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The recent discovery of the 125.5 GeV Higgs boson at the LHC has fueled interest in the next-to-
minimal supersymmetric standard model (NMSSM) as it may require less fine-tuning than the minimal
model to accommodate such a heavy Higgs. To this end we present Bayesian naturalness priors to quantify
fine-tuning in the (N)MSSM. These priors arise automatically as Occam razors in Bayesian model
comparison and generalize the conventional Barbieri-Giudice measure. In this paper we show that the
naturalness priors capture features of both the Barbieri-Giudice fine-tuning measure and a simple ratio
measure that has been used in the literature. We also show that according to the naturalness prior the
constrained version of the NMSSM is less tuned than the CMSSM.
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I. INTRODUCTION

Naturalness is a guiding principle in search of new
physics beyond the standard model (SM) [1]. A naturalness
problem arises in the SM since the Higgs mass is sensitive
to new physics above the electroweak scale and only
delicate fine-tuning amongst the fundamental parameters
can stabilize it. Supersymmetry cancels the quadratic
divergence in the Higgs mass improving naturalness. In
the minimal supersymmetric standard model (MSSM),
however, the large radiative corrections that lift the
Higgs mass reintroduce some fine-tuning [1].
The recent Higgs discovery makes the little hierarchy

problem more acute [2,3]. This triggered interest in super-
symmetric models that can naturally accommodate a
125.5 GeV Higgs, such as the next-to-minimal super-
symmetric standard model (NMSSM) [4,5]. A new F-term
in the NMSSM, proportional to the Higgs-singlet coupling
λ, boosts the tree level Higgs mass. Natural NMSSM
scenarios have been presented where λ remains perturbative
up to the grand unification (GUT) scale [6], and in λ-SUSY
scenarios where λ is only required to remain perturbative up
to a scale just above TeV [7].
To show that the NMSSM is less fine-tuned than the

MSSM one has to quantify naturalness. Conventional fine-
tuning measures rely on the sensitivity of the weak scale to
changes in the fundamental parameters of the model. In
Bayesian model comparison such measure arises automati-
cally as a Jacobian of the variable transformation from the
Higgs vacuum expectation values (VEVs) to the funda-
mental parameters [8–13].
In this paper we present the NMSSM fine-tuning prior.

We examine how the prior varies with the parameter of the
constrained NMSSM and compare it to the Barbieri-
Giudice measure [14,15] and the simple ratio measure

[16–19]. In a longer companion paper we will provide the
full details of the derivation of the presented Jacobian and
carry out a detailed numerical analysis for the uncon-
strained NMSSM.

II. MEASURING FINE-TUNING

Naturalness of supersymmetric models is quantified in
various different ways in the literature today. One of the
simplest fine-tuning measures is [16–19]

ΔEW ¼ maxfjCij=ðm2
Z=2Þg; ð1Þ

which is based on the electroweak symmetry breaking
(EWSB) condition of the MSSM

m2
Z

2
¼ ðm2

Hd
þ δm2

Hd
Þ − ðm2

Hu
þ δm2

Hu
Þtan2β

tan2β − 1
− μ2; ð2Þ

where δm2
Hu

and δm2
Hd

are the one loop tadpole corrections
to the tree level minimization conditions. The Ci (i ¼ m2

Hu
,

m2
Hd
, δm2

Hu
, δm2

Hd
, μ2) in Eq. (1) are the additive terms

appearing in Eq. (2), specified by the index.
An alternative and widely used measure of naturalness,

the Barbieri-Giudice measure [14,15], accounts for corre-
lations between the terms in Eq. (2),

ΔBGðpiÞ ¼
���� ∂ lnm

2
Z

∂ lnp2
i

����; ΔBG ¼ maxfΔBGðpiÞg: ð3Þ

where pi are the input parameters of the model, for some
chosen parametrization. Alternatively some authors com-
bine the ΔBGðpiÞ by summation in quadrature: ~Δ2

BG ¼P
iΔ2

BGðpiÞ. The Barbieri-Giudice measure quantifies the
sensitivity of the observablem2

Z to the parameters fpig, e.g.
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ΔBGðpiÞ ¼ 10, means a 1 percent change in pi leads to 10
percent change in m2

