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I. INTRODUCTION

The interest in solving the Bethe-Salpeter (BS) equation
[1] in its natural Minkowski-space formulation has
increased in recent years [2–18]. There are several reasons
for dealing with Minkowski solutions. One of them is the
fact that the Wick rotation is not directly applicable for
computing electromagnetic form factors due to the singu-
larities in the complex momentum plane [6,8]. The
Euclidean solutions are still used in the context of BS-
Schwinger-Dyson equations for computing bound-state
form factors, but this requires a huge numerical effort
[19–26]. They can also be used to obtain on-shell observ-
ables like binding energies or phase shifts [27,28], whereas
the computation of the off-shell BS scattering amplitude—
mandatory for computing, e.g., the transition electromag-
netic form factor or for solving the three- and many-body
BS equations—is possible only using a full Minkowski
solution.
A method for computing these solutions based on the

Nakanishi representation [29] of the BS amplitude was first
developed in Refs. [2,3]. A similar approach combined
with the light-front projection was proposed in Refs. [4,5].
It led to a different integral equation which involved only
smooth functions and was numerically easy to treat. The
bound-state Minkowski amplitude and, later on [6,8], the
corresponding form factors were in this way computed for
the first time. A modified method to the one developed in
Refs. [4,5] aimed to compute the scattering states was
proposed in Ref. [9]. It has already been successfully tested
for the bound states [15].
Although our approach [4,5] could also be naturally

extended to the scattering states, we have developed a new
method [10–13] which allows us to solve the Minkowski
BS equation in a simpler and more straightforward way. It
consists of a direct solution of the equation, which takes
properly into account the many singularities, without
making use of the Nakanishi integral representation. The
aim of this paper is to present this method in detail with
applications to the problem of two scalar particles interact-
ing by a one-boson exchange kernel.

Some of the results have been presented in short publica-
tions [10–12] and reviewed in Ref. [13] without a detailed
explanation of the method. Until now, the off-shell BS
amplitudehas been computedonly for a separable kernel [30].
In Sec. II, we transform the Bethe-Salpeter equation to the

formwhich does not contain the pole singularities. In Sec. III,
we analyze the kernel singularities. Section IV is devoted to
the extraction of the phase shifts from the computed
Minkowski amplitude. We derive in Sec. V the system of
equations which couples the Euclidean amplitude with the
Minkowski one for a particular value of its arguments. The
comparison between the direct solution in Minkowski space
and the one found using this system of equations constitutes a
strong test for our approach. The numerical results are
presented in Sec. VI. They concern the half-off-shell BS
amplitude, the scattering length, and the elastic and inelastic
phase shifts. Section VII contains some concluding remarks.
Technical details are given in Appendixes A–C.

II. TRANSFORMING THE BS EQUATION

Let us consider the scattering of two equal-mass (m)
particles with initial (kis) and final (ki) four-momenta,
respectively:

k1s þ k2s → k1 þ k2:

The corresponding BS amplitude F is parametrized in
terms of the total

p ¼ k1 þ k2 ¼ k1s þ k2s ð1Þ
and relative momenta

2k ¼ k1 − k2;

2ks ¼ k1s − k2s: ð2Þ

The subscript s means “scattering” (on-mass-shell)
momenta. For a scattering process, F obeys the inhomo-
geneous integral equation graphically represented in Fig. 1.
Its analytic expression in Minkowski space reads
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Fðk; ks;pÞ ¼ Kðk; ks;pÞ − i
Z

d4k0

ð2πÞ4
Kðk; k0;pÞFðk0; ks;pÞ

½ðp
2
þ k0Þ2 −m2 þ iϵ�½ðp

2
− k0Þ2 −m2 þ iϵ� : ð3Þ

Wewill consider all along in this article the case of spinless
particles interacting by the one-boson exchange kernel K:

Kðk; k0;pÞ ¼ −
16πm2α

ðk − k0Þ2 − μ2 þ iϵ
; ð4Þ

where α ¼ g2=ð16πm2Þ is the dimensionless coupling
constant. In the nonrelativistic limit, this kernel leads to
the Yukawa potential VðrÞ ¼ −α expð−μrÞ=r. We denote
byM2 ¼ p2 the squared total invariant mass of the system.
The amplitudeF depends on the three four-momenta k, ks,

andp. In the center-of-mass frame, defined by ~p ¼ 0, one has

ks ¼ ð0; ~ksÞ andp0 ¼ M ¼ 2εks ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2s

p
. For a given

incident momentum ~ks, F depends on the three scalar

variables k0, j~kj, and z ¼ cosð~k; ~ksÞ. It will be hereafter

denoted by Fðk0; k; zÞ, setting abusively k ¼ j~kj and

ks ¼ j ~ksj. The modulus of the incident momentum ks plays
the role of a parameter (like the bound-state mass M in the
bound-state equation), and therefore, it will not be included in
the arguments of the amplitude. However, in contrast to the
bound-state case, one hasM > 2m andF depends also on the
extra variable z ¼ cos θ, where θ is the scattering angle.
Notice that the solution thus obtained is the half-off-

mass-shell amplitude. It is a particular case of the so-called
full off-shell amplitude Fðk0; k; z; k0s; ks;MÞ. The latter, in
addition to the variables k0, k, and z, depends also on the
off-shell independent variables k0s and ks, now with
k0s ≠ 0 and k0s ≠ εks , and the total mass M, which is an
independent parameter neither equal to 2εks nor related to
k0s. By “off-shell amplitude,” we will hereafter mean the
half-off-shell amplitude. The method we have developed
can also be applied to the full off-shell amplitude, although
the dependence of the latter on two extra variables k0s and
ks requires much more extensive numerical calculations
and will not be considered here.

The difficulty in computing the off-shell amplitude
Fðk0; k; zÞ in the entire domain of its arguments is due
to the singular character of the inhomogeneous term K as
well as of each of the factors in the integrand of Eq. (3). In
particular, the singular character of the amplitude F itself
makes it hardly representable in terms of smooth functions.
These singularities are integrable in the mathematical
sense, due to iϵ in the denominators of propagators, but
their integration is a quite delicate task and requires the use
of appropriate analytical as well as numerical methods.
To avoid these problems, Eq. (3) was first solved on shell

[27] by rotating the integration contour k0 → ik4 and taking
into account the contributions of the crossed singularities.
These singularities are absent in the bound-state case but
exist for the scattering states. A similar method will be
developed in Sec. V as a test of our approach.
The off-shell amplitude Fðk0; k; zÞ can be obtained by

directly solving the corresponding three-dimensional equa-
tion derived from (3) after integrating over the azimuthal
variable. However, we prefer to present in what follows its
partial wave solution. This procedure, apart from the much
smaller numerical cost, has the advantage of smoothing the
kernel singularities, in particular, in the inhomogeneous
term. The partial wave amplitudeFLðk0; kÞ is defined as [31]

Fðk0; k; zÞ ¼ 16π
X∞
L¼0

ð2Lþ 1ÞFLðk0; kÞPLðzÞ; ð5Þ

where PLðzÞ is the Legendre polynomial and

FLðk0; kÞ ¼
1

32π

Z
1

−1
dzPLðzÞFðk0; k; zÞ: ð6Þ

By inserting (5) into (3), we obtain a set of uncoupled
two-dimensional equations for the partial amplitudes FL:

FLðk0; kÞ ¼ FB
Lðk0; kÞ − i

Z
∞

0

k02dk0
Z

∞

−∞
dk00

WLðk0; k; k00; k0ÞFLðk00; k0Þ
ðk00 − a− þ iϵÞðk00 þ a− − iϵÞðk00 − aþ þ iϵÞðk00 þ aþ − iϵÞ ; ð7Þ

FIG. 1. Bethe-Salpeter equation for a scattering state.
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with

WLðk0; k; k00; k0Þ ¼
1

ð2πÞ3
Z

1

−1
dzPLðzÞKðk; k0;pÞ;

and the inhomogeneous (Born) term FB
L is given in terms of

WL by

FB
Lðk0; kÞ ¼

π2

4
WLðk0; k; k00 ¼ 0; k0 ¼ ksÞ: ð8Þ

The denominator of (3) has been factorized by writing
(in the c.m. frame)

