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Two viable large scalar multiplet models with a Z, symmetry
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We study models in which the Higgs sector is extended by a single scalar electroweak multiplet Z with
isospin T'= 5/2 (sextet) or 7/2 (octet) and the same hypercharge as the Standard Model Higgs doublet, in
which Z is odd under a global Z, symmetry. This Z, symmetry keeps the lightest (neutral) member of Z
stable and has interesting implications for phenomenology. We determine the constraints on these models
from precision electroweak measurements and Higgs boson decays to two photons. We compute the
thermal relic density of the stable member of Z and show that, for masses below 1 TeV, it can make up at
most 1% of the dark matter in the Universe. We also show that current dark matter direct detection
experiments do not constrain the models, but future ton-scale experiments will probe their parameter space.
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I. INTRODUCTION

Extensions of the scalar sector of the Standard Model
(SM) beyond the minimal single Higgs doublet are of great
interest in model building and collider phenomenology
and are, as yet, largely unconstrained by experiment. Such
extensions are common in models that address the hier-
archy problem of the SM, such as supersymmetric models
[1] and little Higgs models [2], as well as in models for
neutrino masses, dark matter, etc. Most of these extensions
contain additional SU(2), -singlet, -doublet, and/or -triplet
scalar fields. However, some extensions of the SM contain
scalars in larger multiplets of SU(2), . Such larger multip-
lets have been used to produce a natural dark matter
candidate [3-5], which is kept stable thanks to an acci-
dental global symmetry that is sometimes present in the
Higgs potential for multiplets with isospin 7" > 2. Several
different models with a scalar quadruplet (isospin 7 = 3/2)
[6-11] or scalar quintuplet (7" = 2) [9,11-13] have also
been proposed for neutrino mass generation. The quad-
ruplet has also been studied in the context of strengthening
the electroweak phase transition [14]. Models in which
the SM SU(2), -doublet Higgs mixes with a septet (7 = 3),
aided by additional representations of SU(2),, have been
studied in Ref. [15].

In this paper we consider models that extend the
SM scalar sector through the addition of a single large
multiplet. Perturbative unitarity of scattering amplitudes
involving pairs of scalars and pairs of SU(2), gauge bosons
requires that 7 <7/2 (i.e., n < 8) for a complex scalar
multiplet and 7 < 4 (i.e., n < 9) for a real scalar multiplet
[16]. Of particular interest are models that preserve a global
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U(1) or Z, symmetry under which the large multiplet is
charged. Such symmetries sometimes arise accidentally
at the renormalizable level due to the structure of the
scalar potential (in particular for multiplets with 7 > 2, i.e.,
of size n > 5); in other cases they can be imposed by
hand. Spontaneous breaking of a global U(1) symmetry is
phenomenologically unacceptable because it would lead
to a massless Goldstone boson that couples to fermions
through its mixing with the CP odd component of the SM
Higgs doublet, and thus mediates new long-range forces
between SM fermions. Spontaneous breaking of a Z,
symmetry can lead to problems with domain walls, as
well as being tightly constrained by measurements of
the tho parameter p = M3%,/M%cos?0y, = 1. We will thus
assume that the parameters of the scalar potential are
chosen such that the U(1) or Z, symmetry is not sponta-
neously broken. The lightest member of the single large
multiplet is thus forced to be stable and becomes a dark
matter candidate. We will consider only models in which
the lightest member of the large multiplet is electrically
neutral; models in which the lightest member of the large
multiplet is electrically charged are excluded or strongly
constrained by the absence of electrically charged relics.'
The models that meet these criteria can be grouped
into three classes based on the hypercharge Y of the large
multiplet, as follows:

(i) Models with a real, Y = 0 multiplet, with n =5, 7,
or 9, corresponding to isospin 7 = 2, 3, or 4 (a real
multiplet must have integer isospin). For n =7,
the scalar potential preserves an accidental Z,
symmetry under which the large multiplet is odd;
for n =5 or 9, such a Z, symmetry is not automatic
but can be imposed by hand [18]. These models
are viable and have been considered in Refs. [3,4]

'Metastable multicharged states are constrained by direct
collider searches to be heavier than about 400-500 GeV, depend-
ing on their charge [17].
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as possible candidates for “next-to-minimal” dark
matter.

(i) Models with a complex multiplet with n =5, 6, 7,
or 8 (isospin T = 2, 5/2, 3, or 7/2), with ¥ = 2T?
chosen so that the lightest member of the large
multiplet can be made neutral. The scalar potential
preserves an accidental global U(1) symmetry under
which the large multiplet is charged. The masses of
the states in the large multiplet are split by an
operator of the form (®7z9®)(XTT?X), where ®
is the SM Higgs doublet, X is the large multiplet, and
7% and T“ are the appropriate SU(2), generators.
We studied these models in Ref. [19] and showed
that all except the n = 5 model are excluded by dark
matter direct detection experiments assuming a
standard thermal history of the Universe. The model
with n =35 avoids exclusion from this constraint
because its lightest member can decay via a
dimension-5 Planck-suppressed operator with a life-
time short compared to the age of the Universe.

(iii) Models with a complex multiplet with n = 6 or 8
(isospin T =5/2 or 7/2), with Y = 1. The most
general gauge-invariant scalar potential for these
models does not preserve any global symmetries that
stabilize the large multiplet [18]. To obtain a dark
matter candidate, we impose a Z, symmetry under
which the large multiplet is odd. The would-be
global U(1) symmetry is broken by an operator of
the form (®'z9®)(Z T9Z), where ®, Z denote the
conjugate multiplets. Such an operator can appear
only for this hypercharge choice and only when 7 is
even. We study these models in the current paper.

This paper is organized as follows. In Sec. II we set the

notation and derive the mass eigenstates for the two
Z,-preserving models that we consider. In Sec. III we
obtain the indirect constraints on the model parameters
from perturbative unitarity and from the electroweak
precision measurements via the oblique parameters S, 7,
and U. As a byproduct we present general formulas for
the contributions to S, 7, and U from new scalar particles
whose mass eigenstates are mixtures of states of definite
isospin. We also determine the contribution of the electri-
cally charged members of the large scalar multiplets to the
loop-induced Higgs decays h — yy and h — Zy, and use
the current LHC measurement of & — yy to further con-
strain the model parameters. We also comment on the
conditions to avoid alternate minima in the scalar potential
in which the Z, symmetry would be spontaneously broken.
In Sec. IV we calculate the relic density of the lightest
(neutral) member of the large multiplet from thermal freeze
out. We use this result in Sec. V to predict the dark matter
direct-detection cross section and compare to the reach of

*We use the hypercharge normalization convention in which
Q=T3+Y/2.

PHYSICAL REVIEW D 90, 055029 (2014)

current and future experiments. We conclude in Sec. VI.
Details of the spectrum calculations and Feynman rules are
collected in the appendixes. We leave an evaluation of
direct LEP, Tevatron, and LHC constraints and future LHC
search prospects to future work.

II. THE MODELS

The models we consider here extend the SM through
the addition of a single complex scalar multiplet, Z, with
hypercharge Y = 1. In these models, the most general
gauge-invariant and Z,-invariant scalar potential is given by

V(D,2) = m*®T® + M2ZTZ + 2, (D7)>
+ 1, TZIZ + 13019 ®ZITZ
+ W@ ®ZITZ + Hee] + O(2%), (1)

where x = Cx* are the conjugate multiplets. The conjuga-
tion matrix, C, is an antisymmetric n X n matrix equal
to ic® for the SU(2); doublet and whose form is given in
Eq. (Al) for the n =6 and n = 8 representations. Here
7% and T“ are the generators of SU(2), in the doublet
and n-plet representations, respectively. We will not
need the explicit form of the Z quartic couplings in what
follows.

The term proportional to 4, is not present in the models
with Y = 2T considered in Ref. [19]. This term couples two
SM Higgs fields ® (not ®*) to two Z* fields, with each
pair arranged in an isospin-triplet configuration with total
hypercharge +2. This term breaks the would-be global
U(1) symmetry down to Z, and splits the masses of the real
and imaginary components of the neutral member of Z,
g0 = (¢% +i¢%)/v/2. Any complex phase of 1, can be
absorbed into a phase rotation of Z without loss of
generality. We therefore choose 44 to be real.

