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Complex scalar dark matter in a B-L model
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In this work, we implement a complex scalar dark matter (DM) candidate ina U(1),_; gauge extension
of the Standard Model. The model contains three right-handed neutrinos with different quantum numbers
and a rich scalar sector, with extra doublets and singlets. In principle, these extra scalars can have vacuum
expectation values (Vg and V, for the extra doublets and singlets, respectively) belonging to different
energy scales. In the context of { = % < 1, which allows one to obtain naturally light active neutrino
masses and mixing compatible with neutrino experiments, the DM candidate arises by imposing a Z,
symmetry on a given complex singlet, ¢, in order to make it stable. After doing a study of the scalar
potential and the gauge sector, we obtain all the DM-dominant processes concerning the relic abundance
and direct detection. Then, for a representative set of parameters, we find that a complex DM with mass
around 200 GeV, for example, is compatible with the current experimental constraints without resorting to
resonances. However, additional compatible solutions with heavier masses can be found in vicinities of
resonances. Finally, we address the issue of having a light CP-odd scalar in the model showing that it is safe
concerning the Higgs and the Z,-boson invisible decay widths, and also astrophysical constraints regarding

energy loss in stars.
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I. INTRODUCTION

Currently, it is well established from several observations
and studies on different scales that most of the Universe’s
mass consists of dark matter (DM) [1-5]. Although the
nature of DM is still a challenging question, the solution
based on the existence of new kinds of neutral, stable and
weakly interacting massive particles (WIMPs) is both well
motivated and extensively studied. This is mainly due to
two reasons. The first reason is that WIMPs appearing in a
plethora of models [6-16] “naturally” give the observed
relic abundance, Qpy i = 0.1199 4 0.0027 [5]. The sec-
ond reason is that WIMPs may be accessible to direct
detection. Currently, there is a variety of experiments
involved in the search for direct signals of WIMPs which
have imposed bounds on spin-independent WIMP-nucleon
elastic scattering [17-19].

It is also well known that the Standard Model (SM)—
despite being tremendously successful in describing
electroweak and strong interaction phenomena—must be
extended. Physics beyond the SM has both theoretical
and experimental motivations. For instance, the neutrino
masses and mixing—which are required for a consis-
tent explanation of the solar and atmospheric neutrino
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anomalies—are some of the most compelling reasons to go
beyond the SM. Another motivation is providing a sat-
isfactory explanation of the nature of DM. This last reason
is the focus of our work. The preferred theoretical frame-
work which provides a DM candidate is supersymmetry
[6-9]. However, many other interesting scenarios have
been proposed [10-16]. In this paper, we focus on the
possibility of having a viable scalar DM candidate in a U(1)
gauge extension of the SM. In particular, this model,
sometimes referred as the flipped B — L model [20,21]
has a very rich scalar content, which allows us to obtain a
complex scalar DM candidate.

The paper is organized as follows. In Sec. II we briefly
summarize the model under consideration. In Sec. III we
study the vacuum structure and the scalar sector spectrum that
allows us to have a viable complex scalar DM candidate in the

model. In particular, we consider the scalar potential in the
\2
Vy

expectation values (VEVs) of the doublets @, , and singlets
@1 3.x, respectively. In Sec. IV we present the gauge sector and
choose some parameters that simplify the study of the DM
candidates. In Sec. V we calculate the thermal relic density of
the complex scalar DM candidate and present a set of
parameters that are consistent with the current observations.
In Sec. VI we summarize the main features of our study.
Finally, in the Appendix, we show the general minimization
conditions used to calculate the scalar mass spectrum.

context of {=y* <1, where Vg and V, are vacuum
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II. BRIEF REVIEW OF THE B — L MODEL

We briefly summarize here the model from Refs. [20,21].
It is an extension of the SM based on the gauge symmetry
SU(2), ® U(1)y» ® U(1)g_,, where B and L are the usual
baryonic and leptonic numbers, respectively, and Y’ is a
new charge different from the hypercharge Y of the SM.
The values of Y’ are chosen to obtain the hypercharge Y
through the relation Y = [Y' 4 (B —L)], after the first
spontaneous symmetry breaking. Assuming a generation-
independent charge assignment and the nonexistence of
mirror fermions, and by restricting ourselves to integer
quantum numbers for the Y’ charge, the anomaly cancella-
tion constrains the number of right-handed neutrinos,
ng > 3 [20]. Considering np = 3, there is an exotic charge
assignment for the Y’ charge where Y} , = —4 and
Y,. =5 besides the usual one where Y, =1 with
i =1,2,3. The model under consideration has this exotic
Y’ charge assignment. The respective fermionic charge
assignment of the model is shown in Table 1.

In the scalar sector the model has three SU(2),
doublets, H,®,, ®,, and four SU(2), singlets, ¢y, p,,
¢3,¢x. The scalar charge assignments are shown in
Table II. The H doublet is introduced to give mass to
the lighter massive neutral vector boson Z,,, the charged

vector bosons Wf, and the charged fermions, as in the
SM. Besides giving mass to the extra neutral vector boson
Z,,, which is expected to be heavier than Z,,, the other
scalars are mainly introduced to generate mass for both the
left- and the right-handed neutrinos. In order to be more

specific, the other doublets ®; and ®, are introduced to

TABLE 1. Quantum number assignment for the fermionic
fields.

