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The contribution of positronium to the electron g-2 (ae) has been computed in G. Mishima,
arXiv:1311.7109, and found to be of the same order of α as that of five-loop perturbative QED. We
confirm this result and correct a few errors in its first derivation. As recently calculated in K. Melnikov,
A. Vainshtein, and M. Voloshin, arXiv:1402.5690, a continuum nonperturbative contribution to ae cancels
one-half of the positronium one. We show by explicit calculation that the remaining half is already included
in the five-loop perturbative result. We also show that it arises from the class I(i) of five-loop diagrams
containing only one closed electron loop.
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I. INTRODUCTION

The leading contribution of positronium, the eþe− bound
state, to the anomalous magnetic moment of the electron
ðaeÞ has been computed in Ref. [1]. The result of this
calculation,

aPe ¼
α5

4π
ζð3Þ

�
8 ln 2 −

11

2

�
¼ 0.89 × 10−13; ð1Þ

where ζð3Þ ¼ 1.202… and α is the fine-structure constant,
is of the same order of α as the perturbative QED five-loop
contribution að10Þe ¼ 9.16ð58Þðα=πÞ5 [2]. This bound-state
contribution is also comparable with the electroweak one,
aEWe ¼ 0.2973ð52Þ × 10−13 [3,4], and with the present
experimental uncertainty of ae, 2.8 × 10−13 [5]. It seems
reasonable to expect a reduction of this experimental error
to a part in 10−13 (or better) in ongoing efforts to improve
the measurement of the electron (and positron) anomalous
magnetic moment [6]. Work is also in progress to reduce
the error induced by the uncertainty of α in the theoretical
prediction for ae [7].
A test of the electron g-2 at the level of 10−13 (or below)

is therefore a goal that may be achieved not too far in the
future with ongoing experimental work. This will bring ae
to play a pivotal role in probing new physics [8]. It will also
provide the opportunity to test whether the longstanding
3 − 4σ discrepancy Δaμ in the muon g-2 manifests itself in
the electron one [8,9]. In fact, as shown in Ref. [8], in a
large class of new-physics models, new contributions to
lepton magnetic moments scale with the square of the
lepton masses, so that the anomaly in Δaμ suggests a

new-physics effect in ae of ð0.7� 0.2Þ × 10−13, a value
comparable with aPe . A check of Eq. (1) is therefore clearly
warranted. This is presented in Sec. II, where we confirm
the result of Eq. (1) and correct a few errors in its derivation
in Ref. [1].
Recently, the authors of Ref. [10] pointed out the

presence of the continuum nonperturbative contribution

aeðvpÞcont;np ¼ −
jαj5
8π

ζð3Þ
�
8 ln 2 −

11

2

�
ð2Þ

arising from the region right above the s ¼ 4m2 threshold,
which corresponds to eþe− scattering states with the
exchange of Coulomb photons. Comparing Eqs. (1) and
(2) they showed that this additional Oðα5Þ nonperturbative
contribution cancels one-half of that of the positronium
poles. The question is therefore how to deal with the
remaining half: should one add it to the perturbative five-
loop QED result of Ref. [2]? The authors of Ref. [10]
argued that this remaining aPe=2 term is already contained in
the perturbative Oðα5Þ contribution to ae computed in
Ref. [2] and, therefore, it should not be added to it. On the
other hand, one of the authors of the five-loop calculation in
[2] has recently claimed that positronium contributes to ae
only through diagrams of Oðα7Þ or higher [11]. Also, on
more general grounds [12], Ref. [13] argued that aPe simply
does not exist.
In order to clarify this point, in Sec. III we first use the

closed form for the QED vacuum polarization function near
the s ¼ 4m2 threshold of Refs. [12,14] to verify that the
total (positronium poles plus continuum) nonperturbative
contribution to ae arising from the threshold region is equal
to aPe=2. Then, using the analytic QED vacuum polarization
at four-loop recently computed in Ref. [15], we show
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explicitly that the perturbative five-loop calculation of ae of
Ref. [2] does indeed contain the remaining term aPe=2, in
agreement with the arguments of Ref. [10]. Conclusions are
drawn in Sec. IV.