The term Z'T“Z is nonzero only for 7' a half-odd integer
(i.e., for even n). Together with the perturbative unitarity
constraint, 7 < 7/2 (n < 8) for complex scalar multiplets
[16], this limits the models of interest to the cases T = 5/2
(m=6)and T=7/2 (n= 8).3 For these cases, the large
multiplet is given in the electroweak basis by

Z(n:6) = (C+3’ Z.:+2’ Z.:_H’ C09 Z:_I’ 5_2)T7
Z(n:S) = (C+47 C+3’ C+2’ C+17 4‘0’ C_19 Z.:_Z’ 4’_3)T' (2)

We will denote the conjugate of the charged state (€ by {2,
which is not the same as €.

We require that the lightest member of the multiplet be
electrically neutral. The presence of the 1, term induces
a mass splitting between the real and imaginary compo-
nents of ¢0 = (¢% + i¢%%)//2, which will lead to one

The case T = 3/2 (n = 4) was studied in Ref. [14].
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component being the lightest member of the multiplet and
the other component being the heaviest. Without loss of
generality, we choose the real part of ¢ to be the lightest
member of the multiplet, corresponding to a choice of
the sign of 4. The requirement that £*" is lighter than any
of the charged states further imposes the require-
ment |A3] < 2|44

The A4 term induces mixing between the states (¢ and
¢=9* with the same (nonzero) electric charge. The mass
eigenstates are defined for Q > 0 in terms of mixing
angles a, as

HY = cos ay¢? + sinapl 2%,
HY = —sinayl? + cos apl 2", (3)

with M0 < mHQ Details of the derivation of the mass
spectnlm and mlxmg angles are given in Appendix A.

A. n = 6 model

The mass of the real part of ¢ in the n = 6 model is
given by

2 M2
My, =M+

1 1
3 1)2 |:/12 + 1113 + 314:| = 1‘/12 + §U2A67

(4)

where Ag is defined as the quantity in brackets above,
and v =246 GeV is the SM Higgs vacuum expectation
value (vev). The mass of the imaginary part of £ is then
31)2/14 (5)

mZO.i = m?

Z_: é‘Or

Since we have chosen {* to be the lightest member of the

multiplet, we are forced to take 4, < O.
The singly and doubly charged states have masses

1 /
2 — 2 2
Mgy, = M, + 7 0° < LTV A+ 32/14)
1 /

where m HO < Mpyo by convention. The mixing angles for
these mass elgenstates are given by

420,
tan a; = N
Ay + /23 + 3225
—V/54
tana, = VS (7)

s+ +515

There is only one triply charged state, the mass of which
is given by
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3
mo = mp, — 1 v* (A3 + 244). (8)

We note the following features of the spectrum. When
¢07 is the lightest state, the mass eigenstates always fall in
order, from lightest to heaviest, of

é‘O,F’H—lF’H?"F’C+37H3‘+’H3"C0,i‘ (9)

Furthermore, recall that |3 < 2|44| is required for (%" to
be lighter than any of the charged states. As we will show in
Sec. III B, constraints from the oblique parameters force 15
to be negative and quite close to the limit A3 = 244, unless
both 45 and A4 are very small. This leads to a clustering of
the mass eigenstates in two groups: a lower-mass cluster
consisting of (", H, and H{*, and a higher-mass cluster
consisting of {3, Hy ", HY, and ¢*. This is illustrated in
Fig. 1, in which we show two sample spectra as a function
of 44, holding m.- and 15 fixed.

In the limit A3 = 24, the mass spectrum collapses to two
degenerate sets of particles: (%", H{, and H{ " become
degenerate with mass ., while (B HST, H;’ , and (%

become degenerate with with mass meoi = /m (0, —30v%A,.

In this limit, the composition of the mixed states in the
n = 6 model becomes

HT_\/§§+1_\/§Z:_I*’ H;r_\/§§+l+\/§z_:_l*
++ __ l 2 \/g —2% __\/g 2 \/I —2%
H1+—\/;C+ + 6(: , Hy"= 64“* + 6§ :
(10)

In particular, all transitions among the mass eigenstates
mediated by W* or Z emission proceed with roughly
comparable coupling strength.

B. n = 8 model

The mass of the real part of % in the n = 8 model is
given by

1 1 1
mé,.r :M2+§’U2 |:12+1/13—4/14:| EM2+§’UZA8,
(11)

where Ag is defined as the quantity in brackets above. The
mass of the imaginary part of {° is then

mzvo = m{m + 40°%),. (12)

Since we have chosen %" as the lightest member, we are
forced to take A4, > 0.
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FIG. 1 (color online).

Sample mass spectra for the n = 6 model as a function of 1,. Allowed A, values lie to the left of the vertical

dotted line (so that %" is the lightest state) and to the right of both vertical solid lines. The thick vertical solid line marks the unitarity
bound on 44 while the thin vertical solid line marks the bound from precision electroweak constraints. Left: mq., = 150 GeV and

A3 = —0.2. Right: m., =500 GeV and 13 = 3.

The singly, doubly, and triply charged states have masses

1
W = g (8@;,/@%0@3),
1
M = 30 <4,14:F, 22+ mﬁ),
1
M = ml, + 507 (8,14:F,/9,1§+28,1§), (13)

where again m HO < Mpo by convention. The mixing
angles for these mass elgenstates are given by

-2V15),
Js+ /7 + 6043
231,
da+ 7+ 1205
2724
35+ /9% + 284

There is only one quadruply charged state, the mass of
which is given by

tano; =

tan Q) =

tanaz = (14)

s =l = 020 = 24). (15)

When (%7 is the lightest state, the mass eigenstates
always fall in order, from lightest to heaviest, of

SO HY HTY HP ¢ HP Hy T HY O (16)

Constraints from the oblique parameters will again force A5
to be negative and quite close to the limit A; = —24, (with
|43] < 2|44]). In this limit, the mass spectrum again col-
lapses to two degenerate sets of particles: (", H], H{ ™,
and HT3 become degenerate with mass meor, while ¢4,

Hy?, H ", H, and (% become degenerate with mass

mei =,/ mé%o_, +49?)4. In this limit, the composition of

the mixed states in the n = 8 model becomes

e o s o flon
I S
(17)

Again, all transitions among the mass eigenstates mediated
by W* or Z emission proceed with roughly comparable
coupling strength.

III. CONSTRAINTS ON COUPLINGS
AND MASSES

In this section we determine the constraints on the model
parameters from perturbative unitarity, from the oblique
parameters S, 7, and U, and from the contributions of
the new charged scalars to the loop-induced decays of the
SM Higgs boson, i — yy and h — Zy. We also comment
on conditions to avoid alternate minima in which the {
fields would have a nonzero vev.
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Throughout this section, we show numerical results
for the real neutral scalar in the mass range mq, =
80-500 GeV. We expect that scalars lighter than
80 GeV will be strongly constrained by searches at the
CERN Large Electron-Positron (LEP) collider. We leave
the analysis of LEP constraints and CERN Large Hadron
Collider (LHC) discovery prospects to future work.

A. Unitarity constraints on scalar quartic couplings

The scalar quartic couplings 4,, 13, and A, given in
Eq. (1) can be bounded by requiring perturbative unitarity
of the zeroth partial wave scattering amplitudes. The partial
wave amplitudes are related to scattering matrix elements
according to

M =162 (2] + 1)a,P,(cos 0), (18)
J

where J is the orbital angular momentum of the final state
and P,(cos®) is the corresponding Legendre polynomial.
Perturbative unitarity of the zeroth partial wave amplitude
dictates the tree-level constraint,

1
|Rea0\ SE (19)

We perform a coupled-channel analysis for processes
SS — 8§ and SS — VV, where SS denotes any pair of
scalars contained in ¢ or Z and VV denotes any pair of
transversely polarized electroweak gauge bosons. We
include the SS§ — VV channels only for scalars contained
in Z, whose amplitudes are enhanced by the large value
of n.* We work in the hi gh-energy limit and treat the Goldstone
bosons as physical particles in place of the longitudinal
components of the electroweak gauge bosons. For simplicity,
we further neglect contributions from the quartic coupling 4,,
which is known to be small now that the SM-like Higgs boson
mass has been measured, and from quartic couplings involv-
ing four Z fields. We find numerically that including such
contributions leads to tighter constraints on 4,, 43, and 4. As
such, our bounds are conservative.