�
p
2
þ k0

�
2

−m2 þ iϵ ¼ ðεks þ k00Þ2 − ðεk0 − iϵÞ2;�
p
2
− k0

�
2

−m2 þ iϵ ¼ ðεks − k00Þ2 − ðεk0 − iϵÞ2

and making the replacement −ε2k0 þ iϵ → −ðεk0 − iϵÞ2 valid
since it does not change the sign of the imaginary
contribution. This leads to the expression displayed in
(7) where the four propagator poles are made explicit. They
are symmetric with respect to the origin in the complex k00
plane and are given by

k0ð1Þ0 ¼ εks þ εk0 − iϵ ¼ þaþ − iϵ;

k0ð2Þ0 ¼ εks − εk0 þ iϵ ¼ −a− þ iϵ;

k0ð3Þ0 ¼ −εks þ εk0 − iϵ ¼ þa− − iϵ;

k0ð4Þ0 ¼ −εks − εk0 þ iϵ ¼ −aþ þ iϵ; ð9Þ

with

a� ¼ εk0 � εks : ð10Þ

Notice that aþ > 0, while for the scattering process,
a− versus k0 changes sign and a−ðk0 ¼ ksÞ ¼ 0.
We will be hereafter restricted to the Bethe-Salpeter

solutions for the S wave. The corresponding kernel W0 is
given by

W0ðk0; k; k00; k0Þ≡ 1

kk0
w0ðηÞ

¼ −
αm2

πkk0

�
1

π
log j ðηþ 1Þ

ðη − 1Þ j − iIðηÞ
�
;

ð11Þ

with

IðηÞ ¼
�

1 if ∣η∣ ≤ 1

0 if ∣η∣ > 1;

η ¼ ðk0 − k00Þ2 − k2 − k02 − μ2

2kk0
: ð12Þ

The reduced kernel w0ðηÞ has singularities both in its real
and imaginary parts. Its real part is an odd function of η
with logarithmic singularities at η ¼ �1, and its imaginary
part is an even function of ηwith discontinuities at the same
points. It is represented in Fig. 2 as a function of the
variable η.
The solution of (7) faces three kind of problems, all

related to the unavoidable singularities when working in the
Minkowski metric, and must be properly treated before a
numerical solution can be tried.
First are the four propagator poles in the right-hand side

of (7) which are explicitly given by (9).
Second are the logarithmic singularities of the kernelW0,

which make difficult its numerical integration both in the k00
and k0 variables.
Third are the singularities of the inhomogeneous term

FB
0 . They are related to the previous ones, i.e., W0, but

generate a different type of problem: they imply the
singular character of the amplitude F0 we are interested
in and thus a difficulty in being represented in terms of
smooth functions when solving numerically Eq. (7).
In the following subsections, we will examine separately

each of these points and detail our approach to circumvent
the related difficulties.

A. Removing the pole singularities

Let us first represent the pole contributions in the
integrand of (7) in the usual form:

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
η

-5

-4

-3

-2

-1

0

1

2

3

4

5

Re(w0)

Im(w0)

FIG. 2 (color online). S-wave reduced kernel w0 [Eq. (11)] as a
function of the variable η defined in (12).
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1

k00 − a� þ iϵ
¼ PV

�
1

k00 − a�

�
− iπδðk00 − a�Þ;

1

k00 þ a� − iϵ
¼ PV

�
1

k00 þ a�

�
þ iπδðk00 þ a�Þ;

where PV denotes the principal value. The integrand in the right-hand side of Eq. (7) takes the form

fðk0; k; k00; k0Þ
ðk00 − aþ þ iϵÞðk00 þ aþ − iϵÞðk00 þ a− − iϵÞðk00 − a− þ iϵÞ

¼
�
−iπδðk00 − aþÞ þ PV

1

k00 − aþ

��
iπδðk00 þ aþÞ þ PV

1

k00 þ aþ

�

×

�
−iπδðk00 − a−Þ þ PV

1

k00 − a−

��
iπδðk00 þ a−Þ þ PV

1

k00 þ a−

�
fðk0; k; k00; k0Þ; ð13Þ

with the notation

fðk0; k; k00; k0Þ≡W0ðk0; k; k00; k0ÞF0ðk00; k0Þ: ð14Þ

By expanding this expression, we obtain the integral term
on the right-hand side of (7) as a sum of terms containing,
respectively, products of the four-, three-, two-, one-, and
zero-delta functions to be integrated over k00 and k0
variables:

I ¼ I4 þ I3 þ I2 þ I1 þ I0:

The terms I4 and I3 containing products of the four- and
three-delta functions are always 0 since the arguments of
δ’s cannot vanish simultaneously.
Among the terms I2 containing the product of the two-

delta functions, and for the same reasons as in the previous
case, only the one containing δðk00 − a−Þδðk00 þ a−Þ gives a
nonzero contribution to the integral when k00 ¼ �a− ¼ 0,
that is, when εk0 ¼ εks . This contribution reads

I2 ¼ −iπ2
Z

∞

0

k02dk0
Z þ∞

−∞
dk00δðk00 − a−Þδðk00 þ a−Þ

fðk0; k; k00; k0Þ
k020 − a2þ

;

¼ þiπ2
Z

∞

0

dk0δ½2ðεk0 − εksÞ�
1

4ϵk0ϵks
fðk0; k; 0; k0Þ ¼

iπ2ks
8εks

W0ðk0; k; 0; ksÞF0ð0; ksÞ; ð15Þ

where we have used

1

a2− − a2þ
¼ −

1

4ϵk0ϵks
; ð16Þ

δ½εk0 − εks � ¼
ϵks
ks

δðk0 − ksÞ: ð17Þ

The sum of the four terms from (13) containing a one-delta function reads

I1 ¼ −i
Z

∞

0

k02dk0
Z

∞

−∞
dk00fðk0; k; k00; k0Þ

×

�
−iπδðk00 − aþÞ

1

k00
2 − a2−

PV
1

k00 þ aþ
þ iπδðk00 þ aþÞ

1

k00
2 − a2−

PV
1

k00 − aþ

−iπδðk00 − a−Þ
1

k00
2 − a2þ

PV
1

k00 þ a−
þ iπδðk00 þ a−Þ

1

k00
2 − a2þ

PV
1

k00 − a−

�
: ð18Þ

After integrating over dk00, the two integrals over dk0 remain:
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I1 ¼
π

4εks
PV

Z
∞

0

k02dk0

2εk0a−
½fðk0; k; k00 ¼ a−; k0Þ þ fðk0; k; k00 ¼ −a−; k0Þ�

−
π

4εks

Z
∞

0

k02dk0

2εk0aþ
½fðk0; k; k00 ¼ aþ; k0Þ þ fðk0; k; k00 ¼ −aþ; k0Þ�: ð19Þ

Since the W0 kernel is symmetric with respect to the
change of sign of the variables k0 and k00

W0ð−k0; k;−k00; k0Þ ¼ W0ðk0; k; k00; k0Þ;

the solution F0ðk0; kÞ is also symmetric, that is,
F0ð−k0; kÞ ¼ F0ðk0; kÞ. By inserting this relation in
(19), one can see that the symmetrized value of the kernel
W0 with respect to the variable k00

WS
0ðk0; k; k00; k0Þ ¼ W0ðk0; k; k00; k0Þ þW0ðk0; k;−k00; k0Þ

ð20Þ
appears naturally in the formulation. After substituting (14)
and (20) into (19), one gets

I1 ¼
π

4εks
PV

Z
∞

0

k02dk0

2εk0a−
WS

0ðk0; k; a−; k0ÞF0ða−; k0Þ

−
π

4εks

Z
∞

0

k02dk0

2εk0aþ
WS

0ðk0; k; aþ; k0ÞF0ðaþ; k0Þ:

ð21Þ
The first integrand in (21) is singular due to the factor

a− ¼ εk0 − εks in the denominator, which vanishes at
k0 ¼ ks. It must be understood in the sense of principal

value. The integral is well defined but, because of the
singularity of the integrand at k0 ¼ ks, explicitly manifested
in the form

1

a−
¼ 1

εk0 − εks
¼ εk0 þ εks

k02 − k2s
;

it requires an additional treatment to be transformed in a
nonsingular form. The singularity is eliminated using the
subtraction technique, that is,

PV
Z

∞

0

hðk0Þdk0
k02 − a2

¼
Z

∞

0

dk0
�
hðk0Þ − hðaÞ
k02 − a2

�
; ð22Þ

based on the identity

PV
Z

∞

0

dk0
1

k02 − a2
¼ 0; if a ≠ 0: ð23Þ

The condition a ≠ 0 prevents us from setting ks ¼ 0 in our
equation.
The second integrand in (21) is nonsingular and it does

not require any additional treatment.
Let us finally consider in (13) the term which does not

contain any delta function. Its contribution to the right-hand
side of Eq. (7) can be represented as

I0 ¼ −i
Z

∞

0

k02dk0PV
Z

∞

−∞

fðk0; k; k00; k0Þdk00
ðk00 − a−Þðk00 þ a−Þðk00 − aþÞðk00 þ aþÞ

¼ −i
Z

∞

0

k02dk0

4εksεk0
PV

Z
∞

−∞
dk00fðk0; k; k00; k0Þ

�
1

ðk020 − a2þÞ
−

1

ðk020 − a2−Þ
�
¼ Iþ0 þ I−0 :

The singularity 1
ðk02

0
−a2þÞ in Iþ0 is regularized by using the same subtraction technique (22) as previously:

Iþ0 ¼ −i
Z

∞

0

k02dk0

4εksεk0
PV

Z
∞

−∞
dk00

fðk0; k; k00; k0Þ
ðk020 − a2þÞ

¼ −i
Z

∞

0

k02dk0

4εksεk0
PV

Z
∞

−∞
dk00

�
fðk0; k; k00; k0Þ
ðk020 − a2þÞ

−
fðk0; k; aþ; k0Þ
ðk020 − a2þÞ

�
:

The singularity 1
ðk02

0
−a2−Þ in I−0 requires some care since

a− ¼ εk0 − εks vanishes when k0 ¼ ks while the relation
(22) is valid only if a ≠ 0. Notice that (23) diverges if
a ¼ 0 and therefore cannot be applied by the simple
replacement k0 → k00. We use instead the relation

PV
Z

∞

−∞

dx
x2 − a2

¼ π2

2
δðaÞ; ð24Þ

which has been derived in Appendix B. For
a ¼ a− ¼ εk0 − εks , it takes the form
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PV
Z

∞

−∞

dk00
½k020 − ðεk0 − εksÞ2�

¼ π2

2
δðεk0 − εksÞ: ð25Þ

The subtraction formula (22) must now be replaced by

I−0 ¼ i
Z

∞

0

k02dk0

4εksεk0
PV

Z
∞

−∞
dk00

fðk0; k; k00; k0Þ
k00

2 − a2−

¼ i
Z

∞

0

k02dk0

4εksεk0

Z
∞

−∞
dk00

�
fðk0; k; k00; k0Þ

k00
2 − a2−

−
fðk0; k; a−; k0Þ

k00
2 − a2−

�
þ iπ2

2

Z
∞

0

k02dk0

4εksεk0
δðεk0 − εksÞfðk0; k; a−; k0Þ: ð26Þ

The integrand of the first term in (26)—inside the square brackets—is again regular.
The last term is transformed using relation (17) and performing the integral over k0 into

iπ2

2

Z
∞

0

k02dk0

4εksεk0
δðεk0 − εksÞfðk0; k; a−; k0Þ ¼

iπ2ks2

8εks
fðk0; k; a−; ksÞ ¼

iks2

8ε2ks
W0ðk0; k; 0; ksÞF0ð0; ksÞ: ð27Þ

It gives exactly the same contribution as the two-delta term
(15). The sum of these two contributions results in
multiplying the coefficient in (15) by a factor of 2.
Since, as noticed above, the solution F0ðk0; kÞ is

symmetric with respect to k0 → −k0, Eq. (7) can be

reduced to the interval k0 ∈ ½0;∞�. After reducing the
integral term to the same interval in k00 and introducing
the symmetric kernel WS given by (20), we finally obtain
the S-wave equation that we aimed to solve and that does
not contain the pole singularities:

F0ðk0; kÞ ¼ FB
0 ðk0; kÞ þ

iπ2ks
8εks

WS
0ðk0; k; 0; ksÞF0ð0; ksÞ

þ π

2M

Z
∞

0

dk0

εk0 ð2εk0 −MÞ
�
k02WS

0ðk0; k; a−; k0ÞF0ðja−j; k0Þ −
2ks2εk0

εk0 þ εks
WS

0ðk0; k; 0; ksÞF0ð0; ksÞ
�

−
π

2M

Z
∞

0

k02dk0

εk0 ð2εk0 þMÞW
S
0ðk0; k; aþ; k0ÞF0ðaþ; k0Þ

þ i
2M

Z
∞

0

k02dk0

εk0

Z
∞

0

dk00

�
WS

0ðk0; k; k00; k0ÞF0ðk00; k0Þ −WS
0ðk0; k; a−; k0ÞF0ðja−j; k0Þ

k020 − a2−

�

−
i

2M

Z
∞

0

k02dk0

εk0

Z
∞

0

dk00

�
WS

0ðk0; k; k00; k0ÞF0ðk00; k0Þ −WS
0ðk0; k; aþ; k0ÞF0ðaþ; k0Þ

k020 − a2þ

�
: ð28Þ

Notice the appearance of the absolute value in the
argument ja−j and that the relation WS

0ðk0; k; 0; ksÞ ¼
2W0ðk0; k; 0; ksÞ accounts for the factor 8 in the denominator
of thenonintegral term.Wealso remind readers thatM ¼ 2εks .
The origin of the different terms appearing in (28) is

quite clear.
(1) The nonintegral term (second term in the first line) is

a sum of two equal contributions in (13): the first one
comes from the two-δ-function term I2 [Eq. (15)],
and the second one comes from the term without δ
functions, precisely the last term in the subtraction
(26) given by Eq. (27).

(2) The one-dimensional integral terms (second
and third lines) result from the contribution I1

[Eq. (21)], i.e., from the four contributions of
one-δ-function terms—δðk00 � a−Þ in the second
line and δðk00 � aþÞ in the third line—after integra-
tion over k00.

(3) The last two lines come from the product of four
principal values (no δ function) and the contribution
I0 [Eq. (24)]; however, they also come without the
term (27), which is incorporated into the nonintegral
term in the first line of Eq. (28).

The differences appearing in squared brackets (second,
fourth, and fifth lines) correspond to the subtractions
(22) and (26) used to remove the pole singularities:
2εk0 ¼ M in the second line, k00 ¼ a− in the fourth line,
and k00 ¼ aþ in the fifth line, respectively.
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III. KERNEL SINGULARITIES

In view of the numerical integration of (28), it is useful to
know the precise positions of the singularities both in the
kernel and in the Born term.
The above considerations were devoted to treat the

poles of the free constituent propagators. However, these
singularities are not the only ones. The propagator of the
exchanged particle, i.e., the kernel (4), also has two poles
which, after partial wave decomposition, turn into the
logarithmic singularities of the W0 kernel (11). Although
the log singularities can be integrated numerically by “brute
force,” to improve precision, it is useful to treat them, too.
Their positions are found analytically, both in k00 and k0
variables.
Let us first consider the singularities on k00. It follows

from (11) that W0 is singular when ∣ηðk0; k; k00; k0Þ∣ ¼ 1,
where η is defined by (12). Solving two equations η ¼ �1
relative to k00, we find the four singularities of W0:

k00 ¼ k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðk� k0Þ2

q
;

k00 ¼ k0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðk� k0Þ2

q
: ð29Þ

The symmetric kernel WS
0 has four additional singularities

when ∣ηðk0; k;−k00; k0Þ∣ ¼ 1. Together with (29), it means
that WS

0 is singular at the eight points:

k00 ¼ k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðk� k0Þ2

q
;

k00 ¼ k0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðk� k0Þ2

q
;

k00 ¼ −k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðk� k0Þ2

q
;

k00 ¼ −k0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðk� k0Þ2

q
: ð30Þ

However, since Eq. (28) was reduced to the interval
0 < k00 < ∞, one should take into account only the
singularities on the positive axis k00 > 0. This is equivalent
to taking the absolute value of (30); that is,WS is singular at
the four k00 values:

k00 ¼ ∣k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðk� k0Þ2

q
∣;

k00 ¼ ∣k0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðk� k0Þ2

q
∣:

Their positions depend on the integration variable k0
(moving singularities) as well on the external momenta
k0 and k.
The numerical integration over k00 is split into as many

intervals as needed in order to contain a single singularity in
only one of its borders. The integral over each of these
intervals is made safely by choosing an appropriate change
of variable.

The kernel singularities in the k0 variable manifest
themselves only in the second and third lines of
Eq. (28). They are also given by the solutions, with respect
to k0, of ηðk0; k; k00; k0Þ ¼ �1 and ηðk0; k;−k00; k0Þ ¼ �1 for
the particular values k00 ¼ a�. For the symmetrized WS

0

kernel, this gives the positions detailed in what follows.
The term with k00 ¼ a−, written in the second line of

Eq. (28), is singular at

k0− ¼ ϵkQþ � dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ − 4m2ðd2þ − k2Þ

p
2ðd2þ − k2Þ ; ϵ ¼ �1;

where

Qþ ¼ d2þ− k2þm2−μ2; dþ ¼ k0þ
M
2
; M¼ 2εks :

That is, the integrand of the second term versus k0 has the
four singularities denoted by k−;1;2;3;4:

k0−;1 ¼
þkQþ þ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ − 4m2ðd2þ − k2Þ

p
2ðd2þ − k2Þ ;

k0−;2 ¼
þkQþ − dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ − 4m2ðd2þ − k2Þ

p
2ðd2þ − k2Þ ;

k0−;3 ¼
−kQþ þ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ − 4m2ðd2þ − k2Þ

p
2ðd2þ − k2Þ ;

k0−;4 ¼
−kQþ − dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ − 4m2ðd2þ − k2Þ

p
2ðd2þ − k2Þ : ð31Þ

The term with k00 ¼ aþ, written in the third line of
Eq. (28), is singular at

k0þ ¼ ϵkQ− � jd−j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

− − 4m2ðd2− − k2Þ
p
2ðd2− − k2Þ ; ϵ ¼ �1;

where

Q− ¼ d2− − k2 þm2 − μ2; d− ¼ k0 −
M
2
:

That is, the integrand has the four singularities k0þ;1;2;3;4.
Their positions are obtained from Eqs. (31) by the
replacement Qþ → Q−, dþ → d−.
Since the integration domain of the k0 variable is positive,

one should take into account only the real and positive
values of the above singularities.