Fermion I3 1 0 Y’ B-L
VoL, €1 1/2,-1/2 1/2 0,—1 0 -1
er 0 0 -1 -1 -1
up, dp 1/2,-1/2 1/2 2/3,-1/3 0 1/3
Up 0 0 2/3 1 1/3
dg 0 0 -1/3 -1 1/3
Nnir, Nop 0 0 O 4 _4
n3g 0 0 0 -5 5
TABLE II. Quantum number assignment for the scalar fields.
Scalar I3 1 0 Y B-L
HO+ F1/2 1/2 0,1 1 0
@?" +1/2 1/2 0, -1 —4 3
(1)g-* +1/2 1/2 0, -1 5 -6
5/11 0 0 0 -8 8
b> 0 0 0 10 -10
b3 0 0 0 1 -1
bx 0 0 0 3 -3
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give Dirac mass terms at tree level through the
renormalizable Yukawa interactions D;,,L;;ng,®, and
DjL;ings®, in the Lagrangian. The ¢, ¢,, and ¢
singlets are introduced to generate Majorana mass terms

[an<an)Can¢l’ M33(”R3)CHR3¢2’

M,,3(ngy ) nr3ps]. Finally, the ¢y singlet is introduced
to avoid dangerous Majorons when the symmetry is
broken down, as shown in Ref. [21]. These extra scalars
allow the model to implement a seesaw mechanism at the
O(TeV) energy scale, and the observed mass-squared
differences of the neutrino are obtained without resorting
to fine-tuning the neutrino Yukawa couplings [21].
Other studies regarding the possibility that the model
accommodates different patterns for the neutrino mass
matrix using discrete symmetries (S3,A4) have been
done [22,23].

With the above matter content we can write the most
general Yukawa Lagrangian respecting the gauge invari-
ance as follows:

at tree level

Ly = Y§l>zLieRiH + Y,(';i)éudeH + YE?@LMR,‘H
+ DiLingm®y + DisLpings®,

+ My (RRy) Nigapy + Mas(ngs) ngsn
+ M3 () ngsps +Hee., (1)

where i,j=1,2,3 are lepton/quark family numbers,
m,n = 1,2, and H = it,H* (1, is the Pauli matrix). Also,
we have omitted summation symbols over repeated indices.

From the Lagrangian in Eq. (1) we see that quarks and
leptons obtain masses from the VEV of just one Higgs, H;
thus, the Higgs interactions with quarks and leptons are
diagonalized by the same matrices that diagonalize the
corresponding mass matrices. In this case the neutral
interactions are diagonal in flavor and there is no flavor-
changing neutral current in the quark and lepton sector.
This particular feature remains if we change from the
symmetry basis to the mass eigenstate basis [24,25]. On the
other hand, the terms proportional to D,;, and D;; can
induce lepton flavor violation (LFV) at the loop level, due
to the couplings of the charged leptons with right-handed
neutrinos and charged scalars, coming from the doublets @,
and ®,. We have already studied this issue in a previous
work [21]. For the parameters we are using, the model is
safe regarding the kinematically allowed LFV decays
of the form [; - [;+y, where i=2,3=pu,7 and
j=1,2=e,pu, respectively. In particular, we can give
an estimate for the branching ratios B(u — ¢ +y) and
B(t - pu+y) for D,=001, D,=06, D,;=009,
m,, =1TeV, and mg: = 380 GeV, obtaining =1.1 x
1072 and =9.1 x 107, respectively, in agreement with
the experimental data [26,27]. The model does not present
other sources of flavor violation since the interactions with
neutral vector bosons are also diagonal.
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Finally, the most general renormalizable scalar potential obtained by the addition of all the above-mentioned scalar fields

is given by

Vi = —uyH H + 2y |H HI? = i3, ®10) + 2y |®]Dy[* — 3,010, + A |30, > — i |pal* + AsalPiachal?
+ 20| @1 202 + A (©]02) (R1D1) + Mgy |HP |, |2 + Ay, (H'®,) (P H) + Apysul HP|hal® + M| ®, bl
+ Aop(atba) (Pdp) + [Br231b2 (%)% + Dy (Bispi s + Prsbshs) — ik x P 2 Hepy
— ikpox (P30 H) (9x)* + Bx (d%h1) (h20h3) + Pax(dx#3) +Hee, (2)

where y = 1,25 @, = 1,2,3,X; and a #  in the A,5(¢uda)(Pjdp) terms.

III. THE VACUUM STRUCTURE AND THE
SCALAR SECTOR SPECTRUM

In general, DM must be stable in order to provide a relic
abundance in agreement with that measured by WMAP and
Planck, Qpyh? =0.1199 +0.0027 [4,5]. Although the
DM stability could result from the extreme smallness of
its couplings to ordinary particles, we restrict ourselves to
searching for a discrete (or continuous) symmetry, such as
Z,, or U(1), to protect DM candidates from decaying.

