, we finally obtain

J
N

¼ M2

4π

μ25 − eB
2μ25 − eB

1

ε0
tanh

ε0
2T

−
M2

8π

X
s¼�

λ1 þ sμ5
λ1 þ 2sμ5

1

εs1
tanh

εs1
2T

þ M2

16π

X
s¼�

X∞
n¼1

�
2nðeBÞ2 þ eBμ5ð2μ5 þ sλnÞ − 8nμ25ðμ5 þ sλnÞ2

ðeBÞ2 − 4μ25ðμ5 þ sλnÞ2
2

εsn
tanh

εsn
2T

−
ðμ5 þ sλnþ1Þ½2ð2nþ 1Þμ5 þ sλnþ1�

2μ25 þ 2sμ5λnþ1 þ eB
1

εsnþ1

tanh
εsnþ1

2T
−
ðμ5 þ sλn−1Þ½2ð2n − 1Þμ5 − sλn−1�

2μ25 þ 2sμ5λn−1 − eB
1

εsn−1
tanh

εsn−1
2T

�
: ð83Þ

Using the same method, the sigma meson propagator
Dσðk0;kÞ can be evaluated. The result for k ¼ 0 and
T ¼ 0 has been presented in Sec. II.

C. Results for μ5 ¼ 0

At vanishing chiral imbalance, μ5 ¼ 0, we have

1

N
∂Ω
∂M ¼ M2

π
−
MM0

π
sgnðG −GcÞ −

eB
2π

ηf3=2ðηÞffiffiffi
π

p

þ eB
π

nFðMÞ þ 2eB
π

X∞
n¼1

M
εn

nFðεnÞ: ð84Þ

Unlike the zero temperature case, at finite but low
temperature T < T�, the gap equation ∂Ω=∂M ¼ 0 has
two solutions M ¼ 0 and M ≠ 0. The solution M ¼ 0
corresponds to a maximum. At T ¼ T�, the two extremes
merge. The temperature T� is then determined by

1

N
∂2Ω
∂M2

				
M¼0

¼ 0: ð85Þ

We obtain

γ −
1

gB
sgnðG −GcÞ ¼

1

4t�
−
X∞
n¼1

ffiffiffi
2

n

r
1

e
ffiffiffiffi
2n

p
=t� þ 1

; ð86Þ

where t� ¼ T�=
ffiffiffiffiffiffi
eB

p
and

γ ¼ lim
η→0

2η2f1=2ðηÞ − f3=2ðηÞ
2

ffiffiffi
π

p ≃ 1.0326: ð87Þ

In the strong magnetic field limit, we have

lim
B→∞

T�ffiffiffiffiffiffi
eB

p ¼ 0.2411: ð88Þ

The phase stiffness at μ5 ¼ 0 can be simplified to

J ¼ N
4π

M tanh
M
2T

: ð89Þ

The KT transition temperature TKT is determined by the
equation

M
TKT

tanh
M

2TKT
¼ 8

N
ð90Þ

together with the gap equation

1

N
∂Ω
∂M

				
T¼TKT

¼ 0: ð91Þ

For N → ∞, we have MðT ¼ TKTÞ → 0 and therefore the
KT transition temperature coincides with T�. For finite N
we obtain

MðT ¼ TKTÞ ¼ x0ðNÞTKT; ð92Þ

where x0ðNÞ is the solution of the equation
x tanhðx=2Þ ¼ 8=N. Then the KT transition temperature
is determined by

x0tKT −
1

gB
sgnðG −GcÞ −

1

2
ffiffiffi
π

p f3=2ðx0tKTÞ

¼ −
X
n¼0

αnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20t

2
KT þ 2n

p 1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0
t2KTþ2n

p
=tKT þ 1

; ð93Þ

where tKT ¼ TKT=
ffiffiffiffiffiffi
eB

p
. In the strong magnetic field limit,

tKT also approaches a constant depending on the value of
N. Therefore, with increasing magnetic field, the domain of
the pseudogap phase TKT < T < T� is enlarged.
The numerical results for T� and the KT transition

temperature TKT for N ¼ 3 and N ¼ 10 are shown in
Fig. 3. Note that T� is independent of N. We find that for a
given value of N, the pseudogap domain TKT < T < T�
becomes larger and larger with increasing magnetic field.