A. Born term

The S-wave Born term (8) is singular both in the k0 and k
variables. The singularities are logarithmic in its real part,
and there are Heaviside-like discontinuities in the
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imaginary one. Their positions can be found from the
condition ∣ηðk0; k; k00 ¼ 0; k0 ¼ ksÞ∣ ¼ 1, where η is
defined in (12).
In the k0 variable (see the upper part of Fig. 3), there are

two singularities at the points

k0ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� ksÞ2 þ μ2

q
for any value of k.
In the variable k (see the bottom part of Fig. 3), the

singularities (in its definition domain k > 0) are given by
the same equation rewritten in the form

kðk0Þ ¼ jks �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − μ2

q
j

and exist only for k0 > μ.
The Minkowski BS amplitude F0 has many nonanaly-

ticities due to its Born term FB
0 and to the interaction kernel,

including inelastic threshold effects. However, the only

singularities (infinite values and discontinuities) in the
physical domain of its arguments are those originated by
the Born term FB

0 itself. Their existence makes it difficult to
represent F0 on a basis of regular functions in view of a
numerical solution of Eq. (7). To circumvent this problem,
we factorize out the Born amplitude by making the
replacement

F0 ¼ FB
0 χf0; ð32Þ

where f0 is a smoother function obeying the BS trans-
formed equation

F0 ¼ FB
0 þ KF0 ⇒ f0 ¼

1

χ
þ 1

χFB
0

KFB
0 χf0:

χ is an arbitrary but suitable function introduced to provide
a convenient inhomogeneous term. After that, the singu-
larities of the F0 are casted into the kernel and integrated
using the same procedure as above. We obtain in this way a
nonsingular equation for a nonsingular function f0 which
can be solved by standard methods.
The off-mass-shell BS amplitude F0 in Minkowski space

can thus be safely computed.

IV. EXTRACTING SCATTERING OBSERVABLES

The amplitude Fðk; ks;pÞ satisfying the BS equation (3)
is related to the S matrix by

S ¼ 1þ ið2πÞ4δð4Þðp − pfÞFðk; ks;pÞ:

The unitarity condition for the S matrix S†S ¼ 1 is
rewritten in terms of the amplitude Fonðk; ks;pÞ (which
is on the mass shell k21 ¼ k22 ¼ k21s ¼ k22s ¼ m2) as follows:

iðFon† − FonÞ

¼
Z

Fon†Fonð2πÞ4δð4Þðp − k1 − k2Þ
d3k1

ð2πÞ32ε1
d3k2

ð2πÞ32ε2
:

ð33Þ

The sum over intermediate states in the product S†S is
understood as integration with the measure given in (33).
After substituting the partial wave decomposition (5) into
Eq. (33), the latter obtains the form

iðFon�
L − Fon

L Þ ¼ 2ks
εks

jFon
L j2; ð34Þ

where Fon
L ≡ FLðk0 ¼ 0; k ¼ ksÞ is the on-shell amplitude.

The function satisfying Eq. (34) is represented as

Fon
L ¼ εks

ks
expðiδlÞ sin δl ð35Þ

0 1 2 3 4
k0

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

F
B

μ=0.50  ks=0.50

k=0.20 k=2.0
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1
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2.5
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FIG. 3 (color online). Singularities of the S-wave Born term
FB
0 as a function of k0 for two different values of k ¼ 0.20 and

k ¼ 2.0 (upper panel) and as a function of k for two different
values of k0 ¼ 0.20 and k0 ¼ 2.0 (lower panel).
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with arbitrary real δl. Solving Eq. (35) relative to δl, we find
that the on-shell amplitude determines the phase shift
according to

δLðksÞ ¼
1

2i
log

�
1þ 2iks

εks
Fon
L

�
: ð36Þ

V. EUCLIDEAN SCATTERING AMPLITUDE

Equation (28) is free from the poles of the constituent
propagators and after the appropriate treatment of the
logarithmic singularities provides the desired solution for
the off-shell amplitude in Minkowski space. This equation
is, however, rather cumbersome, even in the simplest case
of two scalar particles in the S wave we are considering,
and looks rather different from the initial BS equation (3). It
would thus be of the highest interest to have at our disposal
an independent test of the numerical solutions.
The test we have performed is based on a Euclidean

version of the initial BS equation for the scattering
amplitude in Minkowski space (3), formally written as

FM ¼ FM;B þ KMFM: ð37Þ

We can define the so-called Euclidean BS scattering
amplitude (see Fig. 4) by

FEðk4; kÞ ¼ FMðk0 ¼ ik4; kÞ:

By applying the Wick rotation k0 ¼ ik4 to (3), we will
derive in what follows the equation satisfied by FE. We will
introduce all along this section the index M or E to
distinguish between both amplitude quantities.
Some preliminary remarks are in order.

(1) Contrary to the Minkowski case, the off-shell
Euclidean amplitude cannot be used to compute
physical observables like electromagnetic form fac-
tors even in the bound-state case. The reason is the
impossibility to make the Wick rotation in the form
factor integral [6,8].

(2) The on-mass-shell condition for k0 ¼ 0 corresponds
to k4 ¼ 0. Therefore, both amplitudes, although
obeying different equations, should coincide on
the mass shell FMðk0 ¼ 0; ksÞ ¼ FEðk4 ¼ 0; ksÞ
and should thus provide the same phase shifts. This
property will be used to check our Minkowski
results.

(3) In the case of the scattering states, the Wick rotation
cannot be performed in a naive way to Eq. (37) by
simply replacing k0 → k4 ¼ −ik0. This important
point will be developed below.

A. Rotating the integration contour

Let us consider the pole positions appearing in Eq. (7)
and given by (9). The integration domain k0 < ks corre-

sponds to εk0 < εks and hence to Re½k0ð2Þ0 � > 0 and

Re½k0ð3Þ0 � < 0. The positions of these singularities are
illustrated in Fig. 5. The contour cannot be anticlockwise
rotated without taking into account the residues at the poles

k0ð2Þ0 and k0ð3Þ0 . Notice that for the bound-state problem, the
value εks is replaced by

M
2
. Since for any k0 we have εk0 > M

2
,

when performing the Wick rotation in the bound-
state equation, there is no crossed singularity and so no
additional contribution.
Therefore, for the bound-state case, the positions of

singularities allow us to safely rotate the contour, as it is
shown in Fig. 4. In this way, one gets the equation for the
Euclidean BS amplitude FE.

4

+ +

+ + +R−R

+iR

−iR

k

k  =ik0 4

0

F  (k ,k)M 0

F (k , k)E

FIG. 4 (color online). Minkowski (FM) and Euclidean (FE) BS
amplitudes in the complex k0 plane with (in crosses) bound-state
singularities.

+
k

k =ik0 4

0

F (k , k)
E 4

k’0
(4)

k’(3)

0

k’

k’

(2)

(1)

0

0

+

+

+

F  (k , k)M 0

FIG. 5 (color online). Singularities of the propagators for the
scattering state and the integration contour after rotation in the
complex plane k0, if k0 < ks.
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On the contrary, for the scattering state case, the rotated
contour in the complex plane of k00 (see Fig. 5) crosses

two of the four pole singularities k0ð2Þ0 and k0ð3Þ0 displayed
in the integrand of Eq. (3). They are on the real axes k00
at the points k00 ¼ �ðεks − εk0 Þ. The residues in these poles
(to be added to the integral terms) are still expressed in
terms of the Minkowski off-shell amplitude:

~FM
L ðk0Þ≡ FM

L ðk00 ¼ εks − εk0 ; k0Þ: ð38Þ
Thus, when transforming Eq. (37) into a Euclidean, we
obtain not a Euclidean equation but a nonsingular equation
which indeed contains on the left-hand side the Euclidean
BS amplitude FE but, however, in the right-hand side,
under the integrals, contains both the Euclidean amplitude
FE and the particular Minkowski amplitude ~FM

L ðkÞ defined
in (38). One can similarly derive another nonsingular
equation which contains in the left-hand side the particular
Minkowski amplitude ~FM

L ðkÞ and in the right-hand side,
under the integrals, again both the Euclidean amplitude FE

and the particular Minkowski amplitude ~FM
L ðkÞ. In this

way, we derive the system of two equations which couples
the Euclidean amplitude FE

Lðk4; kÞ to the particular
Minkowski off-shell amplitude ~FM

L ðkÞ. A similar derivation
is described in Ref. [27].
An additional test is to check that the off-shell

Minkowski amplitude FM
L ðk0; kÞ obtained by solving

Eq. (7) coincides, for the particular value k0 ¼
�ðεks − εkÞ, with the independent solution ~FM