The scattering amplitudes are conveniently classified
according to the total isospin and total hypercharge of the
initial and final two-particle states. The relevant amplitudes
for the isospin-zero, hypercharge-zero channels are [19]

allclo = #°4l0) == a

2 (2 7
aulfcdlo = WWlg) = L,

sk Y2\/n
allecly = 88 =2 )

“This is the phenomenon that ultimately puts an upper limit on
n [16].
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where the {*{ — WW, BB amplitudes include both of the
contributing transverse gauge boson polarization combi-
nations [16]. Here g is the SU(2), gauge coupling and
Sw, Cw = sin Oy, cos Oy are the sine and cosine of the weak
mixing angle, and Y = 1 for our models. We define the
following normalized isospin-zero, hypercharge-zero field
combinations:

L — 0x 10
fz(rﬁ*r/» + ¢ ¢°),

1
* - (0 4Y

[P blo =

WW], = % <\/§W+W— + (W;g/3>>
[BB], = BB/ V2. (21)

where the sum over Q runs over the n isospin eigenstates
in Z as shown in Eq. (2). The relevant amplitudes for the
isospin-one, hypercharge-zero channels are [19]

n(n*-1)
ao([¢*¢) = [¢7¢l1) = _W%,
ety )y = eIV )

where again the {*{ — WB amplitude includes both of the
contributing transverse gauge boson polarization combi-
nations [16]. Here we used the following normalized
isospin-one, hypercharge-zero field combinations:

[9" ], 45*4) - ¢"¢").
[WB], = W3B. (23)

Finally, the relevant amplitude for the isospin-one,
hypercharge-two channel is

Sl =YD, g

ao([£¢, 16v/67

where the normalized isospin-one, hypercharge-two field
combinations are

[¢¢]1 = ¢+¢0»
n/2
tesf :,/n< WZ( 1Y(2j — )T,
(25)
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Finding the eigenvalues of the coupled-channel ampli-
tude matrices and applying the constraint of Eq. (19), we
obtain the following upper bounds on |4,|, |43 |:

] < Rz g’ =1 g'sy
2=\ n 24 8chy’

38472 53
Ll <24 ——— - * ¥
4] < \/n(nz—l) g 3,

44| < 87

%. (26)

Numerical values’ for n = 6 and 8 are given in Table 1.

B. Constraints from the oblique parameters
S, T,and U

Further constraints can be obtained from experimental
measurements of the electroweak oblique parameters
S, T, and U [20]. These parameters probe new physics
that can appear in loops in the electroweak gauge boson

|

PHYSICAL REVIEW D 90, 055029 (2014)

self-energies. They were previously calculated for a large
scalar multiplet with arbitrary isospin and hypercharge in
the case of a global U(1) symmetry in Ref. [21]. We
recomputed the contributions of a large scalar multiplet to
S, T, and U for the global Z,-preserving case, in which the
mass eigenstates do not always correspond to isospin
eigenstates. We checked that our results reduce to the
U(1)-preserving limit when 44 — O.
For the S parameter we find,

2 2
ST C Cc S
S= L WZ(|CUZ|2 ?Cuzcw |C1/y| >

LJ

X f1(m;,m;), (27)

where the couplings C;jy involving scalars i, j and
vector boson V are defined with an overall factor of e
removed (see Appendix B 2). The sums over states i and j
run over ij = {¢07¢0 HICH,C, ¢/, where ki =
11,12,21,22 and Q > 0. The dimensionless function
Sf1(my, my) is defined as

fi(my,my) = f1(my, my) = /1 dxx(1 = x)log [xm? + (1 — x)m3]

0
5(mS§—m$)+27(m}m?

m2) log(my)+12(3m?mi—m$) log(ms)

1 2
s logmy

For the T parameter we find,

rrWt
47TM2 |: ZS < - _Crr*ZZ>f2(mr7mr)
_ |CstW+‘ 2
2Z—CW falmg,my) +2 " |CoizPfa(mimy) |
5.t i.j
(29)

where the couplings C,,-yy involving scalars rr* and vector
bosons X, Y are defined with an overall factor of e2
|

2m3)+12(mb=3
36(mi—m

l )3 for m ?é my,
(28)

for m; = m,.

|
removed (see Appendix B 2). The sum over states r runs
over r= {07, ¢% H? "2}, with Q >0 and k= 1,2.
For these couplings, S, is a symmetry factor given by
S,=1/2 for r=¢" or ¢% and S, =1 otherwise.
The sums over states s and ¢ run over
st = {{O" Hy, (M HD, HPCHC o2 H 7Y, where
again kl = 11,12,21,22 and Q > 0. The sums over states
i and j run over the same set of states given below Eq. (27).
The function f,(m;, m,) has dimensions of mass-squared
and is defined as

fz(ml,mz)=fz(mz,m1)=A dx(xmi + (1= x)m3)log [xmy + (1 - x)m3)]

2
milogm?

*We use ¢* = 4na/sy, st = 0.231, and a = 1/128.

> [m}logm,; —

{——(m1+m2)+ 2 m

—milogm,] form; #my, (30)
form; =m,.
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TABLE I.  Upper limits on |4,], |43], and |A4] from perturbative
unitarity for the models with n = 6 and 8.

n Ao |45 ]m |Aq ™
6 6.59 8.48 4.25

8 3.10 5.46 2.74

For the U parameter we find

§2
U="213"|Coy+ :
T |:s’t| stW |f1(ms mt)

—Z(C%HCijz|2+2SWCWCijo?jy+S%v|Cijy|2)f1(mhmj) ,
LJ

(31)

where the sums over states ij and st run over the same sets
of states given below Egs. (27) and (29).

We impose a 95% confidence level constraint from
the oblique parameters using a y? built from the current
experimental values, S, =0.03+0.10, 7, =0.05£0.12,
Uexp =0.03+0.10, and the relative correlations
pPst = 089, Pru = —083, Psu = —-0.54 [22] The
95% confidence level y? constraint in the three-dimensional
parameter space is given by6

2= (0;-07)(0; - 07)[e”]; <7815, (32)

ij

where O; is the ith observable of the set S, T, U and [¢*];}'
is the inverse of the matrix of uncertainties,

[0’2]1'; = AO;AOp;;. (33)
where p;; are the relative correlations (note that p;; = 1).

The contributions of the large multiplet to S, 7', and U
depend only on the mass spectrum and mass-eigenstate
compositions. Thus the oblique parameters constrain only
A3, A4, and the overall mass scale, which can be para-
metrized by m... The ranges of 43 and 4, allowed by the
oblique parameters for sample values mo.. = 80, 150, and
300 GeV are shown in Fig. 2. We have imposed the
constraint |A3] < 2|44], indicated by the diagonal lines,
which is required for £%” to be the lightest state.

As can be seen in Fig. 2, the allowed parameter space is
tightly constrained to lie near the |A3| = 2|44/ line. This is
driven by the contributions of the large multiplet to the T
and U parameters, which rapidly become large away from
this line. This feature leads to the clustering of the mass

We use a y constraint, rather than a Ay? = 42 — 42, relative
to the minimum y? obtained in the model, so that parameter
points that yield S, 7, U values too far from the experimental
measurements will be excluded. For comparison, the SM point
(S,T,U) = (0,0,0) has a y* value of 4.40 and the minimum y?
obtained in the models is about 1.4 for n = 6 and 1.3 for n = 8.
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eigenstates into two groups as discussed in Sec. I
Furthermore, unless both A3 and A4 are very small, the
oblique parameters require A3 < 0. This results in the
state with the largest electric charge ({3 for n = 6 and
¢+ for n = 8) to be clustered with the heavier group of
mass eigenstates. The length of the allowed region along
the |A3] = 2|A4| line is limited mainly by the S parameter
constraint.

To better understand the source of these constraints, we
plot the projections of the S,7,U 95% confidence level
constraint ellipsoid, along with the region populated by the
models, in Figs. 3, 4, and 5. The T and U measurements
severely constrain the parameter space, as can be seen in
Fig. 3. This in turn tightens the allowed excursion of the §
parameter, as shown in Figs. 4 and 5. In particular, because
of the correlations among the measured values of S, 7', and
U, positive values of S are severely constrained. The sign of
S is the same as the sign of 45 in our models. This constraint
therefore leads to the preference for negative values of 4.