D. Results for μ5 ≠ 0

For nonvanishing μ5, the effective potential at B ¼ 0 and
T ¼ 0 can be evaluated as
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1

N
ΩðMÞ ¼ 1

N
ΩðM; μ5 ¼ 0Þ þ

Z
∞

0

pdp
2π

h
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − μ5Þ2 þM2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ μ5Þ2 þM2

q i
:

ð94Þ

The fermionic excitation spectra
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� μ5Þ2 þM2

p
mean

that the chiral imbalance μ5 actually plays the role of a
Fermi surface of left- or right-handed fermions. Completing
the integral over p, we obtain

1

N
ΩðMÞ ¼ −

M0M2

2π
sgnðG−GcÞ þ

ð2M2 − μ25Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q
6π

−
μ5M2

2π
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ μ25

q
þ μ5

M
: ð95Þ

For μ5 ≠ 0, we find that

1

N
∂Ω
∂M

				
M¼0

¼ 0;
1

N
∂2Ω
∂M2

				
M¼0

¼ −∞: ð96Þ

Therefore, the minimum of the effective potential is always
located at M ≠ 0, no matter G > Gc or G < Gc. The
numerical results are shown in Fig. 3. It is obvious that
μ5 also catalyzes dynamical chiral symmetry breaking
because of the Fermi surface effect. We note that the above
result is similar to the chemical potential effect on the
superconducting phenomenon of Dirac electrons in planar
condensed matter systems [38].
Now we turn on the magnetic field. The temperature T�

is determined by

γ −
1

gB
sgnðG −GcÞ

¼ 1

2δ
tanh

δ

2t�
þ
X∞
n¼1

δ2ffiffiffiffiffiffi
2n

p ð2n − δ2Þ

− 2
X∞
n¼1

ffiffiffiffiffiffi
2n

p þ ffiffiffiffiffiffi
2n

p
e

ffiffiffiffi
2n

p
=t� cosh δ

t� þ δe
ffiffiffiffi
2n

p
=t� sinh δ

t�

ð2n − δ2Þðe
ffiffiffiffi
8n

p
=t� þ 2e

ffiffiffiffi
2n

p
=t� cosh δ

t� þ 1Þ
;

ð97Þ

where δ ¼ μ5=
ffiffiffiffiffiffi
eB

p
. Note that the singularities at δ ¼ ffiffiffiffiffiffi

2n
p

are removable. The KT transition temperature TKT is
determined by solving the equation TKT ¼ πJ=2 together
with the gap equation Eq. (74). We shall focus on the case
G > Gc and N ¼ 3. The result for G < Gc is similar
because μ5 catalyzes dynamical chiral symmetry breaking.
The numerical results of T�, TKT, and MKT ≡MðT ¼

TKTÞ for μ5=M0 ¼ 5 and μ5=M0 ¼ 10 are shown in Fig. 4.
We find that there exists a regime of the magnetic field
where these quantities first decrease and then increase, in
contrast to the case of μ5 ¼ 0 where these quantities always
increase with

ffiffiffiffiffiffi
eB

p
. This phenomenon is more visible for

the KT transition temperature TKT and MKT. The decreas-
ing behavior is therefore confusing since we have shown
that either B ≠ 0 or μ5 ≠ 0 enhances dynamical chiral
symmetry breaking.
To understand the decreasing behavior or inverse mag-

netic catalysis of the transition temperatures, we note that
the chiral imbalance μ5 plays the role of an effective Fermi
surface. It is well known that the combined effect of Fermi
surface and magnetic field leads to the famous de Haas–van
Alphen (dHvA) oscillation [35]. The dHvA effect was first
found in nonrelativistic systems such as metallic materials.
It was also found to exist in relativistic dense matter, such
as dense quark matter [10,35,44,45]. In the present system,
we only find a minimum rather than multiple oscillations.
As we will show in the following, this is because only the
first excited Landau level is effective for the dHvA effect in
the present system.
To understand the dHvA effect quantitatively in the

present system, we note that the dHvA effect is dominated
by the terms which contain the negative branch of the
excitation spectra, i.e.,

ε−n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð

ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
− μ5Þ2 þM2

q
; ð98Þ

with n ≥ 1. The dHvA oscillations are expected to occur
when

ffiffiffiffiffiffi
eB

p
∼ μ5=

ffiffiffiffiffiffi
2n

p
. However, we find that the oscil-

lations corresponding to n ≥ 2 are absent and only the one
corresponding to n ¼ 1 exists in the present system. To
understand this fact, we discuss three regimes of

ffiffiffiffiffiffi
eB

p
.

