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We give a quantitative analysis of the electric dipole moments as a probe of high scale physics. We focus
on the electric dipole moment of the electron since the limit on it is the most stringent. Further, theoretical
computations of it are free of QCD uncertainties. The analysis presented here first explores the probe of
high scales via electron electric dipole moment (EDM) within minimal supersymmetric standard model
where the contributions to the EDM arise from the chargino and the neutralino exchanges in loops. Here it
is shown that the electron EDM can probe mass scales from tens of TeV into the PeV range. The analysis is
then extended to include a vectorlike generation which can mix with the three ordinary generations. Here
new CP phases arise and it is shown that the electron EDM now has not only a supersymmetric (SUSY)
contribution from the exchange of charginos and neutralinos but also a nonsupersymmetric contribution
from the exchange of W and Z bosons. It is further shown that the interference of the supersymmetric and
the nonsupersymmetric contribution leads to the remarkable phenomenon where the electron EDM as a
function of the slepton mass first falls and become vanishingly small and then rises again as the slepton
mass increases. This phenomenon arises as a consequence of cancellation between the SUSYand the non-
SUSY contribution at low scales while at high scales the SUSY contribution dies out and the EDM is
controlled by the non-SUSY contribution alone. The high mass scales that can be probed by the EDM are
far in excess of what accelerators will be able to probe. The sensitivity of the EDM to CP phases both in the
SUSY and the non-SUSY sectors are also discussed.
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I. INTRODUCTION

In the standard model the electric dipole moments (EDM)
of elementary particles are very small [1]. Thus for the elec-
tron it is estimated that jdej≃ 10−38 ecm and for the neutron
the value ranges from 10−31 − 10−33 ecm. This is far beyond
the current sensitivity of experiments tomeasure.However, in
models of physics beyond the standard model much larger
electricdipolemoments, ordersofmagnitude larger than those
in the standard model, can be obtained (for a review see [2]).
Thus in the supersymmetric (SUSY) models the electric
dipole moments of elementary particles such as the electron
and the quarks can be large enough that the current exper-
imental upper limits act as constraints on models. Indeed
often in supersymmetric theories for light scalars, the electric
dipole moments can lie in the region larger than the current
upper limits for the electron and the neutron EDMs. This
phenomenon is often referred to as the SUSY EDMproblem.
One solution to the SUSY EDM problem is the possibility
that theCP phases are small [3]. Other possibilities allow for
large, even maximal, phases and the EDM is suppressed via

the sparticle masses being large [4] or by invoking the so-
called cancellation mechanism [5] where contributions from
various diagrams that generate the electric dipole moment
interfere destructively to reduce the electric dipole moment to
a level below its experimental upper limit.
In the post Higgs boson discovery era the apparent SUSY

EDM problem can be turned around to one’s advantage as a
tool to investigate high scale physics. The logic of this
approach is the following: The high mass of the Higgs boson
at 126 GeV requires a large loop correction to lift its value
from the tree level, which lies below the Z -boson mass, up
to the experimental value. A large loop correction requires
that the scalar masses that enter in the Higgs boson loop be
large so as to generate the desired large correction which
requires a high scale for the sfermion masses. Large
sfermions masses help with suppression of flavor changing
neutral currents. They also help resolve the SUSY EDM
problem and help stabilize the proton against decay via
baryon and lepton number violating dimension five oper-
ators in supersymmetric grand unified theories.
In this work we investigate the possibility that EDMs

can be used as probes of high scale physics as suggested in
[6–9]. Specifically we focus here on the EDM of the
electron since it is by far the most sensitively determined
one than any of the other EDMs. Thus the ACME
Collaboration [10] using the polar molecule thorium
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monoxide (ThO) measures the electron EDM so that

de ¼ ð−2.1� 3.7stat � 2.5systÞ × 10−29 ecm: ð1Þ

The above corresponds to an upper limit of

jdej < 8.7 × 10−29 ecm; ð2Þ

at 90% CL. The corresponding upper limits on the EDM of
the muon and on the tau lepton are [11]

jdμj < 1.9 × 10−19 ecm; ð3Þ

jdτj < 10−17 ecm; ð4Þ

and are not as stringent as the result of Eq. (2) even after
scaling in lepton mass is taken into account. Further,
the limit on de is likely to improve by an order of
magnitude or more in the future as the projections below
indicate [12–14]

Fr jdej ≲ 1 × 10−29 ecm; ð5Þ

YbF molecule jdej ≲ 1 × 10−30 ecm; ð6Þ

WN ion jdej≲ 1 × 10−30 ecm: ð7Þ

In the analysis here we will first consider the case of
minimal supersymmetric standard model (MSSM) where
the CP phases enter in the soft parameters such as in the
masses Miði ¼ 1; 2Þ of the electroweak gauginos, and in
the trilinear couplings Ak and in the Higgs mixing param-
eter μ. Here we will investigate the scale of the slepton
masses needed to reduce the electron EDM below its upper
limit for the case when the CP phases are naturally Oð1Þ.
We will see that this scale will be typically high lying in the
range of tens of TeV to a PeV (For a discussion of PeV
scale in the context of supersymmetry in previous works
see, e.g., [15]). We will carry out the analysis for the case
where we extend MSSM to include a vectorlike leptonic
multiplet and allow for mixings between the vectorlike
multiplet and the three sequential generations. We will
study the parametric dependence of the EDM on the scalar
masses, on fermion masses of the vectorlike generation, on
CP phases and on tan β.
The outline of the rest of the paper is as follows: In

Sec. II we discuss the EDM of the electron within MSSM
as a probe of the slepton masses. In Sec. III we extend the
analysis of Sec II to MSSM with inclusion of a vectorlike
leptonic multiplet which allows for mixing between the
vector multiplet and the three sequential generations. Here
we give analytic results for the electron EDM arising from
the supersymmetric exchange involving the chargino
and neutralinos in the loops. We also compute the

nonsupersymmtric contributions involving the W and the
Z exchange. In Sec. IV we give a numerical analysis of
the limits on the mass scales that can be accessed using the
results of Sec. III. Conclusions are given in Sec. V. Further
details of the MSSM model with a vector multiplet used in
the analysis of Sec. III are given in Appendices A–C.