First, we consider the scalar potential in Eq. (2) by
looking for an accidental symmetry that naturally stabilizes
the DM candidate. Doing so, we find that the scalar
potential has just the SU(2) ® U(1)yy @ U(1),_, initial
symmetry. However, none of these gauge groups can
generate a stable neutral scalar when they are spontane-
ously broken down to U(1),. Therefore, we impose a
discrete symmetry in the following way: Z,(¢,) = —¢»,
and the other scalar fields are even under this Z,
symmetry. As a result, the ﬂ23<1>4{<1>2¢)§¢3,,8123¢1¢2(¢§)2
and Sy (¢pxd1)(Pagh3) terms are prohibited from appearing
in the scalar potential (2). Actually, when these terms are
eliminated from Eq. (2), the true global symmetry in the
potential is SU(2) ® U(1)y ® U(1)_, ® U(1),, where
the lastoneis U(1),: ¢, — exp(—ixy,)$s, where y,, is the
¢> quantum number under the U(1), symmetry, and the
rest of the fields are invariant. It is important to note that we
have taken into account the simplicity criterion and some
phenomenological aspects when choosing the Z, symmetry
above. For example, if we impose Z,(¢;) = —¢; (with the
other fields being even), the model has a massless right-
handed neutrino, say Nk, at tree level. This poses a tension
with the experimental data of the invisible Z, decay width
[28], since Z, — Nk + Ny would be allowed to exist [29].
Other simple choices, such as Z,(¢3) = —¢3 or
Z(¢x, @) = —¢px, —P,, should be avoided due to the
appearance of Majorons, Js, in the scalar spectra. As is well
known, the major challenges to models with Majorons
come from the energy loss in stars, through the process
y+e —e +J, and the invisible Z, decay width,
through Z, — RJ — JJJ, where R is a scalar [30].

For the general case of the scalar potential with the U(1),
symmetry, we have the minimization conditions given in
the Appendix. In general, these conditions lead to different
symmetry-breaking patterns and to a complex vacuum
structure because the scalar potential has several free
parameters. In this paper, however, we restrict ourselves
to find a (or some) viable scalar DM candidate(s) and to
study its (their) properties in a relevant subset of the
parameter space.

First, we impose the conditions necessary for all real
neutral components of the scalar fields (except ¢,z) to
obtain nontrivial VEVs, ie., (H}) = Vy, (®:) = Vs,
(%) = Va,. (bir) = Vy,» (dor) =0, (h3r) = V.
and (¢yg) = V,,. For the sake of simplicity, we set
V‘DI = V‘I)z = Vq) and V¢l = V‘f)3 = V(/,X = le ThllS, the
U(1), symmetry is not spontaneously broken and
the model possesses two neutral stable scalars which
are the real (CP-even) and imaginary (CP-odd) parts of
the ¢, field with the same mass, which are given by

1
My = 5 Ao Vim + (M + Ay —2M50)V5

F(Arp + Ags + Ay V3 = 2u3,], (3)

where we have defined Vg, =V + V5 +V5 =
V% +2V% = (246)* GeV?. From here on, we work with
M3, as an input parameter, and thus we solve Eq. (3)
for 3,

1
W = 3 (Ao Vim + (Al + Ay, —2Ap0) V3

F(Ar + Ags + Agy) V5 — 2Miy. (4)

If we allow (¢,) # 0, the real part of the ¢, field obtains
mass and its imaginary part is massless and stable. In that
case, the DM candidate would be the Goldstone boson
related to the breakdown of the U(1), symmetry. In

general, such massless DM has severe constraints from
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the big bang nucleosynthesis [31,32] and the bullet cluster
[14,33]. Here we do not consider this case.

Also, we work in the context of ( E‘é—z<< 1. This

assumption allows us to implement a stable and natural
seesaw mechanism for neutrino masses at low energies, as
shown in Ref. [21]. Once V% + 2V3 = (246)? GeV? and
Vy is mainly responsible for giving the top-quark mass at
tree level, we have V3, > V3. Choosing V,;, ~ 1 TeV and
Ve ~ 1 MeV, as in Ref. [21], we have that the { parameter
is ~107%. At first glance, the tiny value of { = Vg4/V,
could seem unnatural. However, let us remark that setting
V4 to atiny value is justified and natural because if it was in
fact taken to be zero (keeping V, finite and different from
zero, then { — 0) the symmetry of the entire Lagrangian
would increase ('t Hooft’s principle of naturalness).
Furthermore, it can be shown that in that case the emergent
U(1) global symmetry would prevent the active neutrinos
from obtaining masses.

In general, we solve numerically the minimization
conditions, and using standard procedures we construct
numerically the mass-squared matrices for the charged,
CP-even, and CP-odd scalar fields. We choose the param-
eters in the potential such that they satisfy simultaneously
the minimization conditions, the positivity of the squared
masses and the lower boundedness of the scalar potential.
In order to satisfy this last condition, we choose the
parameters such that the quartic terms in the scalar potential
are positive for all directions. Although all these constraints
are checked numerically, we here give some insight into
some constraints coming from the minimization conditions
and the positivity of the squared masses when we make
some simplifying assumption about the parameters. First,
we solve Egs. (A1) and (A7) in the limit { — 0. Doing so,
we have

1
Wy = i\/ﬂﬂvéM T3 (At + Mgz + Agx) V3, + O(0),

PHYSICAL REVIEW D 90, 055022 (2014)

\/AH.ylng + (A3 + Ay +24)V5
V2
\/AHs3V§M + (3f3x + Az + Azx +243) V5,

He3 = £ 7

+0(0), (8)
— N +21x + Ay +240)V2

+ 0. )

From Eq. (6), we see that xy1y — 0 and xg,x — 0 when
¢ — 0 (and keeping V, finite). Thus, in our calculations we
choose kyix ~ Vg and kpox ~ Vg /Vy.