Z.
Alternative measures have also been proposed [20–22]

but these are not considered here.
In Bayesian model comparison the Barbieri-Giudice

measure arises automatically as the special case of a more
general fine-tuning measure [8–13]. In this framework the
odds ratio between competing models is defined in terms of
the ratio of marginal likelihoods, or evidences

EðD;MÞ ¼
Z
Ω
LDðpi;MÞπðpijMÞdNpi: ð4Þ

Here LD is the likelihood function for the data D,
quantifying the goodness of fit of the model M to the
data at each point in the model’s N dimensional parameter
space fpig. The distribution π assigns a probability density
to each parameter space point as assessed prior to the data
D being learned, andΩ is the domain over which this pdf is
nonzero.
However, for computing likelihoods, and for scanning,

the parameter set fpig on which π is most sensibly defined
is often less convenient to work with than a set of derived
parameters or “observables” Oi, some of which, such as
mZ, may be precisely measured. Switching to these new
variables distorts the prior density, as quantified by the
Jacobian of the transformation,

dNpi ¼
���� ∂pi

∂Oj

����dNOj: ð5Þ

In the new coordinates the sharply known observables can
be easily marginalized out, reducing the dimension of the
parameter space. Choosing logarithmic priors on fpig and
neglecting constants which divide out of evidence ratios
gives

EðD;MÞ ¼ 1

V log

Z
Ω0
LD0

1

ΔJ

����
Ô¼D̂

dN−rO0
j

O0
j

ð6Þ

where Ô and D̂ are the r observables and data used in the
dimensional reduction, D0 and O0 are the data and observ-
ables remaining, V log ¼

R
Ω dNpi=pi is the “logarithmic”

volume of the parameter space in the original coordinates,
Ω0 is the part of Ω orthogonal to the removed dimensions
and

ΔJ ¼
���� ∂ lnOj

∂ lnpi

����: ð7Þ

If log priors are not used extra terms will also appear. Δ−1
J

appears in the evidence through the transformation
of the prior density to new coordinates, πðOjÞ ¼
Δ−1

J ðpi=OjÞπðpiÞ ¼ Δ−1
J ð1=OjÞ. The last equality follows

from initially choosing log priors (neglecting normalization

constants).1 One can then scan the derived parameters using
log priors with Δ−1

J as an “effective” prior weighting of the
likelihood, and obtain a posterior weighting of points
compatible with the original prior.
Clearly all parameters do not have to be exchanged for

observables. When a single parameter p2 is exchanged for
Oi ¼ m2

Z, ΔJ is the Barbieri-Giudice sensitivity, ΔBGðpiÞ,
in Eq. (3). In general more than one low energy observable
is involved in the transformation, so the relevant Jacobian
contains more structure than the Barbieri-Giudice measure.
For example most MSSM spectrum generators take

ðmZ; tan β; mtÞ as input instead of ðμ; B; ytÞ; the trans-
formation ðμ; B; ytÞ → ðmZ; tan β; mtÞ thus emerges as a
sensible choice which can quantify unnatural cancellations
required to keep mZ ≪ MSUSY. The resulting Jacobian

ΔCMSSM
J ¼

���� ∂lnðm
2
Z; tan β; m

2
t Þ

∂lnðμ20; B0; y20Þ
����

¼
�
M2

Z

2μ2
B
B0

tan2β − 1

tan2β þ 1

∂ ln y2t
∂ ln y20

�−1
; ð8Þ

automatically includes ΔBGðμ0; B0; y0Þ as a single column
(where the subscript 0 denotes the GUT scale parameter
value). The extra columns of ΔJ account correctly for
correlations between the mZ related tunings and those
coming from the Higgs VEVs and top mass. The Yukawa
RGE factor ∂ ln y2t