L ðkÞ of the
system of equations. Furthermore, we can check that all
three on-mass amplitudes (for the S waves, in particular)
coincide with each other:

FM
0 ðk0 ¼ 0; k ¼ ksÞ ¼ FE

0 ðk4 ¼ 0; k ¼ ksÞ ¼ ~FM
0 ðksÞ

and therefore give the same phase shifts.
Below, in this section, we sketch the derivation of this

system of two equations which couples the amplitudes
FEðk4; k; zÞ and ~FMðk; zÞ. In this derivation, we will
consider the case when the amplitudes are not decomposed
in the partial waves. The two equations for the S-wave
amplitudes FE

0 ðk4; kÞ and ~FM
0 ðkÞ solved numerically will be

given in Appendix C.
We should also analyze the position of singularities in

the kernel (4). They are at the points

k0�0 ¼ k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~k − ~k0Þ2 þ μ2

q
∓iϵ:

When we rotate the contour around k00 ¼ 0, we must

distinguish two cases. If jk0j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~k − ~k0Þ2 þ μ2

q
, the

singularity

k0þ0 ¼ k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~k − ~k0Þ2 þ μ2

q
− iϵ ð39Þ

is in the fourth quadrant and

k0−0 ¼ k0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~k − ~k0Þ2 þ μ2

q
þ iϵ ð40Þ

in the second one. In this case, the contour can be rotated
anticlockwise without crossing the singularities. If

jk0j >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~k − ~k0Þ2 þ μ2

q
, both singularities are in the same

half-plane (e.g., at the right half-plane, if k0 > 0) and the
contour cannot be rotated.
However, Wick rotation must be performed in both the

k00 and k0 variables simultaneously. That is, by rotating
the integration contour in k00 by an angle ϕ, we also change
the variable k0 → k0 expðiϕÞ. Then, the positions of sin-
gularities (39) and (40) are also rotated. As it can be easily
checked, k0−0 is rotated faster than the contour and k0þ0 is
rotated slower; therefore, they move away from the contour
and the contour rotation can be safely done. Its final
position, after rotation by ϕ ¼ π=2, is −i∞ < k00 < i∞,
whereas the final value of k0 turns into ik0. The singular-
ities of the propagator (4) do not prevent the Wick rotation
in both variables.

For the amplitude Fð~k; k0 ¼ εks − εk; ~ksÞ, the condition

jk0j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~k − ~k0Þ2 þ μ2

q
turns into

εks − εk0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~k − ~k0Þ2 þ μ2

q
:

Since we integrate over ~k0, the maximal value of the
left-hand side is εks −m and the minimal value of the
right-hand side is μ. Hence, this inequality is violated if
εks −m > μ, that is, when εks > mþ μ →

ffiffiffi
s

p
>

2mþ 2μ, i.e., above the two-meson creation threshold.
The singularities of the one-boson exchange kernel allow
the contour rotation only in this kinematical domain. Above
that, additional contributions should be taken into account.
The same conclusion was found in Ref. [27]. In our
solution of the Euclidean equation, we will not exceed
the two-meson creation threshold.

B. Euclidean equation

We start with performing the Wick rotation shown in
Fig. 5 to Eq. (3). In the c.m. frame ~p ¼ 0, it is transformed
into

FEðk4; ~k; ~ksÞ ¼ VBðk4; ~k; ~ksÞ

þ
Z

d4k0

ð2πÞ4
Vðk4; ~k0;k04; ~k0ÞFEðk04; ~k0; ~ksÞ

ðk042 þ a2−Þðk042þ a2þÞ
þ S;

ð41Þ

where
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Vðk4; ~k; k40 ; ~k0Þ ¼ 16πm2α

ðk4 − k04Þ2 þ ð~k − ~k0Þ2 þ μ2
;

ð42Þ

VBðk4; ~k; ~ksÞ ¼ Vðk4; ~k; k04 ¼ 0; ~k0 ¼ ~ksÞ; ð43Þ

and S denotes the contribution due to the two singularities
shown in Fig. 5. This contribution, existing only if
εks − εk0 > 0, is given by the sum of two residues
S ¼ S1 þ S2; S1 is the contribution from k00 ¼ ðεks − εk0 Þ þ
iϵ multiplied by (2πi) and S2 the one from k00 ¼ −ðεks −
εk0 Þ − iϵ multiplied by (−2πi).
Contribution S1 has the form

S1ðk0Þ ¼
πg2

4ð2πÞ4
~FMðk0; z0Þ

εksεk0
h
−a− þ iϵ

i�
−a− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~k0 − ~kÞ2 þ μ2

q
− k0

��
−a− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~k0 − ~kÞ2 þ μ2

q
− k0 þ iϵ

� ; ð44Þ

whereas S2 is given by S2ðk0Þ ¼ S1ð−k0Þ. The sum S1 þ S2 is symmetric relative to k0 → −k0, as it should be. At this point,
it is interesting to keep these expressions for S1;2 with k0 not replaced by ik4. The reason will become clear later, when,
deriving another equation, we will substitute k0 ¼ εks − εk. Above the 2mþ μ inelastic threshold, these factors give an
imaginary contribution, making the elastic phase shift complex. The above form of S1;2 is convenient to find this imaginary
part.
Setting k0 ¼ ik4, the preceding expression reads

Sðik4Þ ¼
g2π
ð2πÞ4

Z
k0<ks

d3k0
~FMðk0; z0Þ

2εk0εksða− − iϵÞ

�
k24 − ða− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~k0 − ~kÞ2 þ μ2

q
Þða− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~k0 − ~kÞ2 þ μ2

q
Þ
�

�
k24 þ ða− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~k0 − ~kÞ2 þ μ2

q
Þ2
��

k24 þ ða− þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~k0 − ~kÞ2 þ μ2

q
Þ2
� : ð45Þ

Equation (41) is not singular. The factor 1=½k042 þ a2−ðk0Þ� in the integrand of (41) is singular when k04 ¼ 0 and k0 ¼ ks
simultaneously, but this singularity is, in fact, canceled by a similar term in S given by (45). It is, however, convenient to
cancel these two singularities explicitly and analytically and to obtain a regular resulting expression. The transformations
are elementary but lengthy and will not be carried out in detail. Below are indicated the main steps.
We make a subtraction in the integrand and add the subtracted term:

FEðk; k4; zÞ ¼ VBðk4; ~k; ~ksÞ þ
1

ð2πÞ4
Z

d3k0
Z

∞

−∞
dk04Vðk4; ~k; k04; ~k0Þ

�
FEðk04; k0; z0Þ

ðk042 þ a2−Þðk042 þ a2þÞ
−

FEð0; k0; z0Þ
ðk042 þ a2−Þa2þ

�

þ 1

ð2πÞ4
Z

d3k0
Z

∞

−∞
dk04

Vðk4; ~k; k04; ~k0ÞFEð0; k0; z0Þ
ðk042 þ a2−Þa2þ

þ S½ ~FM�: ð46Þ

There is no singularity in the difference. The subtracted
term is not unique. Our choice was motivated in order to
obtain an analytic result for the integral over dk04 in the last
line of Eq. (46).
The term which we add is singular: k0 ¼ ks. We perform

an additional subtraction to eliminate this singularity and
again add the subtracted term. This additional term is, of
course, again singular but analytic. Its contribution, after
integration in the limits 0<k0<ks−δ and ks þ δ < k0 < ∞
and at δ → 0, is ∼ logðδ=mÞ. It is exactly canceled
analytically by a similar term in the singular part of S.
The resulting S-wave equation is regular and given in
Appendix C, Eq. (C1).
Equation (46) and, equivalently (after the cancellation of

singularities), Eq. (C1) relate the Euclidean amplitude
FEðk4; k; zÞ and the Minkowski one ~FMðk; zÞ appearing

in S. To determine both amplitudes, we should obtain an
additional equation.
This new equation is still obtained by performing a Wick

rotation k00 ¼ ik04 to (3). However, instead of taking
k0 ¼ ik4, we set k0 ¼ εks − εk for k < ks. As discussed
at the end of Sec. V, for this particular value of k0, the
kernel singularities do not prevent the Wick rotation below
the two-meson creation threshold. In this way, we get the
following equation (symbolically):

~FM
0 ðk;zÞ¼ right-hand side of Eq:ð46Þ at ½k4¼ iðεks −εkÞ�;

ð47Þ
that is, the right-hand side term of Eq. (46) taken at the
value k4 ¼ iðεks − εkÞ. The corresponding explicit S-wave
equation is given in Appendix C, Eq. (C8).
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VI. RESULTS