To simplify the squared masses and obtain useful
analytical expressions, let us consider A;;=4,=
As1=Aa=Ax: A =Am=Apgg=Aga=Apgx=Ny =
Npgs Ny = Ay = Ny = Ao = Ay = Moy = A = 4, =
Ay = Ay = Ay Ay =Ny = App = Ay = Ayy, and
the other parameters without restrictions. The previous
constraints have been inspired by the similitude of the
respective potential terms. We have left free the parameters
that involve the DM candidates. Also, we have assumed
that the H scalar field is the Higgs-like field in this model.
With these considerations, we have—apart from the
Goldstone bosons that are eaten by the W* bosons—two
charged scalars, sz, with masses given by

1

v, (/3 -2v2)Viy + 45V
+2,B13V¢>] L OQ). (10)

In the CP-odd scalar sector, we have—besides the two
Goldstone bosons which give mass to the Z;, and Z,,

kpix = O(0). Koy = O(F), (6) gauge bosons—the following mass eigenvalues:
|
mi, =O():  mj =My mp = =5V +O((). (11)
1
w1, =7 Vo (1 V2)Van = 205V Fr[ 453V + (3 - 2V2)V3y | + 0(0). (12)

Finally, in the CP-even scalar sector we have m%e4 = M3y, and

1
m%€5,R6 = Zvd) [(1 + \/E)VSM - 2ﬂ13V¢$\/4ﬂ%3V§) + (3 - 2\/§)V§M} + O(C); (13)

the other mass eigenvalues are not shown for conciseness. As shown in the above expressions, in the O({) we have three

2 2 2

. . _ _ 2 2 _ 2 . ..
degenerate mass eigenstates, i.e., my = mj,, mp = my, and myp = mj . Imposing that all these masses are positive, we

find the following conditions:
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Mpy > 0 A B3y <O,

(Ajyy > 0 A i3V + V2Vey < 2Vey)V

Vsm(AlVem + Vi) (Mja Vsm + V2V,)

<V¢ > =2(V2 = 1)A},Vsu A Bis <

Despite the fact that Eqs. (5)—(14) are only valid in the
limit { — 0, these relations will be useful in our analysis, at
least as a starting point. However, we would like to stress
that in our numerical programs to analyze the scalar
potential, the full constraints—i.e., the minimization con-
ditions, the positivity of the squared masses, and the lower
boundedness of the scalar potential—are rigorously taken
into account.

IV. GAUGE BOSONS

In this model the gauge symmetry breaking proceeds in
two stages. In the first stage, the real components of the
&1, ¢3, and ¢y fields obtain VEVs, say V, as discussed in

|

¢ (K + P +2N)
—99y (K +N)
—995-1(P 4+ N)

M2

gauge bosons =

where g, gy, and gg_ L are the SU(2),,

K_4 JVAY2p _4

V320, Vsm + (1 +V2)V,y)

(14)

A Ny, 50)].
|

the previous section. Once this happens, the gauge sym-
metry is broken down to SU(2), ® U(1)y, where Y is the
usual hypercharge of the SM. In the second stage, the
electrically neutral components of the H,®,, obtain
VEVs, Vg and Vg, respectively, thus breaking the sym-
metry down to U(1),,.

The mass terms for the three electrically neutral
SU(2), ® U(1),, ® U(1),_, gauge bosons (W3, BY,
and BE‘L) arise from the kinetic terms for the scalar fields
upon replacing H,®,,, and ¢,,5x by their respective
VEVs ((¢h,r) = 0). In general the mass-squared matrix for

w3, B},”, and B5~ can be written as follows:
—99y (K +N) —ggp_(P+N)
QZIK 9y gp-LN s (15)
9y 91N 9%—LP

Uu(l)y, and U(1)g_, coupling constants, respectively. K, P, and N are defined by
Va(B—L): and N=1>" V2Y,(B—L),, with Y, and (B — L), being the quantum numbers

given in Tables I and II. Considering our aforementioned assumptions, we have

=~ (VE +41VE +74V7),

4>|~
4>|~

(45V3 +74V3),

1
N = —7(42V3 +74V}). (16)

In order to obtain the relation between the neutral gauge bosons ( Wfl, B}; B Bﬁ‘L) and the corresponding mass eigenstates,

we diagonalize M? Doing so, we have

gauge bosons*

11 1 1
Yu=— |-W+ +—B& L], 17
g Nygﬂ QY’” gB—Lﬂ (17)
Zy, = N, —[9(Pgp_, — Ng — M3 )W; — gy (P + N)&* + Pgh_; — M% )B) +gp_1 (P + N)g* + Ng3,)BE -], (18)
1
1 ,
Zy, = N, —[g(Pgp_; — Ngy — M3 )W5 — gy (P + N)g* + Pgi_; — M% )B) |+95_1 (P + N)g* + Ng},)BE -], (19)
2

where N,, N , and N, are the corresponding normalization constants. Also, y, corresponds to the photon, and Z;, and Z,,,

are the two massive neutral vector bosons of the model, and their squared masses are given by M? =0 and
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, 11
MZ,M Zyy T 2R:F 2[

with R= (K + P+ 2N)¢* + Kg3, + Pgj_, . Here, it is
important to note that the matrix /\/lgauge bosons 110

Eq. (15) has the correct texture to naturally give the masses
of the neutral gauge bosons. Furthermore, in the case that
V> Vy, Vg, it is straightforward to show that M%w
F(Va+2vy) M >

dcos’Oy, cosz‘gw and MZZ;(
the angle 6y, is defined below.