∂ ln y2
0

is constant over the CMSSM parameter
space at the 1-loop level and so we neglect it. It is close to
one anyway so the constant shift this induces in the
logarithms of tunings reported in our numerical analysis
is very small.
Importantly, we see that Eq. (6) captures much of the

intuition behind the fine-tuning problem. We see that to be
preferred in a Bayesian test, a model needs to have
overlapping regions of both high likelihood and low
fine-tuning (and that this region should not be too small
relative to the prior volume V log, which is itself a natural-
ness-style requirement).
The extension of ΔJ to the NMSSM goes as follows. As

indicated above, ΔJ in practice depends on the particular
spectrum generator of choice as well as the definition of the
model. For concreteness we consider a constrained version
of the NMSSM (CNMSSM),2 defined at the GUT scale to
have a universal gaugino mass, M1=2; a universal soft
trilinear mass, A0 and all MSSM-like soft scalar masses
equal to m0, but the new soft singlet mass, mS is left
unconstrained at the GUT scale. Thus the model has the

1For brevity the single parameter form is written here, but the
generalization is straightforward.

2In the literature the definition of the CNMSSM varies.
Sometimes CNMSSM refers to the model with full scalar
universality and when this constraint is relaxed like in our case
it is called the semi-constrained NMSSM.
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parameter set ðM0;M1=2; A0; λ0; κ0; mSÞ which can be
compared to the CMSSM set of ðM0;M1=2; A0; μ0; B0Þ.
The effective prior weighting we present is chosen to be

suitable for Bayesian studies with numerical implementa-
tion in both the spectrum generator NMSPEC in the
NMSSMTOOLS 4.1.2 package and the newly developed
spectrum generator NEXT-TO-MINIMAL SOFTSUSY [23]
distributed with SOFTSUSY 3.4.0. For a constrained model
as defined above the spectrum generators trade ðλ0; κ0; m2

SÞ
for ðλ; mZ; tan βÞ giving the user the input parameters of
ðM0;M1=2; mZ; tan β; A0; λÞ, i.e., just λ in addition to the
usual CMSSM inputs used in spectrum generators.
This transformation gives rise to a Jacobian,

dλ0dκ0dm2
S0
¼ JT 0

dλdM2
zd tan β ð9Þ

which may be written as

JT 0
¼ JT λ

κmS
JRG

¼
������

∂κ
∂m2

z

∂m2
S

∂m2
Z

∂κ
∂ tan β

∂m2
S∂ tan β

������
λ

������
∂λ0∂λ

∂κ0∂λ
∂λ0∂κ

∂κ0∂κ

������
���� ∂m

2
S0

∂m2
S

����: ð10Þ

The Jacobian JT λ
κmS

can be rewritten in terms of simpler
coefficients embedded in the determinant of a three by three
matrix,

JT λ
κmS

¼ 1

b1

�����
b1 e1 a1
b2 e2 a2
b3 e3 a3

�����: ð11Þ

The coefficients appearing in this expression are given
in the Appendix. JRG transforms the input parameters from
the GUT scale to the electroweak scale, and factorizes as
shown due to the supersymmetric nonrenormalization
theorem. The subscript λ indicates that this parameter is
kept constant in the derivatives.
As happens in going from Eq. (5) to Eq. (6) we can

choose to work with the logarithms of parameters (as is
natural if we choose logarithmic priors) so that we obtain a
new factor in the denominator, which is the inverse of the
Jacobian with logarithms inserted inside the derivatives.
This gives us

ΔCNMSSM
J ¼

���� ∂lnðm
2
Z; tan β; λÞ

∂lnðκ0; m2
S0
; λ0Þ

���� ¼ κ0m2
S0
λ0

m2
Z tan βλ

J−1T 0
: ð12Þ

It is well known that the top quark Yukawa coupling
can play a significant role in fine-tuning so we also
considered this by extending the transformation to include
the top quark mass and (unified) Yukawa coupling,
ðκ0; m2