II. PROBE OF SLEPTON MASSES IN MSSM FROM
THE ELECTRON EDM CONSTRAINT

The supersymmetric Feynman diagrams that contribute
to the electric dipole moment of the electron involve the
chargino-sneutrino exchange and the neutralino-slepton
exchange as shown in Fig. 1. In the analysis of these
diagrams the input supersymmetry parameters consist of
the following

M ~eL;M ~νe ;M ~e; μ; tan β;M1;M2; Ae; Aνe ; ð8Þ

where M ~eL etc are the soft scalar masses, M1;M2 are the
gaugino masses in the Uð1Þ and SUð2Þ sectors, Ae etc are
the trilinear couplings, μ is the Higgs mixing parameter
which enters the superpotential as μH1H2, where H2 gives
mass to the up quarks and H1 gives mass to the down
quarks and the leptons, while tan β is the ratio of the Higgs
VEVs so that tan β ¼ hH2i=hH1i (see Appendix A for
discussion of the soft parameters). Further, μ, M1, M2, and
the trilinear coupling Ak are complex and we define their
phase so that

μ ¼ jμjeiαμ ; Mi ¼ jMijeαi ; i ¼ 1; 2 ð9Þ

Ak ¼ jAkjeiαAk ; k ¼ e; νe: ð10Þ

The analysis of the diagrams of Fig. 1 involves electron-
chargino-sneutrino interactions and the electron-neutralino-
slepton interactions. For the chargino-sneutrino exchange
diagrams one has

dχ
−

e ¼ αem
4πsin2θW

ke
m2

~νe

X2
i¼1

m~χ−i
ImðU�

i2V
�
i1ÞF

�m2
~χ−i

m2
~νe

�
ð11Þ

where FðxÞ is a form factor defined by

FIG. 1. The neutralino-slepton exchange diagram (left) and the
chargino-sneutrino exchange diagram (right) that contribute to
the electric dipole moment of the electron in MSSM.
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FðxÞ ¼ 1

2ð1 − xÞ2
�
3 − xþ 2 ln x

1 − x

�
ð12Þ

and

κe ¼
meffiffiffi

2
p

mW cos β
: ð13Þ

HereU;V diagonalize the chargino mass matrixMC so that

U�MCV ¼ diagðm~χ−
1
; m~χ−

2
Þ: ð14Þ

For the neutralino-slepton exchange diagrams one finds

d~χ0
e ¼ αem

4πsin2θW

X2
k¼1

X4
i¼1

ImðηeikÞ
m~χ0i

M ~fk2
Q ~fG

�m2
~χ−i

m2
~νe

�
ð15Þ

where GðxÞ is a form factor defined by

GðxÞ ¼ 1

2ð1 − xÞ2
�
1þ xþ 2x ln x

1 − x

�
ð16Þ

where

ηeik ¼ ½−
ffiffiffi
2

p
ftan θWðQe − T3eÞX1i þ T3iX2igD�

e1k

þ κeXbiD�
e2k� ð17Þ

ð
ffiffiffi
2

p
tan θWQeX1iDe2k − κeXbiDe1kÞ; ð18Þ

where b ¼ 3 and T3e ¼ −1=2. Further, Xij are elements of
the matrix X which diagonalizes the neutralino mass matrix
Mχ0 so that

XTMχ0X ¼ diagðm~χ0
1
; m~χ0

2
; m~χ0

3
; m~χ0

4
Þ; ð19Þ

andDe diagonalizes the scalar electron mass2 matrix so that

~eL ¼ De11 ~e1 þDe12 ~e2; ~eR ¼ De21 ~e1 þDe22 ~e2 ð20Þ

where ~e1 and ~e2 are the selectron mass eigenstates. In Fig. 2
we give a numerical analysis of the electron EDM as a
function ofm0. Here one finds that the current constraint on
the electron EDM allows one to probe the m0 region in the
tens of TeV while improvement in the sensitivity by a factor
of 10 or more will allow one to extend the range up to
100 TeV–1 PeV.

III. EDM ANALYSIS BY INCLUSION OF A
VECTOR GENERATION IN MSSM

Next we discuss the case when we include a vectorlike
leptonic multiplet which mixes with the three generations
of leptons. In this case the mass eigenstates will be linear
combinations of the three generations plus the vector
like generation which includes mirror particles. The

details of the model and its interactions are given in
Appendices A–C. Here we discuss the contribution of
the model to the electron EDM. These contributions arise
from four sources: the chargino exchange, the neutralino
exchange, the W boson exchange and the Z boson
exchange (see Fig. 3).
Using the interactions given in Appendix B the chargino

contribution is given by

dχ
þ

α ¼ −
1

16π2
X2
i¼1

X8
j¼1

mχþi

m2
~νj

ImðCL
αijC

R�
αijÞF

�m2
χþ i

m2
~νi

�
; ð21Þ

where the functions CL and CR are given in Appendix B
and the form factor FðxÞ is given by Eq. (12). Using the
interactions given in Appendix B the neutralino contribu-
tion is given by

dχ
0

α ¼ −
1

16π2
X4
i¼1

X8
j¼1

mχ0i

m2
~τj

ImðC0L
αijC

0R�
αijÞG

�m2
χ0i

m2
~τi

�
; ð22Þ

where the functions C0L and C0R are defined in Appendix B
and the form factor GðxÞ is given by Eq. (16). The
contributions to the lepton electric moment from the W
and Z exchange arise from similar loops. Using the
interactions given in Appendix B the contribution arising
from the W exchange diagram is given by