For future discussion, it is convenient to define the
following basis:

% (gy + 9%—L)V§g, where

Z,=cosOyW; —sinfy sinaB! —sinfy cosaBE~L,  (21)

Z), = cosaB) —sinaB5L, (22)

and y, is defined as in Eq. (17). The angle a, defined as
tan @ = gg_; /gy, can be understood as the parameter of a
particular SO(2) transformation on the two gauge bosons,
B! and BEL, that rotates the U(1),, ® U(1),_, gauge
group into the U(1), ® U(1), gauge group. In the last
expression U(1), is the usual hypercharge gauge group.
Also, we have that ¢*sin’Oy =e*> = (1/¢* +1/g%+
1/g%_;)~'. The U(1), can be understood as the gauge
group with the coupling g% = g%,, + g5_; - Using Egs. (21)
and (22), we can write the two massive gauge bosons Z,
and Z,, in terms of Z, and Z, as follows:

Zy, = cospZ, +sinpZ,, (23)
Z,, = —sinfZ, + cos pZ,, (24)
where
ang \/ (95 + 9p-1) + 99981 (95 P— 95N —M7,)

PG+ 95 )P+N)+ g2 (g5 (P+N)-MZ )
(25)

From Egs. (20), (23), and (24), we can see that tan f = 0
when Vj — oo or VH = (gy, + 393 L)V /g% In the first
case,as V approaches infinity the numerator of Eq. (25) is
o V4. However, the denominator is o V;, and hence
tan f — 0, meaning that Z,, becomes so heavy that it
decouples. The last solution is not allowed since in our case
we have V> Vg and O(gy) ~ O(gp_1)-

In this work, we use the gauge couplings g = 0.65 and
gy = gp—r. = 0.505, such that tan # = 4 x 107*. Doing so,
we have Z;, =Z, and Z,, = Z,,.. In general, the angle f
must be quite small (8 <107%) to be in agreement with

—4(KP - N?)(

PHYSICAL REVIEW D 90, 055022 (2014)

T gy + gb-r) + gy95-1)]'". (20)

|

precision electroweak studies [34-36] since a new neutral
boson Z,, which mixes with the SM Z, distorts its
properties, such as couplings to fermions and masses
relative to electroweak inputs. Using these parameters
for the gauge couplings and the VEVs discussed in the
previous section, we obtain M, = 3.1 TeV besides the
already known masses for the SM gauge bosons. In general,
anew neutral vector boson must have a mass on the order of
a few TeV, or be very weakly coupled to the known matter
to maintain consistency with the present phenomenology
[34-39]. Doing a phenomenological study of the bounds on
the parameter space imposed by data coming from LEP II,
Tevatron, and the LHC in the present model is out of the
scope of this work. However, we see that the M, value
above is consistent with the relation M, /gp_; = 6.13 >
6 TeV [37,38].

Finally, the charged gauge bosons Wff are not
affected by the presence of one additional neutral gauge
boson Z,,. These have the same form as in the SM,
Wi = \/—(WIZFzWZ) with masses given by M7 . =

492VSM = 49 2(V3 +2V3).

V. DARK MATTER
A. Thermal relic density

In order to calculate the present day DM mass density,
Qpmh?, arising from Rpy; and Ipy; scalars freezing out
from thermal equilibrium, we follow the standard pro-
cedure from Refs. [40,41]. Thus, we should find the
solution to the Boltzmann equations for Y, —and Y; .,
which are defined as the ratio of the number of particles
(ng,,, and n; ) to the entropy, ¥; = n;/s (i = Rpwm, Ipm),
with s being the total entropy density of the Universe.
Usually, s is written in terms of the effective degrees
of freedom h¢; (T) as follows: s = 2” * hegr(T) T, where T is
the photon temperature and A is calculated as in Ref. [40].
Actually, in our case, due to the U(1), symmetry
introduced in Sec. I, M; = Mg = Mpy, Yg,, =
Y, =Y, and Qpyh* = Qg h? +Q;  h* =2Qp h* =
ZQ,DM h?. Therefore, the Boltzmann equation that we have
to solve is
Z--(2 7). (26)

) o gi/zMDM
G Jx 7 DM
dx

T xz <‘71)Moller>ann[Y2 -
where x = Mpy/T, G is the gravitational constant, and
Yeq = Neq/S. Neq 18 the thermal equilibrium number density
MpyT M
and when Mpy /T >> 1, itis ng, = g;(*241)¥ 2 exp [— Mo,
where g; = 1 is the internal degree of freedom for the scalar
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FIG. 1.

dark matter. The g, parameter in Eq. (26) is calculated as
in Ref. [40].