S0
; λ0; y0Þ → ðm2

Z; tan β; λ; mtÞ. Nonetheless as was
already observed in the MSSM case [9,10], we found that
all the derivatives, other than ∂mt∂yt , that involve mt and yt

cancel, so this only changes the Jacobian by a single
multiplicative factor of ∂mt∂yt . Finally when logarithmic priors
are chosen this factor will disappear entirely because
∂ lnmt∂ ln yt ¼ 1, and the Yukawa RGE factor ∂ ln yt∂ ln y0 is the same
order one constant (at 1-loop) as in the CMSSM case so we
neglect it.
Therefore we write our NMSSM Jacobian based tuning

measure as

ΔCNMSSM
J ¼

���� ∂lnðm
2
Z; tan β; λ; m

2
t Þ

∂lnðκ0; m2
S0
; λ0; y20Þ

����; ð13Þ

with the additional transformation between mt and y0
included to emphasise that we have also considered these,
since the cancellation will prove to be rather important (in
both the MSSM and NMSSM) when we compare against
the Barbieri-Giudice tuning measure in the focus point (FP)
region. There we will show that due to this cancellation we
do not see a large tuning penalty in the much discussed FP
region [24–27], which appears in the Barbieri-Giudice
measure when one includes yt as a parameter.
The expression given here is formally the Jacobian

which should be used in the Bayesian analysis of any
NMSSM model when ðλ0; κ0; m2

S0
; y20Þ are traded for

ðm2
Z; tan β; λ; m

2
t Þ. At the same time ΔCNMSSM

J can be
interpreted as a measure of the naturalness of the
NMSSM, which may be applied to the CNMSSM, the
general NMSSM and λ-SUSY scenarios.
Interestingly, as it was argued in the recent literature

[28], the above Jacobians can also be considered to measure
fine-tuning from a purely frequentist perspective. In this
context the same Jacobians appear as part of the likelihood
function after one includes observables in χ2 which are
related to the scale of electroweak symmetry breaking, such
as the mass of the Z boson. Just as above, the variable
transformation from these observables to fundamental
parameters induces the Jacobian, which can be interpreted
as a part of the likelihood that measures the sensitivity of
the predicted electroweak scale to the fundamental param-
eters of the model. Steep derivatives of the relevant
observables with respect to the chosen fundamental param-
eters signal a strongly peaked likelihood function, indicat-
ing that χ2 drops off rapidly from the best fit value as those
parameters are changed, which is of course indicative of
high fine-tuning. The Bayesian perspective offers addi-
tional insight into the reasons we might dislike such
behavior in our likelihood functions, since in the frequentist
case the actual best-fit χ2 does not suffer a penalty for any
tuning observed in its vicinity, while in the Bayesian case
there is a clear and direct penalty originating from the small
prior–likelihood overlap that such behavior implies.

III. NUMERICAL ANALYSIS

For our numerical analysis we use SOFTSUSY 3.3.5 for
the MSSM [29], and NMSPEC [30] in NMSSMTOOLS 4.1.2
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for the NMSSM. NEXT-TO-MINIMAL SOFTSUSY [23] was
still in development during this analysis but was used to
cross check the spectrum for certain points. MULTINEST 3.3
was used for scanning [31,32]. Both spectrum generators
used here provide ΔBG with renormalization group flow
improvement. For ΔBG in the CMSSM we include indi-
vidual sensitivities, ΔBGðpiÞ, for the set of parameters
M0;M1=2; A0; μ; B; yt. For the CNMSSM we use the
set M0;M1=2; A0; λ; κ; yt.
First we examine how the tuning measures vary withM0

and M1=2, without requiring a 125 GeV Higgs. We fix
tan β ¼ 10, where the extra NMSSM F-term conribution is
small, but there is interesting focus point (FP) behavior
[24–27]. Previous studies [33] show that large and negative
A0 is favored, so to simplify the analysis here and
throughout we choose3 A0 ¼ −2.5 TeV.
The results for the CMSSM are shown in Fig. 1. The

value of ΔEW is governed by the m2
Hu

and μ2 contributions

since m2
Z=2 ≈ −m̄2

Hu
− μ2, where m̄2

Hu
includes the radia-

tive corrections. In general ΔEW is dominated by μ2, while
the crossover to the m2

Hu
dominance occurs in the vicinity

of the EWSB boundary.
For this measure there is low fine-tuning even at large

M0. This may seem counterintuitive, but for tan β ¼ 10 at
large M0 we are close to a FP region. In this region the
dependence on M0 which appears from RG evolution of
mHu

vanishes. For example in the CMSSM semi-analytical
solution to the renormalization group equations (RGEs),

m2
Hu

¼ c1M2
0 þ c2M2

1=2 þ c3A2
0 þ c4M1=2A0; ð14Þ

the coefficients ci are functions of Yukawa and gauge
couplings, and tan β and c1 can be close to zero. Such
regions then appear to have low fine-tuning even with large
M0 since the small size of c1 means there is no need to
cancel the large M0 in Eq. (2) to obtain the correct m2