We present in this section the results of solving the
BS equation in Minkowski space (28) and the coupled
Euclidean-Minkowski system of Eqs. (C1) and (C8). Some
details of the numerical methods used are given in
Appendix A.
We have first computed the bound-state solutions,

denoted by Γ0ðk0; kÞ, by dropping the inhomogeneous
term FB

0 ðk0; kÞ in (28) and setting M ¼ 2m − B. The
binding energies B thus obtained coincide, within four-
digit accuracy, with the ones calculated in our previous
work [4].
An interesting issue is the appearance of an imaginary

part in Γ0ðk0; kÞ when normalized, for instance, by
Γð0; 0Þ ¼ 1. In spite of this real normalization condition,
Γ0ðk0; kÞ will become imaginary, depending on the kin-
ematical domain of its arguments corresponding to the
virtual meson creation. Written in terms of variables ki,
defined in (1), they read

k21 > ðmþ μÞ2 or k22 > ðmþ μÞ2; ð48Þ

which, in terms of the variables ðk0; kÞ in the center-of-
mass frame, become

�
M
2
þ k0

�
2

− ~k2 > ðmþ μÞ2;�
M
2
− k0

�
2

− ~k2 > ðmþ μÞ2:

Γ obtains an imaginary part if one of these two preceding
conditions is fulfilled. In the (k0; k) plane and for positive
values of k0, this gives the locus

k0ðkÞ ¼ −
M
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðmþ μÞ2

q
: ð49Þ

Above this curve (represented in Fig. 6), the imaginary part
of Γ ≠ 0.
We display in Fig. 7 the k0 dependence of the imaginary

part of the amplitude Γðk0; kÞ obtained in our calculations
for different values of k. It corresponds to the parameters
α ¼ 1.44, μ ¼ 0.50, and B ¼ 0.01. We can thus check that
a vanishing imaginary part of Γ appears at the k0 values
given by Eq. (49). Note also the difficulty in reproducing a
sharp nonanalytic threshold behavior in terms of smooth
functions even if they are as flexible as splines. The small
oscillations in the vicinity of the threshold are artifacts of
our spline basis. They can be reduced by increasing the
number of basis elements.
The scattering amplitude F0ðk0; kÞ in Minkowski space

has been calculated for L ¼ 0 states, and the corresponding
phase shifts have been extracted according to (36).
The BS relativistic formalism accounts naturally for

the meson creation in the scattering process, when the
available kinetic energy allows it. The inelasticity threshold
corresponding to n-particle creation is given by

kðnÞs ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
μ

m

�
nþ 1

4

�
μ

m

�
2

n2

s
: ð50Þ

Below the first inelastic threshold kð1Þs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mμþ μ2=4

p
, the

phase shifts are real. This unitarity condition is not
automatically fulfilled in our approach but appears as a
consequence of handling the correct solution and provides
a stringent test of the numerical method. Above kð1Þs , the
phase shift obtains an imaginary part which behaves like

Im½δ0� ∼ ðks − kð1Þs Þ2 ð51Þ

3210
k

0
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k0

M=1.9 m=1 μ=0.50

Im(Γ)#0

Im(Γ)=0

FIG. 6. Locus for ImðΓÞ ¼ 0 in the (k0; k) plane for m ¼ 1,
M ¼ 1.90, and μ ¼ 0.5. Below this curve, ImðΓÞ ¼ 0, and
above, ImðΓÞ ≠ 0.
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FIG. 7 (color online). Im½Γðk0; kÞ� as a function of k0 for
different values of k. It corresponds to α ¼ 1.44, B ¼ 0.01,
and μ ¼ 0.5.
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in the threshold vicinity. Higher inelasticity thresholds,
corresponding to the creation of two, three, etc., inter-
mediate mesons at kðnÞs , are also taken into account in our
calculations.
Some selected results corresponding to α ¼ 1.2 and

μ ¼ 0.5 are listed in Table I. We have also solved the
system of equations, derived in Sec. V and Appendix C
[Eqs. (C1) and (C8)], coupling the Euclidean amplitude to
the Minkowski one at the particular value k0 ¼ εks − εk.
The phase shifts found by these two independent methods
are consistent with each other within the accuracy given in
this table. They are also rather close to the ones found
in Ref. [27].
Figure 8 (upper panel) shows the real phase shifts

calculated with BS (solid line) as a function of the
scattering momentum ks. They are compared to the non-
relativistic (NR) values (dashed lines) provided by the
Schrödinger equation with the Yukawa potential. For this
value of α, there exists a bound state and, according to the
Levinson theorem, the phase shift starts at 180°. One can
see that the difference between relativistic and nonrelativ-
istic results is considerable, even for a relatively small
incident momentum.
The lower panel shows the imaginary part of the phase

shift. It appears starting from the first inelastic meson-
production threshold kð1Þs ¼ 0.75 and displays the expected
quadratic behavior (51). Simultaneously, the modulus
squared of the S matrix (dashed line) starts differing from
unity. The results of this figure contain the contributions of
the second kð2Þs ¼ 1.118meson creation threshold, the third
one kð3Þs ¼ 1.435, etc., up to the eight-meson creation
threshold kð8Þs ¼ 2.828. Notice that, as mentioned in
Sec. V B, the applicability of the method coupling the
Euclidean and Minkowski amplitudes is limited in its
present formulation to the second inelastic threshold while
our direct Minkowski-space approach can go through.
The low energy parameters were computed directly at

ks ¼ 0 and found to be consistent with a quadratic fit to the
effective range function k cot δ0ðkÞ ¼ − 1

a0
þ 1

2
r0k2. The BS

scattering length a0 as a function of the coupling constant α
is given in Fig. 9 for μ ¼ 0.50. It is compared to the NR
values. The singularities correspond to the appearance of
the first bound state at α0 ¼ 1.02 for BS and α0 ¼ 0.840 for
NR. One can see that the differences between a relativistic
and a nonrelativistic treatment of the same problem are not
of kinematical origin since even for processes involving
zero energy, they can be substantially large, especially in

the presence of a bound state. It is worth noticing that only
in the limit α → 0 are the two curves tangent to each other,
and in this region, the results are given by the Born
approximation

aB0 ¼ −
1

μ

m
μ
α; ð52Þ

which is the same for the NR and the BS equations. Beyond
this region, both dynamics are not compatible. This

TABLE I. Real and imaginary parts of the phase shift (degrees) calculated by solving Eq. (28) versus incident momentum ks for
α ¼ 1.2 and μ ¼ 0.5. The corresponding first inelastic threshold is kð1Þs ¼ 0.75.

ks 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.3 1.5 2.0 2.5 3.0

Re½δ0� 124 99.9 77.8 65.1 56.2 49.3 43.9 39.4 35.7 32.5 29.7 22.8 19.3 13.3 9.78 7.78
Im½δ0� 0 0 0 0 0 0 0 0 0.033 0.221 0.453 0.848 0.852 0.578 0.333 0.203
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FIG. 8 (color online). Upper panel: Real phase shift (degrees)
for α ¼ 1.2 and μ ¼ 0.50 calculated via the BS equation
(solid line) compared to the nonrelativistic results (dashed line).
Lower panel: Imaginary phase shift (degrees) calculated via
the BS equation (solid line) and the value jSj2 ¼ expð−2ImðδÞÞ
(dashed line).
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nonmatching between NR and relativistic equations was
already pointed out in Refs. [32,33] when computing the
binding energies B of a two-scalar and two-fermion system
in the limit B → 0 with different relativistic approaches. A
recent work [16] devoted to this problem proposes the
construction of an equivalent nonrelativistic potential using
the technique of geometrical spectral inversion. It would be
interesting to check the robustness of this equivalence by
extending it to the scattering states and to form factors.
Some numerical values of the scattering length for

different values of the exchanged mass μ were given in
Ref. [10], Table I. It can be checked by direct inspection
that the scaling properties of the nonrelativistic equation
[34], in particular, the relation between the scattering length
corresponding to different values of μ and the coupling
constants

a0

�
μ

m
; α

�
¼ 1

μ
a0

�
1;
α
μ
m

�
ð53Þ

are no longer valid except in the Born approximation
region.
We display in Fig. 10 the factorized part of the off-shell

scattering amplitude f0, defined in (32), as a function k0 for
different values of k. It corresponds to the parameters
α ¼ 1.2, μ ¼ 0.5, and ks ¼ 1.0. The upper panel displays
its real part and the lower panel the imaginary one. Its k
dependence is shown in Fig. 11 for different values of k0.
The regular amplitudes f0 are those effectively computed in
our approach. As one can see, these functions are no longer
singular, although they present several sharp structures
and cusps both on its real and imaginary parts. The
corresponding three-dimensional plots F0ðk0; kÞ for the
values α ¼ 0.5, μ ¼ 0.5, and ks ¼ 0.5 are given in Fig. 4
of Ref. [10].