Also, we have that the thermal average of the annihi-
lation cross section times the Moller velocity, (6Unolier ) anns
has the following form:

1 [
— 4M?
8Miy\ TK5(Mpy/T) AM;M Oan (8 o)

x V/sK\(V/s/T)ds, (27)

<57)Moller>ann -

where K; are the modified Bessel functions of order i.
The variable s in the integral above is the Mandelstam
variable. Finally, once Y is numerically calculated for the
present time, Y, we can obtain Qpyh®> = 2.82 x 108x
(2 xY) X Aée"{‘;

In order to calculate o,,,, we have taken into account all
dominant annihilation processes, which are shown in
Fig. 1. In our case, the dominant annihilation contributions
come from the scalar exchange. This is due to the fact that
our DM candidates, Rpy and Iy, couple neither to Z, nor

to Wff gauge bosons at tree level, since they are SM
singlets. Also, we have found that contributions coming
from Z, exchange are negligible for the parameter set
considered here.

Taking into account all considerations above, we solve
Eq. (26) numerically for a representative set of parameters.
Although the scalar potential in this model has many free
parameters, we find that the most relevant parameters for
determining the correct DM relic density and satisfying the
currently direct experimental limits are Ay, A, (With

/
/ A}

Main annihilation processes that contribute to (6vpoer)
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B, Ipv U;

\
7 N R,

>

R, I;; Ci

X 7

\ /
Ry, I O Rpw , Ipv v
(©)
R, I; Ro , Iou Zy; W:E
/ \

\ /

\ Rpw , Ipm
Rj, I

Z,,WF

v

)

ann*

a=1,3,X), and A, (with y = 1,2). The Ay, coupling
strongly controls the direct detection signal, since in our
case the Higgs-like scalar is almost totally the neutral
CP-even component of the H field, and (as discussed
below) direct detection is mainly mediated by the 7-channel
Higgs exchange. In order to obtain the correct direct
detection limits without resorting to resonances, we find
that Ay, ~ 1074, The A,, and A}, parameters are also

crucial in obtaining the correct Qpyh? because they mostly
control the DM — DM - R;(I;) — R;(I;) and DM — DM —
R; couplings and, therefore, o,,,. The latter is not allowed
to vary in a wide range since, roughly, Qpyh’>~
1/{oUMolier)ann @nd We aim to obtain values close to
Qpyh* ~0.11. In other words, as the A, and A,

parameters increase, Qpyh> decreases. In Fig. 2, we have
used A7) = 107> and A, =9 x 1072, Tt is also important to
mention here that the dominant process is the DM +
DM — I5 + I; annihilation, where /5 refers to the lightest
CP-odd scalars, as in Sec III. Although the other param-
eters in the scalar potential are not as critical in determining
Qpyh?, they give the other quantitative characteristics
appearing in Fig. 2. In order to be more specific, we have
chosen the other parameters such that the mass scalar
spectrum is given by 1437.6, 1016.9, 631.7, 544.9, 379.6,
125 GeV, and 707.1,544.9,379.6,2.3 x 107° GeV for the
CP-even and CP-odd scalars, respectively. The CP-even
scalars with masses 1437.6, 1016.9, and 631.7 GeV have
components only in the singlets ¢, 5 x, and the CP-even
scalars with 544.9 and 379.6 GeV have components only in
the scalar doublets @, ,. The CP-even scalar with 125 GeV
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Relic Density vs. DM Mass

10} p
N 01F -
=
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(=}
0.001} AHis2
“-3x107°
— 1x1074
1075 L L 5><10_4
200 300 1000

FIG. 2 (color online). The total thermal relic density of Iy and
Rpm as a function of Mpy. We have used three different
parameters for Ay, = 3 x 107,11 x 1074,5 x 107,

has a component in the H doublet and it is the Higgs-like

scalar in our model. In Fig. 2, we can also observe three
resonances at =315.8, 508.5, and 718.8 GeV, correspond-
ing to the s-channel exchange of CP-even scalars with
components in the singlets. Let us also mention that the
processes via the s-channel due to the exchange of the
CP-even scalars with masses of 125, 379.6, and 544.9 GeV
are highly suppressed because of the smallness of their
couplings. Thus, their resonances do not appear in Fig. 2.

B. Direct detection

Despite being weakly coupled to baryons, WIMPs can
scatter elastically with atomic nuclei, providing the oppor-
tunity for direct detection. Currently, there are several
experiments which aim to directly observe WIMP dark
matter [17-19]. The signal in these experiments is the
kinetic energy transferred to a nucleus after it scatters off a
DM particle. The energies involved are less than or of the
order of 10 keV. At these energies the WIMP sees the entire
nucleus as a single unit, with a net mass, charge, and spin.
In general, the WIMP-nucleus interactions can be classified
as either spin independent or spin dependent. In our case,
these interactions are spin independent because the two
DM candidates are scalars. The relevant WIMP-nucleus
scattering process for direct detection in the case consid-
ered here takes place mainly through the #-channel elastic
scattering due to Higgs exchange: (Ipy, Rpm) + N —
(Ipm»> Rom) + N (N refers to the atomic nucleus). The
spin-independent cross section is given by