dWα ¼ 1

16π2
X4
i¼1

mψþ
i

m2
W
ImðCW

LiαC
W�
RiαÞI1

�
m2

ψ i

m2
W

�
; ð23Þ

where the functions CW
L and CW

R are given in Appendix B
and the form factor I1 is given by

I1ðxÞ ¼
2

ð1 − xÞ2
�
1 −

11

4
xþ 1

4
x2 −

3x2 ln x
2ð1 − xÞ

�
: ð24Þ

The Z boson exchange diagram contribution is given by

dZα ¼ −
1

16π2
X4
β¼1

mτβ

m2
Z
ImðCZ

LαβC
Z�
RαβÞI2

�
m2

τβ

m2
Z

�
; ð25Þ

where the functions CZ
L and CZ

R are defined in Appendix B
and where the form factor I2 is given by

I2ðxÞ ¼
2

ð1 − xÞ2
�
1þ 1

4
xþ 1

4
x2 þ 3x ln x

2ð1 − xÞ
�
: ð26Þ

IV. NUMERICAL ANALYSIS AND RESULTS

We discuss now the numerical analysis for the EDM of
the electron in the model given in Sec. III. The parameter
space of the model of Sec. III is rather large. In addition to
the MSSM parameters, one has the parameters arising from
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the vectorlike multiplet and its mixings with the standard
model generations of quarks and leptons. Thus as in MSSM
here also we look at slices of the parameter space to show
that interesting new physics exists in these regions. Thus
for simplicity in the analysis we assume Aντ ¼ Aνμ ¼ Aνe ¼
AN ¼ A~ν

0 and m~ν2
0 ¼ M2

~N
¼ M2

~ντ
¼ M2

~νμ
¼ M2

~νe
in the sneu-

trino mass squared matrix [see Eq. (A16)]. We also assume
m2

0 ¼ M~τL
2 ¼ M2

~E
¼ M2

~τ ¼ M2
~χ ¼ M2

~μL ¼ M2
~μ ¼ M2

~eL ¼ M2
~e

and A0 ¼ Aτ ¼ AE ¼ Aμ ¼ Ae in the slepton mass squared
matrix [see Eq. (A16)]. The assumed masses for the new
leptons are consistent with the lower limits given by the
Particle Data Group [11]. In Fig. 2 we investigated de in
MSSM as a function of m0 when there were no mixing
of the ordinary leptonic generations with the vectorlike
generation. We wish now to switch on a small mixing
with the vectorlike generation and see what effect it has on
the electron EDM. To this end we focus on one curve in
Fig. 2 which we take to be the solid curve (the case
αμ ¼ −0.5). For this case we plot the individual contribu-
tions to de in the left panel of Fig. 4. Here one finds that the
largest contribution to de arises from the chargino exchange
while the neutralino exchange produces a much smaller
contribution and as expected theW and Z exchanges do not
contribute.
Next we turn on a small coupling between the vectorlike

generation and the three generations of leptons. The
analysis for this case is given in the right panel of
Fig. 4. The turning on of the mixings has the following
effect: the supersymmetric contribution is modified only
modestly and its general feature remains as in the left panel.
However, now because of mixing with the vectorlike
generation the contribution from the W and Z exchange
is nonvanishing and in fact is very significant. Further,

unlike the chargino and the neutralino exchange contribu-
tion theW and Z exchange contribution does not depend on
m0 as exhibited in Fig. 4. Thus as m0 gets large the
supersymmetric contributions become much smaller than
that of theW and Z exchange contribution. For this reason,
de is dominated by the W and Z exchange. This phenome-
non is exhibited in further detail in Table I which is done for
the same set of parameters as the right panel of Fig. 4
except that m0 ¼ 1.1 PeV. Here column (i) gives the
individual contributions for the case (i) of no mixing where

FIG. 2 (color online). Left panel: A display of the electron EDM as a function of m0 (where m0 ¼ M ~eL ¼ M ~e) for different αμ (the
phase of the Higgs mixing parameter μ) with the mixings of the vectorlike generation with the regular three generations set to zero. The
curves are for the cases αμ ¼ −3 (small-dashed, red), αμ ¼ −0.5 (solid), αμ ¼ 1 (medium-dashed, orange), and αμ ¼ 2.5 (long-dashed,
green). The horizontal solid line is the current upper limit on the electron EDM set at jdej ¼ 8.7 × 10−29. The other parameters are
jμj ¼ 4.1 × 102, jM1j ¼ 2.8 × 102, jM2j ¼ 3.4 × 102, jAej ¼ 3 × 106, m~ν

0 ¼ 4 × 106, jA~ν
0j ¼ 5 × 106, tan β ¼ 30. All masses are in

GeV, phases in rad and EDM in ecm.The analysis shows that improvements in the electron EDM constraint can probe scalar masses in
the 100 TeV–1 PeV region and beyond. Right panel: The same as the left panel except that the region below the current experiment limit
is blown up. The analysis shows that an improvement by a factor of ten can allow one to probe up to and beyond 1 PeV in mass scales.

FIG. 3. Upper diagrams: Supersymmetric contributions to the
leptonic EDMs arising from the exchange of the charginos,
sneutrinos and mirror sneutrinos (upper left) and the exchange
of neutralinos, sleptons, and mirror sleptons (upper right) inside
the loop. Lower diagrams: Nonsupersymmetric diagrams that
contribute to the leptonic EDMs via the exchange of the W,
the sequential and vectorlike neutrinos (lower left) and the
exchange of the Z, the sequential and vectorlike charged leptons
(lower right).
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W and Z contributions vanish, and the nonvanishing
contributions arise from chargino and neutralino exchange.
Column (ii) exhibits the individual contributions when
the mixings with the vectorlike generation are turned on.
Here one finds that the supersymmetric contributions from
the chargino and neutralino exchanges are essentially
unchanged from the case of no mixing but the contributions
from the W and Z exchanges are now nonzero and are in
fact much larger than the chargino and neutralino exchange
contributions. The reason for the nonvanishing contribution
from the W and Z exchanges is due to the mixings with
vectorlike generation whose couplings are complex and
carry CP violating phases.