The oblique parameters tightly constrain the mass split-
tings among the lightest states of the large multiplet. The
first mass splitting between ¢*" and H| must be quite
small: for my.- <500 GeV, this splitting Am = m HY — Mg
is less than 1.5 GeV in the n = 6 model and less than
0.7 GeV in the n = 8 model (see Fig. 6).

The splitting between the heavier group of states and the
lighter group of states, on the other hand, is much less
tightly constrained. The allowed mass splitting between the
lightest state £%" and the heavier singly charged state H;,
AM = my+ —mgp.r, is shown in Fig. 7 as a function of
mo.r. For the n = 6 model, this splitting can be as large as
100 GeV for my. = 100 GeV, growing to 450 GeV for
mgr =500 GeV. For the n =38 model the maximum
allowed mass splitting is about half as large, ranging
between about 50 and about 200 GeV for my., between
100 and 500 GeV. The linear growth of the maximum
allowed mass splitting shown in Fig. 7 is eventually cut
off by the unitarity constraints on A; and A, for large
enough mo..

C. Constraints from the loop-induced
Higgs decay h — yy

To constrain the parameter 4,, we consider the one-loop
contributions of the charged scalars to the Higgs decay
h — yy.” The decay partial width for 1 — yy can be written
as [23]

_@f
102473 M2,

2
)

L(h - yy) (34)

> N.OIF;

where i sums over charged particles of spin 0, 1/2, and 1,
Q; is the electric charge of the particle in the loop in units

"Contributions to & — yy from multiply charged scalars in the
loop have also been considered in Refs. [5,12].
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95% confidence level constraint ellipsoid (thick black ellipse). Points allowed by the S, 7T, U constraint are shown in green (lighter
shaded region). The thin black ellipse indicates the slice through the three-dimensional constraint ellipsoid at § = 0. Left: n = 6 model.

Right: n = 8 model.

of e, N is the color multiplicity (3 for quarks and 1 for
color-singlet particles), and F; is a function that depends on
the spin and mass of the particle in the loop [23]:
Fi=243t43t2-1)f(1),
Fipp= =271+ (1-7)f(7)].
Fo = pel —zf(1)]. (35)

Here 7; = 4m?/M?, where m; is the mass of the particle in
the loop, and the function f(7) is given by [23]

=

2
{arcsin( ﬂ if 7 >1,
2
—i[ln <Z—+—iﬂ>:| if <1,

with 7. =14 +/1 — 7. In the numerical computation of
partial widths we include only the top quark and W boson
contributions, as well as the new scalars; contributions from
the lighter fermions are small.

fle) = (36)
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FIG. 4 (color online). Unitarity-allowed S and 7" values for m.o.. = 80-500 GeV (shaded regions) and the projection of the S, T, U
95% confidence level constraint ellipsoid (thick black ellipse). Points allowed by the S, 7, U constraint are shown in green (lighter
shaded region). The thin black ellipse indicates the slice through the three-dimensional constraint ellipsoid at U = 0. Left: n = 6 model.
Right: n = 8 model.
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FIG. 5 (color online).  Unitarity-allowed S and U values for mx., = 80-500 GeV (shaded regions) and the projection of the S, T, U
95% confidence level constraint ellipsoid (thick black ellipse). Points allowed by the S, T, U constraint are shown in green (lighter
shaded region). The thin black ellipse indicates the slice through the three-dimensional constraint ellipsoid at 7 = 0. Scatter in the plot is
due to the numerical scan. Left: n = 6 model. Right: » = 8 model.

For a scalar particle in the loop, we have inserted the v? Ay 1 212 5 12
factor /3 into the definition of F, to capture the coupling of p HY, =52 . 2R 472 \/Q A3+ (n* —40°)4 |
the scalar to the Higgs, Hy,
v? { n—1
M v ﬂ +n/2 — & ﬂ - l :| . 38
P = Chss g—mvg = Chys oyl (37) ¢ 2m§+n/z P4 (38)

The couplings Cj, for our models are collected in  Because these couplings depend on 4,, measurements of
Appendix B. Note that all couplings of the Higgs to pairs  the Higgs decay h# — yy can be used to put additional
of scalars from the large multiplet are diagonal in the mass ~ constraints on 4, as a function of A3, 44, and my.. The
basis. The functions f for the scalars H lQ and {*"/% in the ~ ATLAS and CMS experiments have measured the Higgs
loop can be written as signal strength y,, in the yy final state, defined relative to
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the SM prediction. Because Higgs production rates are
not modified in our models, and because the only signifi-
cant effect of the new scalars on Higgs decays is through
modification of the partial widths of the rare loop-induced
processes h — yy and h — Zy, we have to a very good
approximation

I(h = yy)
Com(h = yy)’

Hyy = Ryy (39)
and an analogous expression for R,. The measured values
of this rate from ATLAS and CMS are summarized in
Table II.

We find the allowed range of 4, as a function of m.- by
scanning over the values of 1; and /1, allowed by the
oblique parameter constraints and perturbative unitarity.
We accept points for which R,, falls within the 26 range for

My, of either the ATLAS or CMS measurement. Results are
shown in Fig. 8. Note that the constraint from perturbative
unitarity, |4,| < 6.59 (3.10) for n = 6 (8), is visible in the
plots. The upper branch of allowed 4, values, clearly visible
in the right panel of Fig. 8 for n =8, corresponds to a
sign flip of the total 7 — yy amplitude relative to the SM
prediction. This is separated from the rest of the points due

TABLE II. Current measurements of the signal strengths for
h — yy and h — Zy relative to the SM predictions. For h — Zy
we quote the 95% confidence level upper bounds for

M, =125 GeV.

Observable ATLAS CMS

Ky 1651035 [24] 0.78%928 [25)
Hz, < 18.2 [26] <10 [27]
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to the lower bound on y,,. The same feature is present in the
n = 6 case, though it is less clearly visible in Fig. 8 due to
the wider allowed ranges of 13 and A4.

The application of the h — yy constraint does not
significantly restrict the range of A; or A beyond the
constraints already obtained from the oblique parameters
and perturbative unitarity.

D. Predictions for h — Zy

The charged scalars in our models also contribute to the
loop-induced decay h — Zy. The decay partial width for

this process can be written as (see, e.g., Ref. [23])
o
51273

2
[(h— Zy) = ;(AF +Ay) +Ag

2 M2 3
M; {1 _g} :
M,
(40)
where the contributions to the amplitude from fermions,
the W boson, and scalars are given by8

) SVL_2 2
AF:Zch Qf(Tf QfsW)[

: Il(vaﬂf)_IZ(vaﬂf)]a
f Swlw

AW = —COtGW{4(3 —tanzew)lz(’l'w,ﬂw)

- Kl +%>tan29w— <5 +%>] 11(Tva1w)}’

C SSCSS QS
ASZZZh—zzll(Tyvls)v (41)

m

®It was pointed out in Ref. [28] that there are some discrep-
ancies in the literature among different calculations of the
contributions of charged scalars to the amplitude for 7 — Zy.
Our formulas are consistent with those of Refs. [23,28,29].

where the scalar couplings Cj,, and C,,, are given in
Appendix B and 4; is defined analogously to z; but with M,
replaced by M:

4m?

/11' = le . (42)
VA

The sums over f and s run over all charged fermions and
scalars in the model (in our numerical calculation, we
neglect all fermions other than the top quark).

The functions I;(a, b) are defined as [23]

ab a’b?

Iab) =3 = Y 3=y
a’b

+ (a-bp [9(a) — g(b)],

[f(a) = F(P)]

ab

Iz(a,b) = —m

[f(a) = £ (b)], (43)

where the function f(z) was given in Eq. (36) and the
function g(z) is defined as

V7 — 1 arcsin <\£)

%\/l—r[ln <”—f—iﬂ>] if 7 <1.

if >1,

g(r) = (44)

n

The LHC experiments currently constrain the rate for
h — Zy to be less than about 10 times the SM prediction
(see Table II). This does not further constrain the parameter
space of our models once the constraints from perturbative
unitarity, oblique parameters, and h — yy have been
applied. Indeed, we find Rz, to be strongly correlated

with R,,, as shown in Fig. 9. Imposing all experimental
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constraints previously discussed and scanning my.- in the
range 80-500 GeV, we find that the ratio Rz, /R, lies
between approximately 0.7 and 1.3 for the n = 6 model,
and between approximately 0.8 and 1.2 for the n =38
model but with some points higher than the quoted range,
as can be seen in Fig. 9.