II. POSITRONIUM POLES

Let us consider QED with only electrons and photons.
The vacuum polarization tensor is given by

iΠμνðqÞ ¼ iΠðq2Þðgμνq2 − qμqνÞ

¼
Z

d4xeiqxh0jTfjμðxÞjνð0Þgj0i; ð3Þ

where jμðxÞ ¼ −eψ̄ðxÞγμψðxÞ is the electromagnetic cur-
rent. In perturbative calculations, Πðq2Þ is analytic in the
complex q2 plane except for cuts along the positive real
axis beginning at q2 ¼ ð2lmÞ2, where m is the electron
mass and l ¼ 0; 1; 2;…. The q2 ¼ 0 branch point ðl ¼ 0Þ is
the threshold value for production of three (or a higher odd
number of) real photons, while l ¼ 1 corresponds to the
threshold for the creation of a real eþe− pair by a virtual
photon.
An electron-positron bound state will appear as an

additional pole singularity in Πðq2Þ below the q2 ¼
ð2mÞ2 branch point. In fact, there is an infinite number
of such poles, each corresponding to an energy state of
positronium. In any of its n discrete states (n ¼ 1; 2; 3;… is
the principal quantum number), positronium may be
regarded as an (unstable) particle with mass
Mn ¼ 2m − En, where En > 0 is the binding energy. To
leading order in α, En ¼ mα2=4n2 [16]. To compute the
leading-order contribution of positronium to ae we can use
the approximationMn ≈ 2m. Positronium will be treated as
a two-particle nonrelativistic bound state.
To determine the contribution of positronium to ΠμνðqÞ

in the neighborhood of its poles, we write explicitly the
time-ordered product appearing in Eq. (3)

h0jTfjμðxÞjνð0Þgj0i ¼ θðx0Þh0jjμðxÞjνð0Þj0i
þ θð−x0Þh0jjνð0ÞjμðxÞj0i ð4Þ

and compute h0jjμðxÞjνð0Þj0i by inserting between the two
currents the completeness relation

ð1ÞP ¼
X
n;σ

Z
d3p
ð2πÞ3

1

2En;p
jn;p; σihn;p; σj ð5Þ

for the positronium one-particle states

jn;p; σi ¼
Z

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2En;p

2Eþ2E−

s
~ϕn;pðkÞjkþ;k−; σi: ð6Þ

In Eq. (5), p andEn;p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

n

p
are the three-momentum

and energy of positronium, and σ indicates its four spin

states: three spin-1 states (triplet) and one spin-0 state
(singlet). In Eq. (6), positronium states have been expressed
as a linear superposition of free eþ and e− states with three-
momenta k�, respectively, and energies E� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� þm2

p
,

with p ¼ kþ þ k− and k ¼ ðkþ − k−Þ=2. This superposi-
tion is weighted by the momentum-space Coulomb wave
function ~ϕn;pðkÞ, which gives the amplitude for finding a
particular value of k for a positronium state n with total
momentum p. In the nonrelativistic bound-state approxi-
mation employed in this paper, jkj ∼OðαmÞ ≪ m [17,18].
Our result for the positronium contribution to

h0jjμðxÞjνð0Þj0i is

h0jjμðxÞjνð0Þj0iP ¼ −16πα
X
n

jϕn;0ð0Þj2
Mn

×
Z

d3p
ð2πÞ3

e−ipx

2En;p
ðM2

ngμν −pμpνÞ; ð7Þ

where pμ ¼ ðEn;p;pÞ and ϕn;0ð0Þ is the position-space
wave function at the origin in the rest frame of positronium.
Our result in Eq. (7) differs from that in Eq. (6) of Ref. [1].
Ours has an additional factor