In Fig. 5 we give an analysis of the electron EDM as a
function of m0 for different pairs of fermion masses for the
vectorlike generation. The fermion masses for the vector-
like generation lies in the range 150–300 GeV. Here we

TABLE I. Column (i): An exhibition of the individual con-
tributions to de arising from the chargino, neutralino, W and Z
boson exchanges and their sum de for the case when there is no
mixing among the generations. The parameters chosen are the
same as for the solid curve (αμ ¼ −0.5 rad) of Fig. 2 where m0 is
set to 1.1 PeV. Column (ii): The analysis of column (ii) has the
same set of parameters as the left panel except that intergener-
ational couplings are allowed. Here the couplings f3; f03,
f003 ; f4; f

0
4, f

00
4; f5; f

0
5, and f005 are the same as the ones in the

right panel of Fig. 4. The fermion masses for the vectorlike
generation are mN ¼ 250 and mE ¼ 380 GeV. The EDM is in
ecm units.

(i) Case of no mixing (ii) Case of mixing

dχ
þ
e 2.82 × 10−30 2.82 × 10−30

dχ
0

e −2.53 × 10−31 −2.53 × 10−31

dWe 0 9.72 × 10−29

dZe 0 −3.05 × 10−29

de 2.57 × 10−30 6.93 × 10−29

FIG. 4 (color online). Left panel: Exhibition of the individual contributions to the EDM of the electron when there is no mixing
between the vectorlike generation and the three regular generations. The parameters chosen for this case are the same as for the solid
curve in Fig. 2 where αμ ¼ −0.5. As expected the contributions from the W-exchange (the long-dashed curve in orange) and the
Z -exchange (dot-dashed purple curve) give vanishing contribution in this case, and the entire contribution arises from the chargino-
exchange (the small-dashed curve in red) and the neutralino-exchange (the medium-dashed blue curve). Right panel: The parameter
point chosen is the same as for the left panel except that mixing of the vectorlike generation with the regular three generations is allowed.
The additional parameters chosen are mN ¼ 250; mE ¼ 380 and the f couplings set to jf3j ¼ 7.20 × 10−6, jf03j ¼ 1.19 × 10−4,
jf003j ¼ 1.55 × 10−5, jf4j¼8.13×10−4, jf04j¼3.50×10−1, jf004 j¼6.29×10−1, jf5j¼8.82×10−5, jf05j¼5.36×10−5, jf005 j¼1.27×10−5.
Their corresponding CP phases set to χ3¼9.71×10−1, χ03¼7.86×10−1, χ003 ¼ 7.89 × 10−1, χ4 ¼ 7.66 × 10−1, χ04 ¼ 8.38 × 10−1,
χ004 ¼ 8.23 × 10−1, χ5 ¼ 7.70 × 10−1, χ05 ¼ 1.47, χ005 ¼ 7.82 × 10−1. All masses are in GeV, phases in rad and EDM in ecm.

FIG. 5 (color online). An exhibition of the dependence of jdej
on m0 for various vectorlike masses. The curves correspond to
mN ¼ mE ¼ 150 (dot dashed), mN ¼ mE ¼ 200 (solid), mN ¼
mE ¼ 250 (dotted), mN ¼ mE ¼ 300 (dashed). The parameters
are jμj ¼ 4.1 × 102, jM1j ¼ 2.8 × 102, jM2j ¼ 3.4 × 102, jA0j ¼
3 × 106, m~ν

0 ¼ 4 × 106, jA~ν
0j ¼ 5 × 106, tan β ¼ 50. The CP

phases are θμ¼1, α1¼1.26, α2¼0.94, αA0
¼0.94, αA~ν

0
¼1.88.

The f couplings are jf3j ¼ 3.01 × 10−5, jf30j ¼ 8.07 × 10−6,
jf300j ¼ 2.06 × 10−5, jf4j ¼ 8.13 × 10−4, jf40j ¼ 3.50 × 10−1,
jf400j ¼ 6.29 × 10−1, jf5j ¼ 6.38 × 10−5, jf50j ¼ 1.03 × 10−6,
jf500j ¼ 2.44 × 10−8. Their corresponding CP phases are χ3¼
7.91×10−1, χ03¼7.87×10−1, χ003¼7.78×10−1, χ4¼7.66×10−1,
χ04 ¼ 8.38 × 10−1, χ004 ¼ 8.23 × 10−1, χ5 ¼ 7.57 × 10−1, χ05 ¼
7.54 × 10−1, χ005 ¼ 7.83 × 10−1. All masses are in GeV, phases
in rad, and de in ecm.
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find that de is very sensitive to the fermion masses for the
vectorlike generation. The dependence of jdej onm0 shows
a turn around where jdej first decreases and then increases.
This is easily understood as follows: As discussed already
for the case of Fig. 4 the supersymmetric contribution is
very sensitive to m0 since the sleptons that enter in the
supersymmetric diagrams get large as m0 gets large and
consequently the SUSY contributions become negligible as
m0 gets large. However, also as already discussed the W
and Z exchange contributions are not affected by m0. Thus
at low values of m0, the supersymmetric contribution is
large and of opposite sign to the W and Z exchange
contribution in this region of the parameter space which
leads to a cancellation between the two thus a falling
behavior of jdej. However, as m0 increases the SUSY
contribution dies out and the W and Z contribution take
over which explains the turn around. This turn around is
exhibited for two values of m0 around the minimum in
Table II. Here we consider the parameter point mN ¼
mE ¼ 200 GeV in Fig. 4 for the sample points m0 ¼
0.4 PeV and m0 ¼ 0.6 PeV. Comparison of columns (i)
and (ii) in Table II shows that the chargino and the
neutralino exchange contribution vary in a significant
way while the W and Z exchange contribution is un-
changed. Consequently de ¼ −5.96 × 10−29 ecm for col-
umn (i) and de ¼ 6.61 × 10−29 ecm for column (ii). Thus
we see that the de has switched the sign in going from
m0 ¼ 0.4 PeV to m0 ¼ 0.6 PeV which means that de has
gone through a zero which explains the turn around of jdej
in Fig. 5.
In Fig. 6 we exhibit the dependence of jdej on the phase