The off-shell scattering amplitudes F0 computed using
our direct method in Minkowski space have been tested
using also the results of the coupled Euclidean-Minkowski
equation derived in Sec. V. As it was explained in Sec. V,
these equations couple the Euclidean amplitude to the
Minkowski one for the particular off-shell value
k0 ¼ εks − εk, denoted by ~F0ðkÞ. The comparison of the

off-shell amplitude ~F0ðkÞ found by this method with
the solution of Eq. (28) F0ðkÞ ¼ FMðk0 ¼ εks − εk; kÞ
for the same argument k0 provides an independent test
of our direct method based on Eq. (28).
Two illustrative examples are shown in Fig. 12 for

different values of the parameters α, μ, and ks. The solid
lines denote the real parts of the amplitudesF0ðkÞ (in black)
and ~F0ðkÞ (solid red line), whereas the dashed lines denote
their imaginary parts.
The upper panel corresponds to α ¼ 0.5, μ ¼ 0.50, and

ks ¼ 0.5. The results of F0ðkÞ and ~F0ðkÞ are not visibly
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FIG. 9 (color online). BS scattering length a0 versus the
coupling constant α (solid lines), compared to the nonrelativistic
results (dashed lines) for μ ¼ 0.5.
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FIG. 10 (color online). Real (upper panel) and imaginary (lower
panel) parts of the factorized off-shell scattering amplitude f0
defined in Eq. (32) for α ¼ 1.2 and μ ¼ 0.50 versus k0 for
different fixed values of k.
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distinguishable, their relative difference being at the level
of 10−3–10−4.
The lower panel corresponds to the parameters α ¼ 1.2,

μ ¼ 0.50, and ks ¼ 1.0. In this case, a cusplike structure
develops around k ≈ 0.65. The Euclidean-Minkowski for-
mulation shed some light on the origin of this cusp, which
actually comes from the last term ~gi in Eq. (C8). According
to its definition in Eq. (C9), this term does not contribute
below the first meson creation threshold, that is, ifffiffiffi
s

p ¼ 2εks < 2mþ μ, since in this case, the argument of
the θ function is always negative.
Above the threshold, the amplitude ~gðkÞ is also 0 for

k > kc, where kc is a critical value given by

kc ¼
1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − μ2Þðs − ð2mþ μÞ2Þ

q
: ð54Þ

When k < kc, the argument of the θ function versus the
integration variable k0 can be positive, which allows a

nonzero value of ~gi. If k → kc from below, the integration
domain over k0 due to the θ function shrinks to

k0c − c
ffiffiffiffiffiffiffiffiffiffiffiffi
kc − k

p
≤ k0 ≤ k0c þ c

ffiffiffiffiffiffiffiffiffiffiffiffi
kc − k

p
;

where k0c and c are independent of k and k0. One then has, in
this limit,

~giðkÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
kc − k

p
:

This is the reason of the cusp behavior, with an infinite
derivative at k ¼ kc, which manifests itself in the lower
panel of Fig. 12. For m ¼ 1, μ ¼ 0.5, and ks ¼ 1, the
critical value, given by Eq. (54), is kc ¼ 0.651, in agree-
ment with the position of the cusp seen in our results. We
have also checked from our numerical solutions that the
cusp position moves as a function of ks, according to
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FIG. 11 (color online). Real (upper panel) and imaginary (lower
panel) parts of the factorized off-shell scattering amplitude f0
defined in Eq. (32) for α ¼ 1.2 and μ ¼ 0.50 versus k for different
fixed values of k0.
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Eq. (54). It is interesting to point out that from the analysis
of our purely Minkowski BS equation (28), the origin of
this cusp is not evident at all. It is, however, remarkably
manifested in the corresponding numerical solution seen in
Fig. 12. We would like to emphasize that this cusplike
structure described analytically above is only one example
of the many structures seen in the results displayed in
Figs. 10 and 11, although their analysis was beyond the
scope of the present work.
The small differences near the cusp between the real

parts of F0ðkÞ and ~F0ðkÞ are purely numerical and indicate
the difficulty in reproducing sharp behaviors in terms of
smooth functions. They can be reduced by increasing the
number of grid points.
The results presented in Fig. 12 confirm the validity and

accuracy of our direct Minkowski-space calculations.

VII. CONCLUSION

We present a new method to solve the Bethe-Salpeter
equation in Minkowski space. Contrary to the preceding
approaches devoted to this problem, this method does not
make use of the Nakanishi integral representation of the
amplitude but it is based on a direct solution of the equation
taking properly into account the many singularities. A
regular equation is finally obtained and solved numerically
by standard methods.
It has been successfully applied to bound and scattering

states. The Bethe-Salpeter off-shell scattering amplitude in
Minkowski space has been computed for the first time.
Applying the Wick rotation to the original Bethe-

Salpeter equation, an independent system of equations

coupling the Euclidean amplitude to the Minkowski one
for a particular off-shell value has been derived. It provides
an independent test for our approach.
Coming on the mass shell, the elastic phase shifts and

low energy parameters were accurately computed. They
considerably differ, even at zero energy, from the non-
relativistic ones. Above the meson creation threshold, an
imaginary part of the phase shift appears and has also been
calculated.
The results presented here were limited to the S wave in

the spinless case and the ladder kernel but they can be
extended to any partial wave.
The off-shell Bethe-Salpeter scattering amplitude thus

obtained has been further used to calculate the transition
form factor [14]. In its full off-shell form, it can be used as
an input in the three-body Bethe-Salpeter Faddeev
equations.
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APPENDIX A: NUMERICAL METHODS

We consider a generic two-dimensional integral equation

fðx; yÞ ¼ fBðx; yÞ þ
Z

∞

0

dy0Vðx; y; ay0 ; y0Þfðay0 ; y0Þ þ
Z

∞

0

dy0Vðx; y; by0 ; y0Þfðby0 ; y0Þ

þ
Z

∞

0

dy0
Z

∞

0

dx0
Vðx; y; x0; y0Þfðx0; y0Þ − Vðx; y; ay0 ; y0Þfðay0 ; y0Þ

x02 − a2y0

þ
Z

∞

0

dy0
Z

∞

0

dx0
Vðx; y; x0; y0Þfðx0; y0Þ − Vðx; y; by0 ; y0Þfðby0 ; y0Þ

x02 − b2y0
: ðA1Þ

The solution f is searched in the compact domain
½0; xm� × ½0; ym� in the form

fðx; yÞ ¼
X
ij

cijSiðxÞSjðyÞ; ðA2Þ

where cij are unknown coefficients to be determined and Si
is a basis of spline functions (see, for instance, Ref. [6]).
They are defined, respectively, in ½0; xm� and ½0; ym� and are
cubic piecewise in each of the Nx (Ny) intervals in which
½0; xm� (½0; ym�) is divided.

The expansion (A2) is supposed to be valid on a set of
selected points fx̄ig × fȳjg with i ¼ 0; 2Nx þ 1 and j ¼
0; 2Ny þ 1 suitably chosen in order to maximize the
accuracy of the solution.
By inserting (A2) into (A1), one is led with a linear

system of equationsX
i0j0

Uij;i0j0ci0j0 ¼ fBij þ
X
i0j0

Aij;i0j0ci0j0 ðA3Þ

with an inhomogeneous term given by
fBij ¼ fBðx̄i; ȳjÞ ðA4Þ
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and the matrices U and A being

Uij;i0j0 ¼ Si0 ðx̄iÞSj0 ðȳjÞ ðA5Þ

and

Aij;i0j0 ¼
Z

ymax

0

dy0Vðx̄i; ȳj; a; y0ÞSi0 ðay0 ÞSj0 ðy0Þ þ
Z

ymax

0

dy0Vðx̄i; ȳj; b; y0ÞSi0 ðbÞSj0 ðy0Þ

þ
Z

ymax

0

dy0Sj0 ðy0Þ
Z

xmax

0

dx0
Vðx̄i; ȳj; x0; y0ÞSi0 ðx0Þ − Vðx̄i; ȳj; ay0 ; y0ÞSi0 ðay0 Þ

x02 − a2y0

þ
Z

ymax

0

dy0Sj0 ðy0Þ
Z

xmax

0

dx0
Vðx̄i; ȳj; x0; y0ÞSi0 ðx0Þ − Vðx̄i; ȳj; by0 ; y0ÞSi0 ðby0 Þ

x02 − b2y0
: ðA6Þ

An interesting property of the splines used is the fact that
the functions S2iðxÞ and S2iþ1ðxÞ have a support limited to
the two consecutive intervals ½xi−1; xi�∪½xi; xiþ1� and vanish
elsewhere. This reduces considerably the computation of
the matrix elements.
After removing the many singularities following the

techniques explained in Sec. II, all integrands appearing in
(A6) are regular functions and the integrations can be
performed using the standard Gauss quadrature methods.
The number collocation points on each dimension equal the
number of spline bases, and the validation procedure allows
us to determine the coefficients cij of the expansion (A2).
One is finally led to solve a complex linear system denoted
symbolically by

ðU − AÞc ¼ fb;

with dimension d ¼ ð2Nx þ 1Þð2Ny þ 1Þ.
When dealing with a finite integration domain in both

variables k0 and k00, some care must be taken to use the
subtraction technique (22). Indeed this relation—used for k0
as well as for k00 integrations—is based on the identity (23)
which is valid only in an infinite domain and that must be
properly adapted. Thus, for a generic variable z ¼ x; y
integrated over a finite domain z ∈ ½0; L�, the relation

Z
∞

0

dz
z2 − a2

¼ 0

must be replaced by

Z
L

0

dz
z2 − a2

þ 1

2a
log

				Lþ a
L − a

				 ¼ 0: ðA7Þ

The integral term in (A7) is used to eliminate the singu-
larities on the finite interval ½0; L�, whereas the logarithmic
term represents a finite volume correction.