E. Condition to avoid Z,-breaking minima
in the scalar potential

In any extended Higgs sector, the avoidance of
alternative minima in the scalar potential—which could
potentially break electric charge or other desired sym-
metries of the model—can provide additional constraints
on the model parameters. In our models, a sufficient’
condition to avoid alternate minima in which one or more
of the ¢ fields acquires a vev is to require M? > 0 in Eq. (1).
This holds so long as the potential is bounded from below
and none of the fields are tachyonic at the desired
electroweak symmetry breaking vacuum. For a fixed value
of my., this imposes an upper limit on A or Ag via Egs. (4)
or (11), respectively. As we will see in the next sections,
this constraint has an effect on the predictions for the
allowed thermal relic density of (%" and its direct detection
Ccross section.

IV. THERMAL RELIC DENSITY

The relic abundance of {% is determined by its inter-
actions in the early Universe. If we assume a standard

"We have not proved that this condition is necessary.

thermal history—i.e., that the temperature was high enough
at one time for £%” to have been in thermal equilibrium, and
that no late-decaying relics enhanced or diluted the %"
density—then the relic density of ¢%" at the present time
can be computed from its annihilation rate in the early
Universe. For generic relics, the density will be inversely
proportional to the annihilation cross section, Qy
(oxve)~" [30], where v, is the relative velocity of the
two particles in the annihilation collision and the brackets
indicate an average over this velocity distribution at the
time of freeze-out. Such an average is numerically neces-
sary only if the annihilation cross section vanishes in the
Ve — O limit. Because of this simple relationship, we
can determine the fraction of the total dark matter that is
made up by ¢% using the formula

QC),:- _ <0'Urel>std (45)
QDM <6’Urel(é‘07ré‘07r - any)) ,

where Qpy, is the current total dark matter relic abundance
and (00, )y 18 the “standard” annihilation cross section
required to obtain this total dark matter relic abundance, for
which we use (60)gq = 3 x 1072 cm?/s [30].

A. Annihilations to two-body final states

The ¢%" is a self-annihilating particle which interacts
with the SM via gauge or Higgs boson exchange. As such,
the final states for the annihilation of two (% particles
include WrW~=, ZZ, hh, and ff (via s-channel Higgs
exchange). We neglect coannihilations with other scalars
from the Z,-odd multiplet. We compute the annihilation
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cross sections in the zero-velocity limit. Because these cross sections are all nonzero in this limit, we do not need to average

over the velocity distribution.

The annihilation cross sections to two-body final states are given in the v, — 0 limit by

M3, M3
oV ({0780 = WHWT) = 1=

4 2

8rv Mo,

m2
+2AWBW<1—3 S o

A2 m,
W (3—4 &
M,

&
4M4>

> 2.2 mg‘“ ?
o (5]

M2

M‘Z;V M
M M2 [ A2 S mb,
0,r #0,r 77) = Z _ Z Z 34 § +4 4
v (18 = 22) 167v* mzvov,‘ mgo_, M?, M7
2
é‘()r s m .7
+2AZBZ(1_3M% —|—2M4>+Bzméo,<l— M%) :|,
Az, M 3M2 22, 12
Gvrel(co rCOr - hh) 1- |:1 + 2 ZU 2:| ’
6dnm, \| " md, | amd, ML 2mk, — M
N m2 2 A2
OV CO,rCO,r d =—= |:1 - :| , 46
l( ff) mé%{),r (4m§0r M%)Z ( )

where n = 6, 8 is the size of the multiplet, N .. is the number
of colors of the final-state fermions, and v = 246 GeV is
the usual Higgs vacuum expectation value. The coefficients
used in the cross section formulas for ¢%7¢0" — W+w-
and {979 — ZZ are given by

A, 0?
A, =1+ z , (47)
4m§0_, - M;
4
B, = , 48
7 R ——, 48)
n>-2 A, v?

Ay = n , 49
L) +4m§0,, -M; (49)
<ncosa1 —Vn? —4sina1>2

B pu—
w M%V é'()r - miIT
(—n sina; — Vn? — 4005011)2
+ . 50
M2 _ mCOr _ mz;r ( )

The combinations of couplings Ag and Ag were defined in
Egs. (4) and (11), respectively; they can both be expressed
by the formula

1
Ay =4+ 77s +g(—1)"/2+1/14. (51)

We note that when my, > My, M7, the annihilation

cross sections for (%7¢%" - W+W~ and ZZ go like 1/ mgo

In this limit, the new scalars become increasingly degenerate
due to the constraints on the size of |43| and |44]; the values
of Ay 7 and By, ; are then related in such a Way as to allow a
cancellation of the m%,, /M3, , and m /M3, , terms in the
square brackets, which would 0therw1se make the cross
section grow with increasing myo.. This cancellation pro-
vides a nice cross-check of the matrix element calculation.
We also checked our analytic results using CalcHEP [31].

B. Numerical results

In Fig. 10 we show the fraction of the total dark matter
density that can be made up of ¢*”, computed using
Eq. (45) including all kinematically accessible two-body
final states, as a function of m. for the models with n = 6
and 8. We scan over 4,, 13, and A4, applying in succession
the constraints from perturbative unitarity (dark purple
regions), the oblique parameters S, 7, and U (medium
green regions), and Higgs decays to two photons (light blue
regions). We also show the allowed region after imposing
all of the above constraints together with the requirement
M? > 0, so that the potential is guaranteed not to have any
Z,-breaking minima (very light pink regions).

The possibility of very small relic densities that opens
up when mgp., > 125 GeV is due to the crossing of the
kinematic threshold for £%¢%" — hh. However, imposition
of the oblique parameter constraints (medium green) and
particularly the 4 — yy (light blue) and M? > 0 (very light
pink) constraints severely limits the allowed strength A, of
the h(h)¢% ¢%" couplings, leading to a more tightly con-
strained relic density. For £ masses above about 500 GeV
in the n = 6 model (800 GeV in the n = 8 model) the
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FIG. 10 (color online). The fraction Q.- /Qpy of the total dark matter density that can be made up of ¢’ 0.7 as a function of me.r. The
colored regions show the accessible range of €2:0-/€p)y obtained from a numerical scan over parameter space after successively
applying constraints from perturbative unitarity (dark purple), the oblique parameters S, 7, and U (medium green), Higgs decays to two
photons (light blue), and the requirement M> > 0 to avoid alternate minima (very light pink). Left: n = 6 model. Right: n = 8 model.
(In the n = 8 case, the very light pink region almost entirely covers the light blue region.)

constraints on 4,, 45, and 44, come only from perturbative
unitarity.

We find that, for allowed parameter choices and
meor <1 TeV, the thermal relic abundance of é("’ can
account for at most 1% of the dark matter. In particular, the
two models that we study are consistent with the observed
dark matter relic abundance and thus viable extensions of
the SM, assuming that most of the dark matter is made up
of some other candidate particle.

Extending our calculation to higher masses, we find that
¢%7 could account for all the dark matter for masses of
10-33 TeV for the n = 6 model, or 18-30 TeV for the
n = 8 model. However, we have not included effects from
coannihilations or Sommerfeld enhancement which may
become important for such heavy masses. Since we are
primarily interested in the viability of the large-multiplet
models as candidates for LHC searches below the 1 TeV
mass range, a detailed treatment of these issues is beyond
the scope of this paper.

V. DARK MATTER DIRECT DETECTION

Scattering of {%" off a nucleon N = p, n proceeds only
via Higgs exchange. The resulting spin-independent per-
nucleon cross section is given by

h ZA%,UZ m2
Ggl _ (fN) X N 5 (52)
4zMy,  (my +meor)

where A2v? is the square of the h%" (%" coupling defined
in Eq. (51) and the Higgs-nucleon Yukawa couplings are
given by [32]

£ ="2(0.350 £ 0.048),
v

£ ="1(0.353 + 0.049). (53)
v

Because the relic density of £ is only a fraction of the
total dark matter density, the direct-detection scattering
cross section og;” quoted by experiments does not corre-
spond directly to agl, but rather to ogl scaled by the fraction

of the total dark matter density that is made up by ¢%’:

QC‘“ ¢ <0 Urel>std ¢

O¢p = oy,
QDM St <Gvrel(§0’ré’0’r_)any)> .

exp _
Osp —

(54)

where we have used the relic density scaling relationship
of Eq. (45).