αμ which is the phase of the Higgs mixing parameter μ. The
dependence of jdej on αμ arises from various sources. Thus
the slepton masses as well as the chargino and the neutrino
masses that enter in the supersymmetric loop contribution
have a dependence on αμ which makes a simple explanation
of the dependence on this parameter less transparent. A
numerical analysis exhibiting the dependence of jdej on αμ
is given in Fig. 6. The analysis is done for different tan β

ranging from tan β ¼ 20 to tan β ¼ 50. A similar analysis
of the dependence of jdej on χ004 for various values of f004 is
given in Fig. 7. The sharp dependence of jdej on χ004 is not
difficult to understand. Unlike the case of the dependence
of jdej on αμ which arises mainly from the supersymmetric
sector, here the dependence of jdej on χ004 arises from the
nonsupersymmetric sector via the exchange of W and Z
bosons. The SUSY contribution dependence is limited by
the smallness of jf004j compared to the other masses in the
slepton mass2 matrix. The nonsupersymmetric contribution
is directly governed by f003; f

00
4; f

00
5 as can be seen from

Eq. (A7) and Eq. (A11). Here setting f003 ¼ f004 ¼ f005 ¼ 0
puts the mass matrices in a block diagonal form where the
first generation totally decouples from the vectorlike
generation. This clearly indicates that the effect of variation
in jf003j; jf004j; jf005j and their phases, χ003; χ

00
4; χ

00
5 will be strong.

This is what the analysis of Fig. 7 indicates. Aside from the
variations of theW and Z contributions on χ004 , there is also a
constructive/destructive interference between theW and the
Z contributions as χ004 varies which explains the rapid
variations of jdej with χ004 in Fig. 7.
Finally, the effect of mixing of the vectorlike generation

with the three lepton generations has negligible effect on
the standard model predictions in the leptonic sector at the
tree level. However, it does affect the neutrino sector.
Specifically taking the mixings into account the analysis

FIG. 6 (color online). An exhibition of the dependence of jdej
on αμ for various tan β. The curves correspond to tan β ¼ 20
(dashed), tan β ¼ 30 (dotted), tan β ¼ 40 (solid), and tan β ¼ 50
(dot dashed). The parameters used are jμj¼3.9×102,
jM1j¼3.1×102, jM2j¼3.6×102, mN ¼340;mE¼250, m0 ¼
1.1 × 106, jA0j¼3.2×106, m~ν

0¼4.3×106, jA~ν
0j ¼ 5.1 × 106,

α1 ¼ 1.88, α2 ¼ 1.26, αA0
¼ 0.94, αA~ν

0
¼ 1.88. The mixings

are jf3j ¼ 2.88 × 10−4, jf03j¼8.19×10−6, jf003j ¼ 9.19 × 10−5,
jf4j ¼ 8.13 × 10−4, jf04j ¼ 3.50 × 10−1, jf004j ¼ 1.29 × 10−1,
jf5j ¼ 5.75 × 10−6, jf05j ¼ 1.00 × 10−5, jf005j¼2.49×10−7, χ3 ¼
7.74 × 10−1, χ03¼7.73×10−1, χ003¼7.86×10−1, χ4¼7.6×10−1,
χ04¼8.40×10−1, χ004 ¼8.20×10−1, χ5¼7.51×10−1, χ05 ¼
8.19 × 10−1, χ005 ¼ 8.03 × 10−1. All masses are in GeV, phases
in rad, and de in ecm.

TABLE II. An exhibition of the individual contributions to
the electric dipole moment of the electron arising from the
chargino exchange, neutralino exchange, W boson exchange and
Z boson exchange. The last row gives the total EDM de where
de ¼ dχþe þ dχ0e þ dWe þ dZe . The analysis is for the solid curve of
Fig. 5 where mN ¼ mE ¼ 200 when (i) m0 ¼ 0.4 PeV, (ii)
m0 ¼ 0.6 PeV. The EDM is in ecm units.

(i) m0 ¼ 0.4 PeV (ii) m0 ¼ 0.6 PeV

dχþe −2.38 × 10−28 −1.13 × 10−28

dχ0e −9.18 × 10−31 −4.08 × 10−31

dWe 2.72 × 10−28 2.72 × 10−28

dZe −9.31 × 10−29 −9.31 × 10−29

de −5.96 × 10−29 6.61 × 10−29
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presented here satisfies the constraint on the sum of the
neutrino masses arising from the Planck Satellite experi-
ment [16] so that

X3
i¼1

mνi < 0.85 eV; ð27Þ

where we assume νiði ¼ 1; 2; 3Þ to be the mass eigenstates
with eigenvalues mνi . Further, the neutrino oscillations
constraint on the neutrino mass squared differences [17] are
also satisfied, i.e., the constraints

Δm2
31 ≡m2

3 −m2
1 ¼ 2.4þ0.12

−0.11 × 10−3 eV2; ð28Þ

Δm2
21 ≡m2

2 −m2
1 ¼ 7.65þ0.23

−0.20 × 10−5 eV2: ð29Þ

The analysis given in this section respect all of the
collider, i.e., LEP and LHC, constraints. Specifically the
lower limits on heavy lepton masses is around 100 GeV
[11] and masses of mE and mN used here respect these
limits. However, in addition there are flavor constraints to
consider. Here the constraint μ → eþ γ is the most
stringent constraint. Thus the above framework allows
the process μ → eþ γ for which the current upper limit
from experiment is [11] 4.4 × 10−12. The analysis of this
process requires the mixing of the vectorlike generation
with all the three generations. A similar analysis but for the
τ → μþ γ was given in [18] and it was found that the
model with a vectorlike generation can produce a branching

ratio for this process which lies below the current exper-
imental limit for that process but could be accessible in
improved experiment. In that analysis the scalar masses
were in the sub TeV region. However, in the present case
we are interested in the PeV size scalar masses. From Fig. 3
of [18], we see that for heavy scalars, the branching ratio
decreases rapidly as the masses increase and since we are
interested in the PeV size scalars we expect that the μ →
eþ γ experimental upper limits would be easily satisfied. A
full treatment of the processes is, however, outside the
scope of this work and will be discussed elsewhere.