APPENDIX B: DERIVING EQ. (25)

Let us consider the integral

IðyÞ ¼ PV
Z

∞

−∞

dx
x2 − y2

ðB1Þ

appearing in (25). Since it is 0 if y ≠ 0 [see Eq. (23)] and
diverges if y ¼ 0, we expect it to be proportional to the
delta function δðyÞ. We replace it by the regularized integral

IϵðyÞ ¼
Z

∞

−∞

ðx2 − y2Þdx
ðx2 − y2Þ2 þ ϵ2

; ðB2Þ

which tends to IðyÞ when ϵ → 0. Calculating this integral,
we find

IϵðyÞ ¼
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 þ ϵ4

p
− y2

q
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 þ ϵ4

p :

When ϵ → 0, this is a very sharp function in the vicinity of
y ¼ 0 with the value Iϵð0Þ ¼ π=ð ffiffiffi

2
p

ϵÞ → ∞. It represents
a delta function. The integral

Z
∞

−∞
IϵðyÞdy ¼ π2

2

gives the normalization coefficient. We conclude that

IðyÞ ¼ PV
Z

∞

−∞

dx
x2 − y2

¼ π2

2
δðyÞ: ðB3Þ

APPENDIX C: COUPLED EUCLIDEAN-
MINKOWSKI SYSTEM OF EQUATIONS FOR

THE S-WAVE AMPLITUDES

In Sec. V, making a Wick rotation in the BS equation, we
derived the system of equations coupling the Euclidean
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amplitude FEðk4; k; zÞ and the Minkowski one for the
particular off-shell k0 value ~FMðk; zÞ ¼ FMðk0 ¼
εks − εk; k; zÞ with k ∈ ½0; ks�. To underline the main steps,
this was done without partial wave decomposition. Here,

we give the equations for the S wave, which we solved
numerically. We remind readers that the partial waves FE

L
and FM

L are defined by Eq. (6).
The first equation reads

FE
0 ðk4; kÞ ¼

1

16π
VB
0 ðk4; kÞ þ

1

4π3

Z
∞

0

k02dk0
Z

∞

0

dk04
Vsðk4; k; k04; k0Þ
ðk042 þ a2−Þ

�
FE
0 ðk0; k04Þ

ðk042 þ a2þÞ
−
FE
0 ðk04 ¼ 0; k0Þ

a2þ

�

þ 1

4π3

Z
∞

0

k02dk0π
�
FE
0 ðk04 ¼ 0; k0Þ
ja−ja2þ

V1ðk4; k; k0Þ−
ks
k0
ε3ksF

E
0 ðk04 ¼ 0; ksÞ
2ε4k0 ja−jaþ

VB
0 ðk4; kÞ

�
þ hþ g; ðC1Þ

where the kernels

VB
0 ðk4; kÞ ¼

4πm2α

kks
log

k24 þ μ2 þ ðkþ ksÞ2
k24 þ μ2 þ ðk − ksÞ2

; ðC2Þ

Vsðk4; k; k04; k0Þ ¼
4πm2α

kk0
log

½k24 þ k04
2 þ μ2 þ ðkþ k0Þ2�2 − 4k24k

02
4

½k24 þ k04
2 þ μ2 þ ðk − k0Þ2�2 − 4k24k

02
4

; ðC3Þ

V1ðk4; k; k0Þ ¼
4πm2α

kk0
log

½ja−j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ k0Þ2 þ μ2

p
�2 þ k24

½ja−j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − k0Þ2 þ μ2

p
�2 þ k24

: ðC4Þ

The amplitude ~FM
0 ðkÞ enters in the terms h and h.

The term h is given by

hðk4; kÞ ¼
1

16π2
FE
0 ðk04 ¼ 0; k ¼ ksÞVB

0 ðk4; kÞ
ks
εks

�
ε2ks
m2

þ 4 log
εks
m

− 2 − log 4

�

þ 1

8π2
~FM
0 ðk ¼ ksÞVB

0 ðk4; kÞ
1

εks

�
2m arctan

ks
m

− ks log
2ks
m

�
: ðC5Þ

It does not contain the integrals, and it contains the on-shell Minkowski and Euclidean amplitudes, which coincide with
each other.
The term g is given by

gðk4; kÞ ¼
1

8π2

Z
ks

0

k02dk0
�

~FM
0 ðk0Þ

εk0εksa−
V
2
ðk4; k; k0Þ −

ks
k0
2εks

~FM
0 ðk ¼ ksÞ

ε2k0aþa−
VB
0 ðk4; kÞ

�
þ i
16π

ks
εks

~FM
0 ðk ¼ ksÞVB

0 ðk4; kÞ: ðC6Þ

It contains on the kernel V2ðk4; k; k0Þ

V2ðk4; k; k0Þ ¼
2πm2α

kk0
log

				 ½k24 þ a2− þ μ2 þ ðkþ k0Þ2�2 − 4a2−½μ2 þ ðkþ k0Þ2�
½k24 þ a2− þ μ2 þ ðk − k0Þ2�2 − 4a2−½μ2 þ ðk − k0Þ2�

				: ðC7Þ

Notice that

V1ðk4; k; k0 ¼ ksÞ ¼ V2ðk4; k; k0 ¼ ksÞ ¼ VB
0 ðk4; kÞ;

where VB
0 ðk; k4Þ is defined in (C2).

This completes the full definition of Eq. (C1). Because of subtraction, which we have under any integral, these integrals
are nonsingular.
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The second equation has the following form:

~FM
0 ðkÞ ¼

1

16π
VB
0 ðk4 ¼ iðεks − εkÞ; kÞ

þ 1

4π3

Z
∞

0

k02dk0
Z

∞

0

dk04
Vsðk4 ¼ iðεks − εkÞ; k; k0; k04Þ

ðk042 þ a2−Þ
�
FE
0 ðk04; k0Þ

ðk042 þ a2þÞ
−
FE
0 ðk04 ¼ 0; k0Þ

a2þ

�

þ π

4π3

Z
∞

0

k02dk0
�
FE
0 ðk04 ¼ 0; k0Þ
ja−ja2þ

V1ðk4 ¼ iðεks − εkÞ; k; k0Þ
ksε3ksF

E
0 ðk04 ¼ 0; ksÞ

2k0ε4k0 ja−jaþ
VB
0 ðk4 ¼ iðεks − εkÞ; kÞ

�

þ ~hþ ~gþ ~gi: ðC8Þ

In contrast to Eq. (C1), Eq. (C8) contains the term

~giðkÞ ¼
ig2

64π

Z
ks

0

k02dk0

kk0εksεk0a−
~FM
0 ðk0Þθ

�
1 −

jð2εks − εk0 − εkÞ2 − k02 − k2 − μ2j
2kk0

�
: ðC9Þ

Because of restriction given by the theta function, one can show that this term is identically 0 below the one-meson creation
threshold 2mþ μ. Namely, it provides the value Im½δ� above the threshold: if we omit it, we find always Im½δ� ¼ 0. The
denominator a− ¼ εk0 − εks never crosses 0 since the theta function does not allow that (it restricts the domain where
a− ≠ 0). Kernels VB

0 , Vs, V1, and V2 are correspondingly defined by Eqs. (C2), (C3), (C4), and (C7) above.
The quantity ~h reads

~hðkÞ ¼ 1

16π2
FE
0 ðk4 ¼ 0; k ¼ ksÞVB

0 ðk4 ¼ iðεks − εkÞ; kÞ
ks
εks

�
ε2ks
m2

þ 4 log
εks
m

− 2 − log 4

�

þ 1

8π2
~FM
0 ðk ¼ ksÞVB

0 ðk4 ¼ iðεks − εkÞ; kÞ
1

εks

�
2m arctan

ks
m

− ks log
2ks
m

�
: ðC10Þ

The term ~g has the form

~gðkÞ ¼ 1

8π2

Z
ks

0

k02dk0
�

~FM
0 ðk0Þ

εk0εksa−
V
2
ðk4 ¼ iðεks − εkÞ; k; k0Þ −

ks
k0
2εks

~FM
0 ðk ¼ ksÞ

ε2k0a−aþ
VB
0 ðk4 ¼ iðεks − εkÞ; kÞ

�

þ i
16π

ks
εks

~FM
0 ðk ¼ ksÞVB

0 ðk4 ¼ iðεks − εkÞ; kÞ: ðC11Þ
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