In Fig. 11 we show the predicted range of density-scaled
experimental direct detection cross sections og,", calculated
according to Eq. (54), as a function of mo, for the models
with n = 6 and 8. As before, we scan over 4,, 13, and 44,
applying in succession the constraints from perturbative
unitarity (dark purple regions), the oblique parameters
S, T, and U (medium green regions), Higgs decays to
two photons (light blue regions), and M?> > 0 to avoid
alternate minima (very light pink regions). Because the
scattering cross section mediated by Higgs exchange is
proportional to A2, o5’ can be made arbitrarily small by
tuning 1,, 43, and A4 so that A, < 1.1

For {*" masses in our range of interest, the strongest
experimental upper limit on o5,” currently comes from the
LUX experiment [34]. As can be seen in Fig. 11, the current
sensitivity is not yet sufficient to probe the allowed
parameter space after imposing the other constraints
on model parameters. We also show projections for the
future sensitivities of the LUX [35], DEAP-3600 [36],
and XENONIT [37] experiments as compiled on the

“In the limit A, — 0, loop-induced scattering processes
mediated by W and Z bosons will generically contribute at the
level of 6% ~ 10~4648) cm? [33], or o5 ~ 10~4853) cm?,
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FIG. 11 (color online). Predictions for the experimentally defined direct detection cross section GSIP [see Eq. (54)] as a function of
mgo,. The colored regions show the accessible range of o) obtained from a numerical scan over parameter space after successively
applying constraints from perturbative unitarity (dark purple), the oblique parameters S, 7, and U (medium green), Higgs decays to
two photons (light blue), and the requirement M2 > 0 to avoid alternate minima (very light pink). Also shown are the current
experimental upper bound from the LUX experiment [34] (solid black curve), as well as projections for the ultimate sensitivities of the
LUX, DEAP-3600, and XENONIT experiments [38] (dashed curves). Left: n = 6 model. Right: » = 8 model.

DMTools web site [38]."" The projected LUX and DEAP-
3600 sensitivities begin to probe the upper edge of the
n =6 model.'”> The projected XENONIT sensitivity
probes deep into the allowed model parameter space,
reaching a full order of magnitude beyond the largest
experimental direct-detection cross sections allowed in
both the n = 6 and n = 8 models. The projected sensitivity
of the SuperCDMS experiment at SNOLAB is close to
that of XENONIT [39]. The projected sensitivity of the
proposed LUX upgrade LZ reaches an order of magnitude
deeper in og," than that of XENONIT [39].

Finally, we briefly comment on inelastic direct-detection
scattering processes. In the high-mass region, where the
mass splittings are small, it may be possible for the £ to
up-scatter to a £, providing an alternative direct detection
mechanism through Z-boson exchange. At the kinematic
threshold, the accessible mass splitting is given in terms of
the ambient £ velocity v, by

meoi — meor < \/mi + mgo_, + 2mympory /1 + vg

- (MA + mé‘O.r),

(55)

where m, is the mass of the scattering target. In our case,
the current dark matter velocity is v, ~ 1073¢ and the
scattering target is a xenon nucleus with m, ~ 124 GeV.

"The data sets from DMTools plotted in Fig. 11 are as
follows. LUX: 300-day projection, R. Gaitskell (Brown) and
D. McKinsey (Yale), 2013. DEAP-3600: 1000 kg fiducial mass,
D. McKinsey (Fermilab), May 2007 projection. XENONIT:
3 ton-years, K. Ni (Columbia), 2009 projection.

2We note that more recent compilations such as Ref. [39]
quote the DEAP-3600 sensitivity as being a factor of 2 better
than the 2007 projection available from DMTools and shown in
Fig. 11.

For m., > m,, Eq. (55) approaches a constant value,
meoi = meor S myvz/2 ~60 keV. In turn, this implies that
the mass splittings between the electrically charged scalars
and ¢%” would be much less than the mass of an electron,
forcing the electrically charged scalars to be stable. We
conclude that the absence of heavy charged relics precludes
the possibility of inelastic direct-detection scattering in

our models.

VI. DISCUSSION AND CONCLUSIONS

In this paper we examined extensions of the SM scalar
sector containing a single large multiplet of SU(2), in
addition to the SM Higgs doublet. We focused on two
models, one in which the large multiplet has isospin
T =5/2 (n=06) and hypercharge Y =1 and the other
with T =7/2 (n = 8) and Y = 1. We impose a global Z,
symmetry on the scalar potential, which forces the lightest
member of the large multiplet to be stable.

Starting from the scalar potential for each of the two
models, we worked out the spectrum of mass eigenstates
and their couplings to SM gauge and Higgs bosons. We
then determined the constraints on the model parameters
from perturbative unitarity, the oblique parameters S, 7,
and U, and SM Higgs decays to two photons. We also
imposed a sufficient condition on the Z mass-squared
parameter to ensure that the potential has no Z,-breaking
minima. We computed the predictions for Higgs decays to
Zy, as well as the thermal relic abundance of the lightest
member of the large multiplet and its cross section in dark
matter direct-detection experiments.

We found that both models are viable for a wide range of
masses of the new scalars within the kinematic reach of the
LHC. The mass splittings of the new scalars are constrained
mainly by the oblique parameters, which force the mass
eigenstates to be tightly clustered into two groups. These
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groups can in turn be separated by tens to hundreds of GeV,
depending on the mass of the lightest new scalar. This
feature of the spectrum will have interesting implications
for the kinematics of collider events involving pair pro-
duction and decay of the new scalars.

We finish by commenting on a few features of the

models that may warrant further study.

(i) The masses of the new scalars are bounded from
above by the requirement that their relic density not
be larger than the observed dark matter density in the
Universe. This bound will lie in the several-to-tens
of TeV range. An accurate determination of this
bound will require a more careful treatment of
coannihilations and Sommerfeld effects in the cal-
culation of the relic density.

(i1) The total cross section for production of pairs of the
new scalars at the LHC via electroweak processes
will be enhanced by the large multiplicity of scalar
states and by their large weak charges. The LHC
reach for these particles may thus extend to higher
masses than the reach for other scalar extensions of
the SM involving smaller representations of SU(2), .

(iii)) Our models affect the running of the electroweak
gauge couplings. In particular, the one-loop
SU(2); beta function coefficient becomes
by =—19/6 +n(n*—1)/36, where a;'(A) =
a5 (My) = (by/2r)log(A/M,) and a, = ¢*/4x.
In the n = 6 model, a, remains perturbative up to
well beyond the Planck scale. In the n = 8 model,
a, becomes nonperturbative around 10'° GeV. The
n = 8 model can be saved by, e.g., lowering the
Planck scale below 10'° GeV through the introduc-
tion of flat or warped extra dimensions, or by
making the scalars in the large multiplet be compo-
sites of fermions which individually transform under
smaller representations of SU(2), .

(iv) Our models suffer from the hierarchy problem in the
same way as does the SM Higgs sector. The n = 8
model cannot be supersymmetrized because the
addition of a second n =28 multiplet with ¥ = —1,
as required for anomaly cancellation, would violate
perturbative unitarity in transversely polarized
WW — ({( scattering amplitudes [16]. Supersymme-
trizing the n =6 model modifies the one-loop
SU(2), beta function coefficient to read b, =146
n(n* —1)/36; for supersymmetry at the weak scale,
a, becomes nonperturbative around 10° GeV. The
hierarchy problem could be solved in either model
through compositeness of the scalar fields.

(v) The presence of the large multiplet coupled to the
SM Higgs doublet affects the running of the SM
Higgs quartic coupling, here identified with 4.
Further constraints on the parameter space could
be imposed by requiring that the quartic couplings
remain perturbative and the vacuum remains (meta)
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stable up to a chosen cutoff scale. We note, however,
that any such constraints would be subject to the
assumption that no new physics—including physics
needed to solve the hierarchy problem—enters
below the cutoff scale.