ξn;p ¼ −
Mn

En;p
: ð8Þ

Apart from the sign difference, this factor ξn;p renders our
expression in Eq. (7) Lorentz invariant (we note that, in the
jkj ≪ m limit, the ratio ϕn;0ð0Þ=

ffiffiffiffiffiffiffi
Mn

p
is a Lorentz scalar

under boosts with momentum p). On the contrary, the result
for the positronium contribution to h0jjμðxÞjνð0Þj0i of
Ref. [1] is not Lorentz invariant.
Contrary to Ref. [1], Eq. (7) has been obtained summing

over all spin states of positronium. However, the spin-0
state (singlet) does not contribute because, in the non-
relativistic bound-state approximation employed, the
expression for h0jjμðxÞjνð0Þj0iP has no angular depend-
ence. The eþe− bound state is therefore in an s wave with
zero orbital angular momentum, and angular momentum
conservation requires that the total spin of the bound state is
equal to 1 (triplet).
The leading contribution of positronium to Πðq2Þ can be

immediately obtained from Eqs. (4) and (7) using the
integral representation θðtÞ ¼ −i

R ðdω=2πÞeiωt=ðω − iϵÞ
for the step function (ϵ > 0). The result is

ΠPðq2Þ ¼ −16πα
X
n

jϕn;0ð0Þj2
Mn

1

q2 −M2
n þ iϵ

: ð9Þ

Once again, our Eq. (9) differs from Eq. (8) in Ref. [1] by a
factor ξn;q, which renders our result for ΠPðq2Þ Lorentz
invariant, while that in [1] is not. Also, the nonrelativistic
limit En;q → Mn taken in [1] to compute the contribution of
ΠPðq2Þ to ae (which should not be confused with the
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nonrelativistic bound-state approximation jkj ≪ m) is not
tenable. The sign of the residues of the poles in our Eq. (9),

Zn ¼ −16πα
jϕn;0ð0Þj2

Mn
< 0; ð10Þ

is in agreement with the sign of the spectral density of the
Källén-Lehmann representation for h0jTfjμðxÞjνð0Þgj0i
[19]. The leading contribution of positronium to the
imaginary part of Πðq2Þ is given by

ImΠPðq2Þ ¼ −π
X
n

Znδðq2 −M2
nÞ: ð11Þ

This result differs from that reported in Ref. [14], ours
being twice theirs, while it agrees with that of Ref. [20]
obtained via the nonrelativistic Coulomb Green’s function
[12,21–23] (see also Eq. (22) below).
The contribution to ae of the diagram in Fig. 1, con-

taining the vacuum polarization insertion in the internal
photon line of the one-loop electron vertex diagram, can be
computed using a (subtracted) dispersion relation for the
vacuum polarization. The result can be cast in the form
[19,24,25]

aeðvpÞ ¼
α

π2

Z
∞

0

ds
s
ImΠðsþ iϵÞKðsÞ; ð12Þ

where

KðsÞ ¼
Z

1

0

dx
x2ð1 − xÞ

x2 þ ð1 − xÞðs=m2Þ ð13Þ

is a positive function. The iϵ prescription indicates that, in
correspondence of a cut, the function ImΠðsÞ must be
evaluated right above it, at sþ iϵ. Equation (12) differs
from Eq. (13) of Ref. [1] by an overall minus sign. This sign
can be checked, for example, inserting in Eq. (12) the
imaginary part of the second-order (one-loop) contribution
to Πðq2Þ

ImΠð2Þðsþ iϵÞ¼θðs−4m2Þα
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

s

r �
1þ2m2

s

�
: ð14Þ

One obtains að4Þe ðvpÞ ¼ ð119=36 − π2=3Þðα=πÞ2, the well-
known positive result for the two-loop QED contribution to
ae originated by the one-loop eþe− contribution to the
photon self-energy (see e.g. [25,26]). Similarly, including
hadronic effects, the leading-order hadronic contribution to

ae can be obtained via the dispersive integral in Eq. (12)
with ImΠhðsÞ ¼ sσhðsÞ=4πα, where σhðsÞ is the total cross
section for eþe− annihilation into any hadronic state (with
vacuum polarization and initial-state QED corrections
subtracted off), leading to aHLOe ¼ 18.66ð11Þ × 10−13