Oy =~ — 5 [Zf, (A= 2)f,] (28)

where the effective couplings to protons and neutrons,

S pns are

PHYSICAL REVIEW D 90, 055022 (2014)

fon= > "f."f

q=u,d,s
n) eff
£ > f" , (29)

g=c,b,t

By using f(p'") and f(p‘”)

c
that, in our case, Gegry = Go X my =+ nn
Higgs
Cpamey being the coupling DM-DM-Higgs, which depends
on the parameters of the model), we arrive at a cross section

per nucleon of

given in Ref. [42] and the fact

x m, (with

2
MDM

SI 7
o), ~2.7x10" x
nr (Mpy + mN)

xGZpb.  (30)

Recently, the Large Underground Xenon (LUX) experi-
ment [19] has reported its first results, setting limits on
spin-independent WIMP-nucleon elastic scattering with a
minimum upper limit on the cross section of 7.6 x 107! pb
at a WIMP mass of 33 GeV/c?. We have found that by
choosing Ay, ~ 10™* we obtain the LUX bound without
resorting to resonances. It is clear that larger values of Ay,
can be considered. However, we have chosen this
conservative value for Agg,. Our results are shown in
Fig. 3. The parameters are the same as in Fig. 2.

From Figs. 2 and 3, we see that for a DM candidate with
mass around 200 GeV and Ay, = 0.3 x 1074, 1 x 1074,
the two conditions—Qpy/h> and direct detection—are
satisfied outside the resonance regions. We also have
verified that this is a general characteristic of this model.
Due to the existence of the light /5 scalar the annihilation
process DM + DM — I3 + I3 [Fig. 1(a)] is the dominant
one, so we do not have to appeal to resonances to get
compatibility with experiments. Other My, values which

Scaled Cross Section vs. DM Mass

1076 T
& n ~_ XENON100
a | [N /
=R I A N A
o~
R
=
=)
S}
X
3
=4 Ans2
7R - 3x1070
— 1x107*
. WL, Y - sxa0?
200 400 600 800 1000

MDM (GeV)
FIG. 3 (color online) The spin-independent elastic scattering
cross section, 0)( »» Off a proton p as a function of Mpy; for the
same parameters as in Fig. 2, appropriately scaled to the relic
density. We also show the XENON100 and LUX exclusion
limits [17,19].
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satisfy the experimental bounds are shown in Figs. 2 and 3.
Specifically, Mpy = 319, 410, 511, 590, 737 GeV are also
possible solutions. However, these are within regions with
resonances.

We now make some important remarks about the impact
of the existence of /5 in this model. First of all, we have a
tree-level contribution to the Higgs invisible decay, I,
due to the coupling of the Higgs field with the light
pseudoscalar  field, ¢y, which comes from the
Lagrangian terms of the form |H|*|¢;,x|> and gives
Uiy, = ¢y /32mmy for my < my. Actually, when
2Mpy < my, the h — IpyIpy and h — RpyRpy decays
are also allowed, thus further contributing to '™ according
to T)Svpm = FthMIDM + FE}QVDMRDM =2X Cipvpm/ (327my) X
V1=4M3y,/m?é, with c,pypm & Apo V. The current
limit on the branching ratio into invisible particles of the
Higgs, BRI;“’, is around 10—15% [43,44]. A stronger
bound of BRI™ < 5% at the 14 TeV LHC has been claimed
[45]. From the set of parameters used to obtain Figs 2 and 3
we have that BR)™ = (I}, + TySypw) /(DS + T, +
iy iom) = 3.78% for My = 50 GeV. For different My
values we have found BRI™ < 5%. Also, we have used
I8 = 4.07 MeV for my = 125 GeV. The model is also
safe regarding the severe existing constraints on the
invisible decay width of the Z, boson since there is no
process like Z, — RI3 — 31315 [29] due to the fact that /5
only has components in the SM singlets. (It would be
kinetically forbidden anyway once all real scalar fields of
the model are heavier than the Z, boson.) For the same
reason, there is no issue with the astrophysical constraints
regarding energy loss in stars since there is no tree-level
coupling inducing the y + e~ — e~ + I3 [30]. Finally,
some last comments are necessary. First, note that the /5
light scalar does not affect the stability of the DM candidate
since the Z, symmetry introduced in Sec. III forbids
processes such as Rpy — I3+ 13 and Ipy — I3 + R;.
Furthermore, in general, /5 could also contribute to
Qpyh? because it is massive. However, the /5 pseudoscalar
is not stable. It decays mainly in active neutrinos, v, with

A Z, i

Crmn ® 16 [46]. For the parameter set used here, we

have 7, =1 /F,z_,w ~10° s, where we have used
>_im2; $0.01 eV2. With 7;, given here and 7y = 4.3 x
10'7 (the age of the Q=
125 2exp(—ty/7,) =0. In the last expression for
Q, h* we have considered that Tp, > 175 GeV (where
Tpy, is the decoupling temperature of I3). There is also a
constraint which comes from the observed large-scale
structure of the Universe [47,48]. Roughly speaking, this
last condition imposes ry, 5 k’e3V (T")l/ 2<4x10° [47]. In
the last expression r;, = geff(TO)/geff(TDl3) ~ 1/25, where

Geir 18 the effective number of the relativistic degrees

Universe),
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of freedom. With our parameter set this condition is
satisfied.