V. CONCLUSION

In the future the exploration of high scale physics on
the energy frontier will be limited by the capability on the
highest energy that accelerators can achieve. Thus the
upgraded LHC will achieve an energy of

ffiffiffi
s

p ¼ 13 TeV.
Proposals are afoot to build accelerators that could extend
the range to an ambitious goal of 100 TeV. It has been
pointed out recently that there are other avenues to access
high scales and one of these is via sensitive measurement of
the EDM of elementary particles, i.e., of leptons and of
quarks. In this work we focus on the EDM of the electron as
it is the most stringently constrained of the EDMs. In this
analysis we have used the current experimental limits on
the EDM of the electron to explore in a quantitative fashion
the scale of the slepton masses that the electron EDM can
explore within MSSM. It is found that the current constraints
allow one to explore a wide scale of slepton masses from
few TeV to a PeV and beyond. Further, we have extended
the analysis to include a vectorlike lepton generation and
allowing for small mixings between the three ordinary
generations and the vectorlike generation. Here in addition
to the supersymmetric contribution involving the exchange
of the charginos and the neutralinos, one has in addition a
contribution arising from the exchange of theW and of the Z
bosons. Unlike the chargino and the neutralino contribution
which is sensitive to the slepton masses, the W and Z
contribution is independent of them. Thus the interference
between the supersymmetric and the nonsupersymmetric
contribution produces a remarkable phenomenon where the
EDM first falls and then turns around and rises again as the
common scalar mass m0 increases. This is easily understood
by noting that the destructive interference between the
supersymmetric and the nonsupersymmetric contribution
leads first to a cancellation between the two but as the
supersymmetric contribution dies out with increasing m0

the nonsupersymmetric contribution becomes dominant
and controls the EDM. Thus in this case EDM could be
substantial even when m0 lies in the several PeV region. In
the future, the EDM of the electron will be constrained even
more stringently by a factor of ten or more. Such a more
stringent constraint will allow one to explore even a larger
range in the slepton masses. Finally we note that a large
SUSY sfermion scale in the PeV region would automatically

FIG. 7 (color online). An exhibition of the dependence of jdej
on χ004 for various f

00
4 . The curves correspond to f

00
4 of 0.1 (dashed),

0.2 (dotted), 0.5 (solid), 1 (dot dashed). The other param-
eters are jμj ¼ 1.1 × 106, jM1j¼2.8×106, jM2j ¼ 3.4 × 106,
mN ¼ 250, mE ¼ 380, m0 ¼ 1.1 × 106, jA0j ¼ 3.2 × 106, m~ν

0 ¼
1.4 × 106, jA~ν

0j ¼ 5.1 × 106, α1 ¼ 1.26, α2 ¼ 0.94, αA0
¼ 0.94,

αA~ν
0
¼ 1.88, tan β ¼ 30. The mixings are jf3j¼2.93×10−4,

jf03j ¼ 8.19 × 10−6, jf003 j¼9.15×10−5, jf4j¼8.13×10−1, jf04j ¼
3.50 × 10−1, jf5j ¼ 5.08 × 10−6, jf05j ¼ 9.98 × 10−6, jf005j¼
2.56×10−7, χ3¼7.86×10−1, χ03¼7.80×10−1, χ003 ¼8.02×10−1,
χ4 ¼ 7.6 × 10−1, χ04 ¼ 8.4 × 10−1, χ5 ¼ 7.39 × 10−1, χ05 ¼
7.82 × 10−1, χ005 ¼ 7.82 × 10−1. All masses are in GeV, phases
in rad and de in ecm.
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relieve the tension on the flavor changing neutral current
problem and on too rapid a proton decay in supersymmetric
grand unified theories [19].
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APPENDIX A: THE MSSM EXTENSION WITH A
VECTOR LEPTONIC MULTIPLET

In Sec. III we extended MSSM to include a vectorlike
generation.Hereweprovide further details of this extension.A
vectorlike multiplet consists of an ordinary fourth generation
of leptons, quarks and their mirrors. A vectorlike generation
is anomaly free and thus inclusion of it respects the good
properties of a gauge theory. Vectorlike multiplets arise in a
variety of unified models [20] some of which could be low
lying. They have been used recently in a variety of analyses
[21–30]. In the analysis below we will assume an extended
MSSM with just one vector multiplet. Before proceeding
further we define the notation and give a very brief description
of the extended model and a more detailed description can
be found in the previous works mentioned above. Thus the
extended MSSM contains a vectorlike multiplet. To fix
notation the three generations of leptons are denoted by

ψ iL ≡
�
νiL

liL

�
∼
�
1; 2;−

1

2

�
;

lciL ∼ ð1; 1; 1Þ; νciL ∼ ð1; 1; 0Þ; i ¼ 1; 2; 3; ðA1Þ

where the properties under SUð3ÞC × SUð2ÞL ×Uð1ÞY are
also exhibited. The last entry in the braces such as ð1; 2;−1=2Þ
is the value of the hyperchargeY defined so thatQ ¼ T3 þ Y.
These leptons have V − A interactions. We can now add a
vectorlike multiplet where we have a fourth family of leptons
with V − A interactions whose transformations can be gotten
from Eq. (A1) by letting i run from 1 to 4. Avectorlike lepton
multiplet also has mirrors and so we consider these mirror
leptonswhichhaveV þ A interactions.Thequantumnumbers
of the mirrors are given by

χc ≡
�
Ec
L

Nc
L

�
∼
�
1; 2;