[25,27], once again a positive contribution.
The leading contribution of positronium to ae, depicted

in Fig. 2, can be immediately derived inserting Eq. (11) into
the integral in Eq. (12). Using the explicit expression for the
position-space wave function ϕn;0ð0Þ at the origin in the
rest frame of positronium [16]

jϕn;0ð0Þj2 ¼
ðmαÞ3
8πn3

; ð15Þ

the approximation Mn ≈ 2m [thus neglecting terms of
Oðmα2Þ], and Kð4m2Þ¼ 8 ln2−11=2, we obtain Eq. (1).
We note that the Riemann zeta function ζð3Þ ¼ P∞

n¼1 1=n
3

is due to the sum over the residues of the poles. Equation (1)
can equivalently be computed by direct integration of the
Feynman diagram in Fig. 1 with the subtracted vacuum
polarization function

ΠPðq2Þ − ΠPð0Þ ¼
X
n

Zn

M2
n

q2

q2 −M2
n þ iϵ

ð16Þ

without employing its dispersion representation.
Our result for aPe agrees with that of Ref. [1]. In fact, the

sign error in the calculation of h0jjμðxÞjνð0Þj0i in [1] is
compensated by the incorrect sign in Eq. (13) of that
reference. Also, as we discussed earlier, the erroneous
additional factor En;q=Mn present in Eq. (8) of Ref. [1] was
set to one taking the incorrect limit En;q → Mn. In spite of
these shortcomings, Ref. [1] provides the correct contri-
bution of positronium to the g-2 of the electron and was the
first, to our knowledge, to compute it.

III. THRESHOLD CONTRIBUTION

In this section we study the nonperturbative contribution
to aeðvpÞ arising from the region near the electron-positron
threshold, both below and above q2 ¼ 4m2, and discuss its
relation with perturbative QED results.
Let us start considering the vacuum polarization function

close to q2 ≈ 4m2 given by [12,14,20]

FIG. 1. Leading vacuum polarization contribution to ae. FIG. 2 (color online). Leading contribution of positronium toae.
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Πthrðq2Þ ¼ Πð2Þ
thr ðq2Þ þ Πð4Þ

thr ðq2Þ þ AðβÞ; ð17Þ
where

Πð2Þ
thr ðq2Þ ¼ α

�
8

9π
þ i
2
β

�
; ð18Þ

Πð4Þ
thr ðq2Þ¼ α2

�
1

4π2

�
3−

21

2
ζð3Þ

�
þ11

32
−
3

4
ln2−

1

2
lnð−iβÞ

�
;

ð19Þ
AðβÞ ¼ −

α2

2

�
γ þ ψ

�
1 −

iα
2β

��
; ð20Þ

γ ¼ 0.577… is Euler’s constant, ψðzÞ ¼ d lnΓðzÞ=dz is the
digamma function, and β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=q2

p
(for q2 > 4m2,

β corresponds to the velocity of the electron and the

positron in their c.m. frame). The functions Πð2Þ
thr ðq2Þ and

Πð4Þ
thr ðq2Þ are the leading terms of the one- and two-loop

functions Πð2Þðq2Þ and Πð4Þðq2Þ, respectively, in the non-
relativistic limit β → 0. For example, Eq. (14) shows that
the leading term of ImΠð2Þðq2Þ in the limit β → 0 is αβ=2,
in agreement with Eq. (18). The function AðβÞ, obtained via
the nonrelativistic Coulomb Green’s function, resums the
nonrelativistic vacuum polarization diagrams with the
exchange of two or more photons between the electron-
positron pair, therefore corresponding to the sum of the
leading contributions for β → 0 of all vacuum polarization
diagrams with three or more loops [28]. For jβj≲ α, AðβÞ is
of Oðα2Þ, whereas for jβj ≫ α it contains terms of Oðα3Þ
and higher, as it can be immediately seen expanding it for
jβj > α=2,

AðβÞ ¼ α2

2

X∞
k¼1

ζðkþ 1Þ
�
iα
2β

�
k
: ð21Þ

Remarkably, the function AðβÞ catches the threshold
effects both above and below q2 ¼ 4m2. In fact, as the
digamma function ψðzÞ has simple poles at z ¼ 0;−1;
−2;…, AðβÞ has poles at β ¼ iα=2n which, to leading
order in α, correspond to q2 ¼ M2

n, the energy states of
positronium. Developing the Laurent expansion of Eq. (20)
about the positronium poles and selecting the imaginary
part of Πthrðq2Þ for all values of q2, one obtains [20]