(i) Weak magnetic field. This is roughly the regime
0 <

ffiffiffiffiffiffi
eB

p
=μ5 < 1=

ffiffiffi
2

p
. In this regime we expect that

the Landau levels with n ≥ 2 will induce dHvA
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FIG. 3. The dynamical fermion mass M (scaled by M0) as a
function of μ5=M0 for G > Gc and G < Gc.
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oscillations. However, μ5 dominates the behavior of
this weak magnetic field regime. As a result, we
obtain a plateau structure of TKT, MKT, and T� in
this regime.

(ii) Intermediate magnetic field. It corresponds roughly
to the regime 1=

ffiffiffi
2

p
<

ffiffiffiffiffiffi
eB

p
=μ5 < 2. We find that

the first excited Landau level becomes effective and
induces dHvA oscillation. The excitation spectrum
of the first excited Landau level is ε−1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffi

2eB
p

− μ5Þ2 þM2

q
. Because of the dHvA effect

induced by the interplay between the magnetic field
and the Fermi surface, the KT transition temperature
(as well as MKT and T�) first decreases and then
increases, inducing a minimum at the middle of
this regime. The dHvA oscillation is more visible
for the KT transition temperature, since it depends
not only on the gap equation but also on the phase
stiffness.

(iii) Strong magnetic field. At large
ffiffiffiffiffiffi
eB

p
, roughly

corresponding to
ffiffiffiffiffiffi
eB

p
=μ5 > 2, only the lowest

Landau level is effective and the magnetic catalysis
effect dominates the behavior of the system. As a
result, the KT transition temperature becomes nearly
an increasing function of

ffiffiffiffiffiffi
eB

p
. In the strong

magnetic field limit we have TKT ∝
ffiffiffiffiffiffi
eB

p
, because

the influence of μ5 can be safely neglected.
In this section, we have studied the influence of a

constant external magnetic field on the KT transition
temperature. In the absence of chiral imbalance μ5, we
find that the KT transition temperature TKT as well as the
mass melting temperature T� is a monotonically increasing
function of

ffiffiffiffiffiffi
eB

p
. For a given value of N, the pseudogap

region becomes larger for stronger magnetic field. In the
presence of chiral imbalance μ5, however, the KT transition
temperature TKT as well as the mass melting temperature
T� goes nonmonotonically with

ffiffiffiffiffiffi
eB

p
. This behavior is

similar to the inverse magnetic catalysis of the QCD chiral
transition temperature [18,19]. In the present planar NJL
model, it is evident that the nonmonotonic behavior of the
KT transition temperature is actually a de Haas–van Alphen
oscillation phenomenon induced by the interplay between
the magnetic field and the chiral imbalance.

IV. SUMMARY

In the first part of this work we investigated the
collective modes associated with the dynamical chiral
symmetry breaking in a constant magnetic field in the
(2þ 1)-dimensional Nambu–Jona-Lasinio model with con-
tinuous U(1) chiral symmetry. We introduced a self-
consistent scheme to evaluate the propagators of the
collective modes at the leading order in 1=N. The scheme
is proper to study the next-to-leading order corrections in
1=N. We analytically proved that the sigma mode is always
a lightly bound state with its mass coincident with the two-
fermion threshold for arbitrary strength of the magnetic
field. Because the dynamics of the collective modes is
always 2þ 1 dimensional, the finite temperature transition
should be of the KT type for finite N.
We also investigated the KT transition temperature TKT

as well as the mass melting temperature T� in a constant

FIG. 4 (color online). Dependence of the mass melting temper-
ature T� (a), KT transition temperature TKT (b), and the effective
mass MKT at T ¼ TKT (c) on the magnetic field. T�, TKT, and
MKT are all scaled by their values at B ¼ 0. The magnetic field
strength is denoted by

ffiffiffiffiffiffi
eB

p
=μ5. The black solid lines and the red

dashed lines show the results for μ5=M0 ¼ 5 and μ5=M0 ¼ 10,
respectively.
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magnetic field and with an axial chemical potential μ5 in
the second part of this work. The expression of the phase
stiffness was derived by using the Ritus method. For
vanishing chiral asymmetry μ5, we found that the pseudo-
gap region TKT < T < T� is enlarged with increasing
strength of the magnetic field. For nonzero μ5, we showed
that it can lead to inverse magnetic catalysis of the KT
transition temperature in 2þ 1 dimensions. This phenome-
non can be attributed to the de Haas–van Alphen oscillation
induced by the interplay between the magnetic field and
Fermi surface. These results are also relevant to the
superconducting phenomenon of Dirac electrons in planar
condensed matter systems, such as graphene layers.
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