Z.
In ΔBG, however, the sensitivity to the top quark Yukawa

coupling is included. Since the RG coefficients depend on
this Yukawa coupling, the large stop corrections from the
RGEs that feed intom2

Hu
lead to a large ΔBGðytÞ even in the

focus point region.ΔEW is not sensitive to this effect since it
does not take into account such RG effects.
Interestingly ΔCMSSM

J exhibits similar behavior to ΔEW
despite containing derivatives from ΔBG. This is because
ΔCMSSM

J does not contain the derivative of mZ with respect
yt. When one computes the Jacobian for Eq. (8) the
derivative of yt with respect to mZ cancels out, leaving
only the derivatives ∂μ

∂Mz

∂Bμ
∂t

∂yt∂mt
in the Jacobian. As a result

ΔJ in the MSSM can remain small in the focus point region.
Fine-tuning measures for the CNMSSM are shown in

Fig. 2. Here ΔCNMSSM
J is defined by Eq. (13) and ΔBG is

defined by Eq. (3), whileΔEW is defined the same as for the
MSSM. The parameter μ dominates electroweak tuning,
ΔEW, throughout the M0 vs. M1=2 plane. Since μ values
and related derivatives are similar in the CMSSM and
CNMSSM the fine-tuning measures are qualitatively sim-
ilar for the two models.
As in the CMSSM the Jacobian derived tuning ΔJ

increases with M1=2, as anticipated since for large M1=2
large cancellation is required to keep mZ light. Again
though at largeM0 ΔJ can still be low seeming to favor this
FP region, which is a result of the same cancellation as
happened in the MSSM case occurring in our new NMSSM
Jacobian.
Interestingly the region where the tuning can be very low

extends further in the NMSSM. Note this is not a result of
raising the Higgs mass with λ since we impose no Higgs
constraint yet and have large tan β. However λ is varied
across the plane and affects the EWSB condition and the
renormalization group evolution. However since the num-
ber of parameters are different in the CNMSSM and
CMSSM, to determine whether the CNMSSM is preferred
over the CMSSM, we have to compare Bayesian evidences.

FIG. 1 (color online). Fine-tuning measures ΔBG (top), ΔJ
(middle), ΔEW (bottom) in the M0 vs. M1=2 plane for
A0 ¼ −2.5 TeV, tan β ¼ 10 and sgnðμÞ ¼ 1 in the CMSSM.
The color code quantifies the value of ΔEW and ΔJ . Since ΔBG is
dominated by the μ derivative it is low in the small M0 and M1=2
region. Although ΔBG, by definition, is formally part of ΔJ the
numerical behavior of the latter is similar to that of ΔEW. All
massive parameters are in GeV unit. No experimental constraints
applied except that the lightest supersymmetric particle is electri-
cally neutral and the EWSB condition is satisfied.

3We checked that with alternative A0 choices the behavior is
similar. The main difference is with the Higgs masses where a
large and negative A0 was chosen to increase the lightest Higgs
mass.
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Since the focus point region allows small ΔEW and ΔJ in
the large M0 region it is possible to have a relatively heavy
lightest Higgs and small ΔJ. This is illustrated in Fig. 3.
Note also that in the NMSSM case there is no tuning
preference for large λ since the new F-term contribution
goes like λ2v2 sin2 2β and is therefore suppressed at large
tan β. Nonetheless in the focus region in both the CMSSM
and CNMSSM one can have a 125 GeV without an
enormous penalty from effective prior weighting ΔJ.
However the lowest tuning is when M1=2 is smallest and

this region is strongly constrained by squark and gluino
searches. The important message, nonetheless, is that the
Higgs mass measurement has a low impact on naturalness
in the focus point region. Therefore the effect of the Higgs
mass measurement may not be as severe on our degree of
belief as we would expect from ΔBG, even in the MSSM. A
caveat to this optimistic statement is that from looking at
ΔJ alone one cannot know if the focus point scenarios will
be suppressed by other factors in the full Bayesian analysis.
This can only be determined by carrying out that analysis.
Away from this special FP region the Higgs mass