(vi) We have assumed that the quartic couplings in
the O(Z*) part of the scalar potential in Eq. (1)
can always be chosen so that the potential is bounded
from below. The sizes of these quartic couplings will,
however, be constrained by perturbative unitarity.
The interplay of this constraint with the requirement
that the potential be bounded from below may further
constrain the allowed ranges of 4,, 45, and /4.
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APPENDIX A: MASSES AND MIXING ANGLES

In this section we give some of the mathematical details
used in the derivation of the mass spectrum and mixing
angles in Sec. II.

For a complex scalar multiplet Z with hypercharge
Y = 1 (normalized so that Q = T> + Y/2), the most general
gauge-invariant and Z-invariant renormalizable scalar
potential was given in Eq. (1), in which ® = ic*®* and
Z = CZ* are the conjugate multiplets. Here 7 is the second
Pauli matrix and the conjugation matrix C for the large
multiplet is an antidiagonal n x n matrix. For n = 6 and 8 it
is given by

00 0 0 0 1
00 0 0 -1 0
00 0 1 0 0
Co =19 0 -10 0 of
0 1 0 0 0 0
10 0 0 0 0
00 00 0 0 0 1
00 00 0 0 —1 0
00 00 0 1 0 0
00 00 -10 0 0
Cln=s) = (A1)
00 0 1 0 0 0 0
0 0 -1 0 0 0 0 0
0O 1 0 0 0 0 0 0
10 0 0 0 0 0 0
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Taking A4 real and working in unitarity gauge, the term
involving A4 in the scalar potential of Eq. (1) reduces to
. . 1 ..
2@ ®ZTZ + Hee. = 1/14(h + )22 T~ Z + Z' T+ 7],
(A2)

where 7% = T' + iT2. The terms Z'T~Z and Z'T*Z split
the masses of (%" and ¢% and cause mixing between states
with the same electric charge but different isospin. For
n = 6,8, the two pieces can be written as

VAL g (= 1)/2+1 0% 05

—_

n—

+ 3V = 4QP ()20 e -0
0=1
. n
7 T+Z — 5 (_1)n/2+1§0§0

—

n—

4 /n2 _4Q2(_1)n/2+Q+lé'+QZ:—Q.

(A3)

T

, M +102(42, - (20 — 1)3)
M2, =

%0214 /n2 _ 4Q2(_1)n/2+Q+1

which we diagonalize to find the mass eigenvalues,

1 1 1
mi]]QZ :1‘42 +§712 (ﬂz +Z/13:F§\/Q2/1% + (n2 —4Q2)ﬂi>

=, +;1112 (n(=1)207 023+ (=407
(A6)

The mass eigenstates HIQ and Hg are defined in terms
of the weak eigenstates by Eq. (3) such that HTQ is the
lighter state and H ; 2 is the heavier state. The mixing angle

ag € [-5.,5] is given by

wrron @ = VO + (n* —40°)
(n* —40%)%
(n* —40%)43
043 + /2 + (n* — 400743

tanay = (—1)

— (_1)n/2+Q

(A7)

There is only one state with Q = n/2. Its mass is
given by
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When the neutral state (¥ is written in terms of its real and
imaginary components, {0 = (¢*" 4 i¢%%)//2, we find a
mass splitting between the components,

1, 1 n
m%o_r :M2+§1)2 22+Z/13+5(_1)n/2+1j’4:|
1
=M2+502An,
1, 1 n
Mo = M2+ 20 Ty + 1 2 +5(—1)"/2A4]

= mgo_, + g (=1)"202 ).

The mass matrices for the pairs of scalars with electric

charge Q=1,...,n/2—1 are given in the basis
(C+e.L79%) by

%1}214 /n2 — 4Q2(_1)n/2+Q+l > (AS)

M? + L0 (42, + (20 + 1)43) ’
I

1
M =M+ 20341 = (20 - 1)y)
= m, =g + 2= ). (A8)

APPENDIX B: FEYNMAN RULES

In this section we collect the Feynman rules for the
couplings of the new scalars to gauge and Higgs bosons.
We define the couplings with all particles and momenta
incoming. For couplings involving scalar momenta, we
define p; as the momentum of the first scalar and p, as the
momentum of the second scalar.

For simplicity in the derivation of the oblique parame-
ters, all coefficients C for couplings of scalars to one or
two electroweak gauge bosons are defined with the overall
factors of e removed: one factor of e is removed from
couplings to a single gauge boson and two factors of e are
removed from couplings to two gauge bosons.

1. Higgs boson couplings to scalar pairs

The Feynman rule for the coupling &s;s, is given by
—iCly,s,» Where
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1
Chz:Oré'Or — U(ﬂz + 4/13 + 1)"/2+1ﬂ,4>,
1 n/2
1
Conore = 1)(/12 + 4/1% -3 QZ/12 + (n* - 4Q2)/ﬁ)’
1
hHQHQ = </12+4/13+ \/Qz/12 ” _4Q2) )

20 -1
01,

The Feynman rule for the coupling hhs;s, is given by
—iClps,s,» Where

Ché«n/2§—n/2 — U(ﬂz <B1)

Chngorgor = Ay + %/13 + g (=122,

Chngrigpi = Ay + %/13 + g (—=1)"2y,
Cmone = Ja + gha =3/ QB + (2 — 402,
Chuuonze =4 + %,13 + % \/ Q223 + (n* —40M) A3,
Chpgnrgn = Ao — -1, (B2)

Note that, for all the couplings above, s, = s7; i.e., there are
no off-diagonal couplings.

2. Gauge boson couplings to scalar pairs

The Feynman rules for the couplings of the new scalars
to gauge bosons come from the gauge-kinetic terms in the
Lagrangian,

L>(D,2)"(D'Z), (B3)
where the covariant derivative is given by
. g9 S
Dﬂ = aﬂ - IE(W;TJr + WMT )
— i 7, (T% = $3,0) — ieA, Q. (B4)
Swew

a. Couplings to one or two photons

The Feynman rule for the coupling ss,y,, for s; with

charge QO and s, = s7, is

ieC, s,y (P1 — p2),» Where Cy = Q. (B5)

The Feynman rule for the coupling s;s,7,7,, for s; with
charge Q and s, = 57, is

—ie’C

where C, ,,, = —207%. (B6)

s15779uws
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There are no off-diagonal couplings, in accordance with the
conservation of the electromagnetic current.
b. Couplings to one Z boson

The Feynman rule for the coupling s;5,Z, is given by

iecs1s22<p1 - PZ)W (B7)
where
C S
CO.rcO.lZ - 2SWCW N
1 1 )
CHIQHI_QZ = —SWCW 0 - 3 cos“agp
1
+ <Q + 5) sinfagy — Qs%v] ,
1 1 .,
CHZQH;QZ = Swew (0] 3 sin“ay
<Q + )COS ag — st}
|
CHIQH;QZ = CHZQH;QZ = msmaQ cosayp,
1 n—1 n
C n —n, o — - = 2 . B8
gz chw[ > 2sw} (B8)

Note that the diagonal couplings Cpo.rp0ry; = Croipoiz =0
due to parity conservation.

c. Couplings to ZZ

The Feynman rule for the coupling s,s5,Z,Z, is given by

_iezcslszzzgpw (B9)
where
C C !
é'OAré'O,rZZ == Q‘O’iCO"ZZ = —?,
28y Cy
2 1\2 5

Cron-ezz = =37 || Qelvy —5 ) cosag

1 1 SWCW

+ (ch —l—l)zsinza ]
w 2 o\

4 .
CH?H;QZZ - CngH]—QZZ Z—% (1 —s3,)sinag cosay,
2 1\2
— )
Cutian =~y | (0% =) oo
1\ 2
+ <QC%V +§> coszaQ},
2 [n=1 n,12
Corrgrrzz = = 22|72 T2 (B10)

Note that the off-diagonal coupling £%"¢%ZZ is zero.
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d. Couplings to Zy

The Feynman rule for the coupling s15,Z,y, is
given by

_iezcslszZygﬂm (Bll)
where
20 N,
Crop-0z, = T swew KQ - 2) cos?ay
., )
+ Q+§ Sin aQ—QsW ,
CHIQH;QZ}, = CHZQHl_QZV = —msin Qp COS A,
20 1 .
1
+ (Q + 2) cos’ay — QS%V] ,
B ne [n—1 n )
Corcrn = Sy T2 2% (B12)