ImΠthrðq2Þ ¼ 16π2α
X
n

jϕn;0ð0Þj2
Mn

δðq2 −M2
nÞ

þ θðβÞ πα2=2

1 − e−πα=β
: ð22Þ

The first line of Eq. (22) agrees with the contribution of the
positronium poles to ImΠðq2Þ in Eq. (11). The second line,
which provides the continuum contribution, is the
Sommerfeld factor.
With Πthrðq2Þ at our disposal, we will now follow an

argument similar to one in [10] to verify that the total
(positronium poles plus continuum) nonperturbative con-
tribution to the electron g-2 arising from the threshold

region is equal to aPe=2. Starting from aeðvpÞ in Eq. (12),
this contribution is given by

athre ðvpÞ¼ α

π2

Z
q2
0

M2
1

ds
4m2

Im

�
AðβÞ− iπ2α3

24β

�
Kð4m2Þ; ð23Þ

where M1 ¼ 2m − E1 is the energy of the positronium
ground state and q20 > 4m2 corresponds to β0 ¼ βðq20Þwith
πα ≪ β0 ≪ 1. With these integration limits, athre ðvpÞ
catches the contribution of the entire threshold region.
The expression in braces in Eq. (23) is Πthrðq2Þ subtracted
of the OðαÞ, Oðα2Þ, and Oðα3Þ terms of its perturbative
expansion [see Eqs. (17) and (21)]; this subtracted quantity
selects the nonperturbative contribution of the threshold
region, which arises at Oðα4Þ. Equation (23) can be split
into its poles and continuum parts, and, using Eq. (22), can
be written in the form (note that β is imaginary at the poles)

athre ðvpÞ ¼ α

π2
Kð4m2Þ

�Z
4m2

M2
1

ds
4m2

ImAðβÞ

þ
Z

β0

0

2βdβ

�
πα2=2

1 − e−πα=β
−
αβ

2
−
πα2

4
−
π2α3

24β

��
:

ð24Þ
The function AðβÞ has branch points at q2 ¼ 0 and 4m2

and, as discussed above, simple poles at q2 ¼ M2
n.

Employing a dispersion relation for the real part of
AðβÞ, Eq. (24) can be expressed in terms of ReAðβÞ at
jq2j → ∞, i.e. β → 1. To leading order in α we obtain

athre ðvpÞ ¼ −
α

π
Kð4m2ÞReAð1Þ: ð25Þ

This very simple formula can be immediately evaluated
using Eq. (21) at leading order. The result is

athre ðvpÞ ¼ α5

8π
ζð3ÞKð4m2Þ ¼ aPe

2
: ð26Þ

This consistency check agrees with Eqs. (21) and (25) of
Ref. [10], and confirms that the total contribution of the
threshold region to aeðvpÞ is equal to the sum of the poles’
contribution in Eq. (1) and the continuum one in Eq. (2).
We will now show that the above derived threshold

contribution athre ðvpÞ ¼ aPe=2 is already included in the
usual perturbative QED calculations of Refs. [2,15]. To this
end, we use the explicit expressions for Πð8Þðq2Þ, the QED
vacuum polarization function at four loops recently com-
puted in Ref. [15]. The authors provide expansions for the
low-energy, high-energy, and threshold regions. In particu-
lar, in the threshold region Πð8Þðq2Þ can be written as

Πð8Þðq2Þ ¼
X∞
k¼−2

Πð8Þ
k ðq2Þβk: ð27Þ

The five-loop QED contribution to ae arising from the
insertion of the eight-order (four-loop) vacuum polarization
in the photon line of the second-order vertex diagram has
been computed via the formula [29,30]
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að10Þe ðvpÞ ¼ −
α

π

Z
1

0

dxð1 − xÞΠð8Þ
�
−
m2x2

1 − x

�
: ð28Þ

If we select the first term in the expansion of Πð8Þðq2Þ in
powers of β given by Eq. (27), and replace in it
1=β2 ¼ x2=½x2 þ 4ð1 − xÞ�, we obtain

að10Þe ðvpÞ¼−
α

π

Z
1

0

ð1−xÞ
�

x2Πð8Þ
−2

x2þ4ð1−xÞ
�
dxþ�� � ð29Þ

[we note that the expansion in Eq. (27) is not well defined
in the integration region of Eq. (29), where β ≥ 1, and it is
only employed to isolate the term of Oð1=β2Þ]. The
coefficient Πð8Þ