measurement has a large impact and the extra F-term of
the NMSSM can play a vital role. In Fig. 4 we compare
the Higgs mass against fine-tuning for tan β ¼ 3 in both the
CMSSM and the CNMSSM. Here the extra NMSSM
F-term can give a larger contribution to the SM-like
Higgs mass and it is precisely this effect which leads to
expectations of increased naturalness in the NMSSM.
In the MSSM the tree level upper bound reduces rapidly

at small tan β. Therefore we do not find any CMSSM

solutions with a lightest Higgs mass above 120 GeV in
Fig. 4. The maximum achievable mass of the lightest Higgs
hasΔJ ≈ 105. By comparison the same mass for the lightest
Higgs in the CNMSSM can be achieved with ΔJ between
102–103. So according to the naturalness prior measure ΔJ
the tuning is reduced compared to the CMSSM for heavier
Higgs masses.
Nonetheless for mh0 > mZ on contours of fixed λ, ΔJ

increases with the lightest Higgs mass and the minimumΔJ
starts increasing significantly when the lightest Higgs mass
is pushed above 115 GeV. As expected the largest Higgs
masses are found for sizable λ. This demonstrates that for
the new Jacobian naturalness measure for the NMSSM the
additional F-term contribution in the NMSSM really does
decreasing fine-tuning of the model as one increases λ,
strongly supporting previous that this mechanism can
reduce fine-tuning in the low tan β region of the NMSSM.
However for the tan β ¼ 3 slice it is still hard to achieve a

125 GeV lightest Higgs mass in such strongly constrained
scenarios. λ does not reach the perturbative limit, with
λ ≤ 0.6. Unlike the MSSM, A terms play an important role
in the EWSB condition. Since B ¼ Aλ þ κs, Aλ restricts the
parameter space by the tachyonic CP-odd mass constraint.
Further, Aκ also affects the EWSB condition through the
validity of the global minimum.4 While a 125 GeV Higgs in
constrained versions is difficult to achieve, it is easier in the
unconstrained NMSSM [6,34]. Therefore a detailed analy-
sis of the multidimensional unconstrained NMSSM is

FIG. 2 (color online). Same as Fig. 1 except for the constrained
NMSSM. A0;κ;λ ¼ −2.5 TeV and tan β ¼ 10 are assumed. λ is
sampled from the range [0, 0.8].

FIG. 3 (color online). Fine-tuning with respect to mh0 for the
CMSSM (upper) and CNMSSM (lower). A0 ¼ −2.5 TeV and
tan β ¼ 10 for both models.

4For example in the large s limit this requires A2
κ > 8m2

S. This
must be satisfied simultaneously with, Aκ ¼ A0 and the mini-
mization condition involving m2

S
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required, and this will be presented in our companion paper
[35] where we consider both the perturbative NMSSM and
λ-SUSY scenarios.
Figure 5 shows fits to various observables in the

framework of the slightly relaxed CNMSSM for fixed
values of A0 ¼ −2.5 TeV and tan β ¼ 10. For these scans
Aλ and Aκ are allowed to vary independently from A0. We
decouple Aλ and Aκ from A0 to easily obtain a neutralino
relic density and a lightest Higgs mass which simulta-
neously satisfy the experimental constraints. Table I shows
the experimental values of the observables that were used in
the fit shown in Fig. 5. The neutralino relic density is
required to match the dark matter relic density as measured
by Planck [36]. For the lightest Higgs mass we use the PDG
combined value [37]. PDG combined limits are used to
constrain the sparticle masses, except for the squark and
gluino masses; in this case we take the strongest currently
listed PDG limits, even though these do not directly apply
to the model under consideration, in order to be
conservative. The constraints on rare B decays are taken
from LHCb [38] and HFAG [39]. All constraints are
implemented as Gaussian likelihoods except where a limit
is indicated, in which case a hard cut is applied.
The top frame of Fig. 5 is the fit to the relic density alone

while the bottom is the two observable combined fit. The
statistical significance with which each model point can be
rejected is given in units of σs. These significances
correspond to local p-values, computed assuming the
observables’ best fit values are normally distributed with
the specified standard deviation. To be conservative, no
additional theoretical uncertainty is included in the fit. As
the figure shows on the A0 ¼ −2.5 TeV and tan β ¼ 10
hypersurface a good fit to both observables can be obtained
for the low Jacobian tuning of ΔJ ∼ 1.
Plots of the data in Figs. 1–5 for alternate A0 and tan β

choices can be found online at [40].