1

2

�
; EL ∼ ð1; 1;−1Þ; NL ∼ ð1; 1; 0Þ:

ðA2Þ
Interesting new physics arises when we allow mixings of

the vectorlike generation with the three ordinary gener-
ations. Here we focus on the mixing of the mirrors in the
vectorlike generation with the three generations. Thus the
superpotential of the model allowing for the mixings
among the three ordinary generations and the vectorlike
generation is given by

W ¼ −μϵijĤi
1Ĥ

j
2 þ ϵij½f1Ĥi

1ψ̂
j
Lτ̂

c
L þ f01Ĥ

j
2ψ̂

i
Lν̂

c
τL þ f2Ĥ

i
1χ̂

cjN̂L þ f02H
j
2χ̂

ciÊL þ h1Hi
1ψ̂

j
μLμ̂

c
L þ h01H

j
2ψ̂

i
μLν̂

c
μL

þ h2Hi
1ψ̂

j
eLê

c
L þ h02H

j
2ψ̂

i
eLν̂

c
eL� þ f3ϵijχ̂ciψ̂

j
L þ f03ϵijχ̂

ciψ̂ j
μL þ f4τ̂cLÊL þ f5ν̂cτLN̂L þ f04μ̂

c
LÊL þ f05ν̂

c
μLN̂L

þ f003ϵijχ̂
ciψ̂ j

eL þ f004 ê
c
LÊL þ f005 ν̂

c
eLN̂L; ðA3Þ

where ^ implies superfields, ψ̂L stands for ψ̂3L, ψ̂μL stands
for ψ̂2L and ψ̂eL stands for ψ̂1L. The mass terms for the
neutrinos, mirror neutrinos, leptons and mirror leptons arise
from the term

L ¼ −
1

2

∂2W
∂Ai∂Aj

ψ iψ j þ H:c: ðA4Þ

where ψ and A stand for generic two-component fermion
and scalar fields. After spontaneous breaking of the electro-
weak symmetry, (hH1

1i ¼ v1=
ffiffiffi
2

p
and hH2

2i ¼ v2=
ffiffiffi
2

p
),

we have the following set of mass terms written in the
4-component spinor notation so that

−Lm ¼ ξ̄TRðMfÞξL þ η̄TRðMlÞηL þ H:c:; ðA5Þ
where the basis vectors in which the mass matrix is written is
given by

ξ̄TR ¼ ðν̄τRN̄Rν̄μRν̄eRÞ; ξTL ¼ ð ντLNLνμLνeL Þ;
η̄TR ¼ ðτ̄RĒRμ̄R ēRÞ; ηTL ¼ ðτLELμLeLÞ; ðA6Þ

and the mass matrix Mf is given by

Mf ¼

0
BBBBB@

f01v2=
ffiffiffi
2

p
f5 0 0

−f3 f2v1=
ffiffiffi
2

p
−f03 −f003

0 f05 h01v2=
ffiffiffi
2

p
0

0 f005 0 h02v2=
ffiffiffi
2

p

1
CCCCCA
:

ðA7Þ

We define the matrix element (22) of the mass matrix as mN
so that

mN ¼ f2v1=
ffiffiffi
2

p
: ðA8Þ

The mass matrix is not Hermitian and thus one needs
biunitary transformations to diagonalize it. We define the
biunitary transformation so that

Dν†
R ðMfÞDν

L ¼ diagðmψ1
; mψ2

; mψ3
; mψ4

Þ: ðA9Þ
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Under the biunitary transformations the basis vectors trans-
form so that

0
BBB@

ντR
NR

νμR
νeR

1
CCCA ¼ Dν

R

0
BBB@

ψ1R

ψ2R

ψ3R

ψ4R

1
CCCA;

0
BBB@

ντL
NL

νμL
νeL

1
CCCA ¼ Dν

L

0
BBB@

ψ1L

ψ2L

ψ3L

ψ4L

1
CCCA:

ðA10Þ

In Eq. (A9) ψ1;ψ2;ψ3;ψ4 are the mass eigenstates for the
neutrinos, where in the limit of no mixing we identify ψ1 as
the light tau neutrino, ψ2 as the heavier mass eigenstate, ψ3

as the muon neutrino and ψ4 as the electron neutrino.
A similar analysis goes to the lepton mass matrix Ml where

Ml ¼

0
BBBBB@

f1v1=
ffiffiffi
2

p
f4 0 0

f3 f02v2=
ffiffiffi
2

p
f03 f003

0 f04 h1v1=
ffiffiffi
2

p
0

0 f004 0 h2v1=
ffiffiffi
2

p

1
CCCCCA
:

ðA11Þ

In general f3; f4; f5; f03; f
0
4; f

0
5; f

00
3; f

00
4; f

00
5 can be complex

and we define their phases so that

fk ¼ jfkjeiχk ; f0k ¼ jf0kjeiχ
0
k ;

f00k ¼ jf00k jeiχ
00
4 ; k ¼ 3; 4; 5: ðA12Þ

We introduce now the mass parametermE defined by the
(22) element of the mass matrix above so that

mE ¼ f02v2=
ffiffiffi
2

p
: ðA13Þ

Next we consider the mixing of the charged sleptons and
the charged mirror sleptons. The mass squared matrix of the
slepton-mirror slepton comes from three sources: the F
term, the D term of the potential and the soft SUSY
breaking terms. Using the superpotential of Eq. (A3) the
mass terms arising from it after the breaking of the
electroweak symmetry are given by the Lagrangian