−2 is constant and given by the explicit
calculation of Ref. [15],

Πð8Þ
−2 ¼ −ne

α4

8
ζð3Þ; ð30Þ

where the label ne (to be set to one) indicates that this term
arises from four-loop diagrams with only one closed
electron loop. Inserting (30) into (29) we obtain

að10Þe ðvpÞ ¼ ne
α5

8π
ζð3ÞKð4m2Þ þ � � � ¼ aPe

2
þ � � � ; ð31Þ

which shows that the contribution aPe=2 is naturally included
in the perturbative five-loop calculation. Equation (31) also
shows that this contribution arises from the five-loop set I(i)
of Ref. [30] which contains eighth-order vacuum polariza-
tion diagrams with only one closed electron loop. This is at
variance with the claim of Ref. [11] that the leading-order
contribution of positronium to aeðvpÞ occurs through
diagrams of Oðα7Þ obtained from the five-loop set I(j) by
adding the exchange of at least one additional photon in each
of the two light-by-light scattering loops.
Finally, from Eq. (27) we note that Πð8Þ

thr ðq2Þ, the leading
term of the four-loop function Πð8Þðq2Þ in the limit β → 0,
is equal to Πð8Þ

−2=β
2. From Eq. (30) we see that this explicit

result is in agreement with theOðα4Þ term of the expansion
of AðβÞ in Eq. (21). To leading order in α we can therefore
express Eq. (25) in the form

athre ðvpÞ ¼ −
α

π
Kð4m2ÞΠð8Þ

thr ðjq2j → ∞Þ: ð32Þ

This result shows that the contribution of the threshold
region can be mapped into one at jq2j → ∞where, far from
the positronium bound states, perturbation theory con-
verges well. This observation, presented in Ref. [10] (where
it was introduced via the nonrelativistic Coulomb Green’s
function in the spacelike limit q2 → −∞) led the authors to
argue that the term aPe=2 can be obtained through conven-
tional perturbation theory, where loop diagrams are calcu-
lated performing a Wick rotation with subsequent

integration over spacelike momenta. Our Eq. (31) shows
this point explicitly.

IV. CONCLUSIONS

In this paper we reexamined the contribution aPe of
positronium to the electron g-2 computed in Ref. [1]. We
confirmed the result of this reference and corrected a few
errors in its derivation.
As shown recently in Ref. [10], the integral representa-

tion for aeðvpÞ also receives a continuum nonperturbative
contribution from the integration region right above the
electron-positron threshold. This additional nonperturba-
tive contribution was shown in [10] to cancel one-half of
that of positronium. In order to verify this partial cancella-
tion, we introduced the closed-form QED vacuum polari-
zation function near threshold of Refs. [12,14] and
calculated the contribution to aeðvpÞ arising from its
integration in the region below and above threshold. Our
result confirms that the total contribution to aeðvpÞ of the
region near threshold is equal to aPe=2.
We therefore addressed the question whether this

remaining term aPe=2 should be added to the perturbative
five-loop QED result of Ref. [2]. The authors of Ref. [10]
argued that this term is already included in the perturbative
Oðα5Þ contribution to aeðvpÞ computed in Ref. [2] and,
therefore, should not be added to it. On the other hand, one
of the authors of Ref. [2] recently claimed that positronium
contributes to aeðvpÞ only through a class of diagrams of
Oðα7Þ [11]. Using the analytic four-loop vacuum polari-
zation function of Ref. [15], we showed explicitly that the
perturbative five-loop calculation of aeðvpÞ of Ref. [2]
indeed includes the remaining term aPe=2. We also showed
that this contribution arises from the class I(i) of five-loop
diagrams containing only one closed electron loop, thus
refuting the claim of Ref. [11].
In conclusion, we showed by explicit calculation that

there is no additional contribution of QED bound states to
ae beyond perturbation theory.
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