IV. CONCLUSIONS

In this work we presented Bayesian naturalness priors to
quantify fine-tuning in the (N)MSSM. These priors emerge

FIG. 4 (color online). Fine-tuning with respect to mh0 for the
CMSSM (upper) and CNMSSM (lower). A0 ¼ −2.5 TeV and
tan β ¼ 3 for both models.

FIG. 5 (color online). Fits to various observables in the
framework of the slightly relaxed CNMSSM for fixed values
of A0 ¼ −2.5 TeV and tan β ¼ 10. Aλ and Aκ are allowed to vary
independently from A0. Table I shows the experimental values of
the observables that were used in this fit. The top frame is the fit
to the relic density alone while the bottom is the two observable
combined fit. The statistical significance with which each model
point can be rejected is given in units of σs. As the figure shows
on the A0 ¼ −2.5 TeV and tan β ¼ 10 hypersurface a good fit to
both observables can be obtained for the low Jacobian tuning
of ΔJ ∼ 1.

TABLE I. Experimental values of the observables that were
used in the fit shown in Fig. 5.

Observable Experimental value

ΩDMh2 0.1187� 0.0017 [36]
mh 125.9� 0.4 GeV [37]
BRðBs → μþμ−Þ ð2.9� 1.1Þ × 10−9 [38]
BRðb → sγÞ ð343� 21� 7Þ × 10−6 [39]
BRðB → τνÞ ð114� 22Þ × 10−6 [39]
m~χ0

1
> 46 GeV [37]

m~χ�
1

> 94 GeV if m~χ�
1
−m~χ0

1
> 3 GeV [37]

m ~q > 1.43 TeV [37]
m~g > 1.36 TeV [37]
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automatically during model comparison within the
Bayesian evidence.
We compared the Bayesian measure of fine-tuning (ΔJ)

to the Barbieri-Giudice (ΔBG) and ratio (ΔEW) measures.
Even though the Bayesian prior is closely related to the
Barbieri-Giudice measure, the numerical value of the
Bayesian measure reproduces important features of ΔEW.
Both ΔEW and ΔJ are low in FP scenarios.
Our numerical analysis is limited to fixed ðA0; tan βÞ

slices of the constrained parameter space. For these slices
we show that, according to the naturalness prior, the
constrained version of the NMSSM is less tuned than
the CMSSM. This statement, however, has to be confirmed
by comparing Bayesian evidences of the models. The
complete parameter space scan and the full Bayesian
analysis for the NMSSM is deferred to a later work [35].
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APPENDIX: JACOBIAN ENTRIES

The entries appearing in the Jacobian JT κmS
in Eq. (10)

are given in this appendix.

a1 ¼ −κAκ − 4κ2s −
λAλv2s2β

2s2
ðA1Þ

a2 ¼ λκv2
∂s2β
∂tβ þ λAλv2

2s

∂s2β
∂tβ ðA2Þ

a3 ¼ −
λ2v2

M2
Z
þ λκs2β

v2

M2
Z
þ λAλv2s2β

2sM2
Z

ðA3Þ

b1 ¼ −
λ

s
b2 ¼

1

2λs2
2tβ

ðt2β − 1Þ2 ðm
2
Hu

−m2
Hd
Þ ðA4Þ

b3 ¼ −
1

4λs2
ðA5Þ

e1 ¼ −
2λs sin 2β − ðAλ þ 2κsÞ

s2
ðA6Þ

e2 ¼ −
1 − t2β

tβð1þ t2βÞ
Aλ þ κs

s
ðA7Þ

e3 ¼ −
λ sin 2β
ḡ2s2

ðA8Þ
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