The neutral scalars do not couple to Zy.

e. Couplings to one W boson

The Feynman rule for the coupling s, W,jf is given by

iecslszwi(pl _pZ)/r (B13)

For compactness, we define the following coefficients for a
given value of n:

1 55—
TE:E n2—4Q2,
1
T =5\/n -4 -1 (B14)

Then the couplings of two scalars to W™ are given by
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1 |n .
C(‘”"HI’W‘ = E Scosay = TH sma,},

_ n . +
i [n P
Cooig-w+ = E 5 cosa +TI, sinay |,
i [ n
: _ ~ +
CCO"H;W‘ —m —Eslna] +T—l Cosa1:|,
1 +
CH]QH;(Q*”W' = Vasm [T, cosagcosap,
- TfQ_l sinag sinag 1],
1 " .
c [-T,cosagsinag,

001 e =
HOH, O W sy
n )
— T,y sinagcos o1,
1
001 s =
HoH 9w sy

- TfQ_l cos g sinag. 1),

C

[~T,sinagcosag,

1
— + g :
CHZQH;(QH)WA = s [T)sinagsinag,,
- TfQ_l COS @ COS g 4 1),

I

CHr]L/z—lg_n/zwA = \/zsw Tn/Z—l COS an/z_l,
| R ,

CH;/Z—lé,_,,/zw_ = _—\/ESW Tn/2—l Sin a,,/z_] . (BIS)

The couplings of two scalars to W™ are obtained using the
relation

(B16)

Cs;sTW‘ = (Csl.v2W+)*'

Note that all the couplings Cy ,y+ are real except for those
that involve one ¢*/, which are imaginary.

f. Couplings to WTW~

The Feynman rule for the coupling s;s,W,;W, is
given by

_iezcslszW*W'g/ur (B17)

For compactness we further define, for a given value of n,
n =2
2
n -2
2

Tg‘ = TETQ+1 + TéTg_l = -20(0-1),

Ty =ToTH +THTo = -20(Q0+1).
(B13)

Then the couplings of two scalars to WTW™ are given by
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|
Cco.rco.rWJer - Cé’O.[éJOJWJer - —2—2Tg s
Sw
C — 1 +- 2 —t+qin2
HOH W W = _F[TQ cos’ag + T, sin*ay],
W
1 _ . -
Chopowew- = ~3 [T} sin*a, + Ty" cos’ay ],
W

CHIQHZ—QWJer = CHng-QWWf = STsm agcosagp,
w

|
Ccn/ZC—n/Zw+W— - - F TI—:/Z (B 19)
w

Note that the off-diagonal coupling {7 (%W, W; is zero.

g. Couplings to WTW+ and W-W~

The Feynman rule for the coupling of two scalars to two like-sign W bosons, s;s,W, W, is given by
_iezcsls2W+W+gﬂw (BZO)
where, for Q > 0,

C e T4,T; si
OrH W = o T5 cosay + T, Ty sinay],

V2s3,

1
Coorg—wiw: = — [~T3T5 sina, + T, Ty cos ay]
OTHTWEW > 0l2 2 Lyl 2]
2 \/isW
Coig—wew: = o [T§T5 cosay — T, Ty sinay]
. > M .
! V253,
i
Coig—wew+ = — [~T3T5 sina, — TH,Ty cos ay]
2 0ols 2~ 151 2)s
2 \/isW
1
_ o= + - -
CHIQHI*(Q+2)W+W+ =- g [T5Thac0sagcosag s +T1, ,T-psinagsinag,s],
c — L sinagsi T, ,T-
HOH Oy = —g[ oToasinagsinag s + T2, , T2, cosagcosag ),
C _ L [-T5T, ., cosay sin + T+, ,T-,sinag,cos ]
HPH, O Pwiws = T2 1m0l 042 oS Agip T L gl -0 SMAQ COS Xg42],
C __ b [-T{T5, - sinag cos +T*, ,T-,cosapsin ]
HgH O Pwiws = T2 1m0l 042 Mg COSAg 2 T L _gp -0 COSAQ SN g2 ),
1o
CH,I,/z_z e = —ng /2_2Tn 12 COS /22,
I
C HI s = g T, /2_2Tn /28100y /5 9,
2 ,
CHI—HI—W+W+ = —STTI Tl cosa; smay,
W

CH£H5W+W+ = ST TTTI_ COS sin ap,
w

1
Ch-w;wiw+ = —— T1 T (cos’ay —sin’a, ). (B21)
Sw
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The couplings of two scalars to W~W™ are obtained using the relation
CS;STW’W’ = (Cs1s2W+W‘)*' (B22)
Note that all the couplings C; ,y+w+ are real except for those that involve one ¢% which are imaginary.

h. Couplings to Wy

The Feynman rule for the coupling slsszy,, is given by

. 2
—le Cslszwiygyw (B23)
where
1 [n .
CCO,VH]—WW = —F ECOS o — le sSin a1:| s
w L
1 [ n. n
Cgo,,-H;WW = _F —Esm ay =TI, cosay |,
w
i [n .
Cé‘O.iHl—WJr}, = —? ECOS a + T—l sma |,
w L
i [ n. "
Cco.iH]—WJr}, = . —ESIHOH + T2, cosay |,
w L
20 + 1 o
CH]QHI—(Q+1)W+7 = _ s [TJQr COS A COS A 4| — TfQ_l sinag sinag, ],
w
20 +1 . .
CHIQH;(Q+1)W+7 = a7 [=Tpcosagsinag, — T2, sinagcosag. ],
W
20+1 ) )
CHé(_)Hl—(Q+1)W+7 = — 72 [—TE sinag cos gy — TfQ_l cos ap sinag. 1],
w
20 +1 . )
Chopemys, == s [Ty sinagsinag | — T , | cosagcosag,],
w
n—1 n
CHr]L/Z—lg_n/ZW+}/ = _\/Z—ST"/Z_I COS Qp/r_15
W

n—1
_ + :
CH;/Z*Ié'—n/ZWJr}, = \/_Z—SW Tn/2—l Sin an/z_l . (B24)

The couplings of two scalars to W™y are obtained using the relation
Cs;sTW‘y = (CS152W+J/)*‘ (BZS)
Note that all the couplings C;, ,w+, are real except for those that involve one ¢% which are imaginary.

i. Couplings to WZ

The Feynman rule for the coupling s1s2WffZ,, is given by
_iezcslszwizgyw (B26)

where
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1 [ n .
Corpwz = T _ES%V cosa; — (2 —s3,)TH, sma,] ,
1 [n i
Corpowz = 3w 55%‘, sina; — (2 — s3,)T7, cos al] ,
Cyos S -—Es2 cosa; + (2 —s%)TT, sina
Is <'H]*W+Z 2S%VCW D) w 1 wli 1 1]
i [n )
Coipzwz = RET Es%v sina; + (2 — s3,)T7, cos a,} ,
1 . .
Cpop@iy., = ——=5—[=(2(Q + 1) + (20 + 1)s{)TL,_; sinag sinag, 1 +(20ci, — s3) T cos ag cos ag. ],
1 \/Eswcw
1 . .
Chop-@iy., = =25 [=(2(Q + 1) + (20 + 1)s3)T%,_; sinag cos ag.1—(20cj, — siy) T cos ag sinag. 4],
172 \/ESWCW
1 . .
Crop-0iyy = =25 [=(2(Q + 1) + 20 + 1)sjy)TL,_ cosag sinag ;1 —(20cy, — s3) T sinag cos ag ],
240 \/ESWCW
1 . .
Chop-@iy., = ——=5—[=(2(Q + 1) + (20 + 1)s§)TL,_; cos ag cos ag 1 +(20c¢q, — s3) T sinag sinag, ],
2472 \/iswcw
1
_ 2 2\t
CH’I’/HC’”/ZW*Z = - \/iTWCW (ncw -2+ SW)Tn/2_1 CoS /21,

C (ncjy =2+ s3)T,rpy Sin oy

1
0/2-1 p—nf2 =—=F
L \/ES%VCW
The couplings of two scalars to W™Z are obtained using the relation

Cs;s’l‘W'Z = (Csl 52 W*Z)* .

(B27)

(B28)

Note that all the couplings C;, ,,w+z are real except for those that involve one ¢%4 which are imaginary.
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