VI. CONCLUSIONS

We have discussed in this work a scenario where a
complex DM candidate is possible. In particular, the model
studied here is a gauge extension of the SM based on a
SU22), ® U(1)yy ® U(1)p_, symmetry group. This
model contents three right-handed neutrinos and some
extra scalars, doublets, and singlets, with different quantum
numbers. In principle, these scalars are introduced to
generate Majorana and Dirac mass terms at the tree level
and to allow the implementation of a seesaw mechanism at
the TeV scale, as shown in Ref. [21]. The nonstandard
doublets and singlets introduce two new energy scales,
besides the electoweak one given by Vi = 246 GeV: Vg
(the VEVs of the extra doublet neutral scalars) and V; (the
VEVs of the extra singlet neutral scalars). If { = Vg /V, <
1 the seesaw mechanism becomes natural [21]. In this
context, we have studied the scalar spectrum and imposed a
Z, symmetry on the ¢, singlet scalar [which accidentally
became a U(1), symmetry, ¢, — exp(—iy,, )¢,] in order
to allow a complex DM candidate. Before studying the
constraints coming from the thermal relic density (Qpy/%)
and direct detection experiments on this DM candidate, we
performed a brief analysis of the gauge sector concerning
the Z,, Z,, mixing angle (tan f§ = 4 x 10~*) which satisfies
the f < < 10 3 electroweak precision constraint, and we have
verified that the Z;, mass emerging from the model is
consistent with the relation M, /gg_; = 6.13 = 6 TeV.
Then, we chose some parameters that simultaneously
allowed us to have a compatible Qpy /4% and satisfy the
direct detection experiments. Although the scalar potential
has many parameters, we have found that the Ay, Ay
(with a=1,3,X), and A’y2 (with y = 1,2) parameters
mostly control these two constraints. The Ay, parameter
is fundamental in satisfying the limits coming from direct
detection, since in our case it takes place through the
t-channel elastic scattering due to the Higgs exchange.
Choosing Ay, ~ 107 roughly satisfies the bounds from
the LUX experiment and allows for a Qpy A that is in
agreement with the WMAP and Planck experiments. The

A, and A ,» parameters control o,,, mostly and, therefore
Qpmh?. As an example, we have shown Qpy\ 4> and 6)( o
for A}, =10~ 2 and Ay, =9 x 1072, in Figs. 2 and 3. It is
interesting to note that this model, for the same set of fixed
parameters (except the Mpy,’s), has several Mpy, values
that satisfy the experimental bounds. In other words, we
have found solutions in the regions outside and inside the
resonances for the same parameters by only varying Mpy;.
As previously mentioned, the presence of a light scalar, /5,
in this model makes the process DM + DM — I3 + I3
dominant for Qpyh%. However, I3 may bring some poten-
tial problems, so we have discussed some constraints
imposed on /3 coming from the Higgs and Z, invisible
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decay widths, the energy loss in stars, and the observed
large-scale structure of the Universe. We have found that in
our context all of these constraints are satisfied. Finally, we
would like to point out the recent work that studied the
possibility of a Majoron DM candidate [49].
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APPENDIX: THE MINIMIZATION CONDITIONS

The general minimization conditions coming from
OVp_1/OR; =0, where V_; is the scalar potential with
U(1), symmetry and R;={Hp. O 3. Pir. bar.
P3r, Pxr} are the neutral real components of the scalar
fields, can be written as follows:

O = VH<21HV%I + AH] V%I)l + AH2V31>2 + AHS] Vg)] + AHSQVéz + AHS3V§’;3 + Aﬁsxvéx - 2/1%1)

— \/EKHIXV(IH V(/)X - KHZXVq’z ngx’

0= Vo, (Am Vi + 24V, + (s + A) VG, + ALV + ALVE, + NVE + Ay Vi —2ut))

- \/EKHIXVHVI/)X + ﬂ13V¢2 V,/,l V{/,3,

0="Vg,(AmVy + (412 + /1’12)V<2I>I + 2/122V(21,z + A’21V§)I + /\’22V§)z + A’23V$)3 + A’2XV§,X —2u3,)

—kux VeV, +Pi3Va Vg Vg,

0 = V¢1 (AHsl V%[ + A/11V2<1>| + Alzl Véz + 2/151‘/5)] + AuVéz + A13V§)3 + AlXVéX - 2”%1)

+P13Ve, Va,Vy,s

0=V, (AuaVy + N VG, + ApVE, +ARVE +220V5 + AV + Moy Vi —2u3),

0= Vi, (A Vi + Ai3Vo, + AV, + A3V, + Bo3 VG, +245VG, + Bax Vi, + 3635V, Vo,

= 2p3) +B13Ve, Ve,V

0= Vy (Aux Vi + Aix Vi, + My Vi, + AixV3, + Aox V3 +244V5 = 2kmx Ve Ve, — 2u%)

- \/EKH1XVHV<I>] + ﬂ3XV353 + A3XV§)3 Vi,

(A7)

In Eqs (Al)_(A7) abOVe, VHa V‘P] ’ VCI72 ) V¢] ) V¢27 V¢3 5 V¢X are the VEVs Of H(I)Q’ ®(])R7 (bng ¢1R7 ¢2R7 ¢3R7 ¢XR’ respeCtiveIY'
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