L ¼ LF þ LD þ Lsoft; ðA14Þ

where LF is deduced from Eq. (A3) and is given in [18],
while the LD is given by

−LD ¼ 1

2
m2

Zcos
2θW cos 2βf~ντL ~ν�τL − ~τL ~τ

�
L þ ~νμL ~ν

�
μL − ~μL ~μ

�
L þ ~νeL ~ν

�
eL − ~eL ~e�L

þ ~ER
~E�
R − ~NR

~N�
Rg þ

1

2
m2

Zsin
2θW cos 2βf~ντL ~ν�τL þ ~τL ~τ

�
L þ ~νμL ~ν

�
μL þ ~μL ~μ

�
L

þ ~νeL ~ν
�
eL þ ~eL ~e�L − ~ER

~E�
R − ~NR

~N�
R þ 2 ~EL

~E�
L − 2~τR ~τ

�
R − 2~μR ~μ

�
R − 2~eR ~e�Rg: ðA15Þ

For Lsoft we assume the following form

−Lsoft ¼ M2
~τL ~ψ

i�
τL ~ψ

i
τL þM2

~χ ~χ
ci� ~χci þM2

~μL ~ψ
i�
μL ~ψ

i
μL þM2

~eL ~ψ
i�
eL ~ψ

i
eL þM2

~ντ
~νc�τL ~ν

c
τL þM2

~νμ
~νc�μL ~ν

c
μL

þM2
~νe
~νc�eL ~ν

c
eL þM2

~τ ~τ
c�
L ~τcL þM2

~μ ~μ
c�
L ~μcL þM2

~e ~e
c�
L ~ecL þM2

~E
~E�
L
~EL þM2

~N
~N�
L
~NL

þ ϵijff1AτHi
1 ~ψ

j
τL ~τ

c
L − f01AντH

i
2 ~ψ

j
τL ~ν

c
τL þ h1AμHi

1 ~ψ
j
μL ~μ

c
L − h01AνμH

i
2 ~ψ

j
μL ~ν

c
μL

þ h2AeHi
1 ~ψ

j
eL ~e

c
L − h02AνeH

i
2 ~ψ

j
eL ~ν

c
eL þ f2ANHi

1 ~χ
cj ~NL − f02AEHi

2 ~χ
cj ~EL þ H:c:g: ðA16Þ

Here M ~eL;M ~νe etc. are the soft masses and Ae; Aνe etc. are
the trilinear couplings. The trilinear couplings are complex
and we define their phases so that

Ae ¼ jAejeiαAe ; Aνe ¼ jAνe jeiαAνe ; � � � : ðA17Þ

From these terms we construct the scalar mass2 matrices
[18] which are exhibited in Appendix C.
As discussed in Sec. III and Sec. IV the inclusion of

the vectorlike generation brings in new phenomena such as
exchange contributions from the W and Z bosons which
are otherwise absent. Their inclusion gives an important
contribution to the EDM since the W and the Z boson

contribution begins to play a role and leads to constructive
and destructive interference with the chargino and neutra-
lino exchange contribution. A more detailed description of
this phenomenon is given in Sec. IV.

APPENDIX B: INTERACTIONS THAT ENTER
IN THE EDM ANALYSIS IN THE

MSSM EXTENSION WITH A
VECTORLIKE MULTIPLET

In this section we discuss the interactions in the mass
diagonal basis involving charged leptons, sneutrinos and
charginos. Thus we have
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−Lτ−~ν−χ− ¼
X2
i¼1

X8
j¼1

τ̄αðCL
αijPL þ CR

αijPRÞ~χci ~νj þ H:c:; ðB1Þ

such that

CL
αij ¼ gð−κτU�

i2D
τ
R1α

~Dν
1j − κμU�

i2D
τ
R3α

~Dν
5j − κeU�

i2D
τ
R4α

~Dν
7j þ U�

i1D
τ
R2α

~Dν
4j − κNU�

i2D
τ
R2α

~Dν
2jÞ ðB2Þ

CR
αij ¼ gð−κντVi2Dτ

L1α
~Dν
3j − κνμVi2Dτ

L3α
~Dν
6j − κνeVi2Dτ

L4α
~Dν
8j þ Vi1Dτ

L1α
~Dν
1j þ Vi1Dτ

L3α
~Dν
5j

þ Vi1Dτ
L4α

~Dν
7j − κEVi2Dτ

L2α
~Dν
4jÞ; ðB3Þ

with

ðκN; κτ; κμ; κeÞ ¼
ðmN;mτ; mμ; meÞffiffiffi

2
p

mW cos β
; ðB4Þ

ðκE; κντ ; κνμ ; κνeÞ ¼
ðmE;mντ ; mνμ ; mνeÞffiffiffi

2
p

mW sin β
: ðB5Þ

We now discuss the interactions in the mass diagonal basis involving charged leptons, sleptons and neutralinos. Thus we
have

−Lτ−~τ−χ0 ¼
X4
i¼1

X8
j¼1

τ̄αðC0L
αijPL þ C0R

αijPRÞ~χ0i ~τj þ H:c:; ðB6Þ

such that

C0L
αij ¼

ffiffiffi
2

p
ðατiDτ�

R1α
~Dτ
1j − δEiDτ�

R2α
~Dτ
2j − γτiDτ�

R1α
~Dτ
3j þ βEiDτ�

R2α
~Dτ
4j þ αμiDτ�

R3α
~Dτ
5j − γμiDτ�

R3α
~Dτ
6j

þ αeiDτ�
R4α

~Dτ
7j − γeiDτ�

R4α
~Dτ
8jÞ ðB7Þ

C0R
αij ¼

ffiffiffi
2

p
ðβτiDτ�

L1α
~Dτ
1j − γEiDτ�

L2α
~Dτ
2j − δτiDτ�

L1α
~Dτ
3j þ αEiDτ�

L2α
~Dτ
4j þ βμiDτ�

L3α
~Dτ
5j − δμiDτ�

L3α
~Dτ
6j

þ βeiDτ�
L4α

~Dτ
7j − δeiDτ�

L4α
~Dτ
8jÞ; ðB8Þ

where

αEi ¼
gmEX�

4i

2mW sin β
; βEi ¼ eX0

1i þ
g

cos θW
X0
2i

�
1

2
− sin2θW

�
ðB9Þ

γEi ¼ eX0�
1i −

gsin2θW
cos θW

X0�
2i; δEi ¼ −

gmEX4i

2mW sin β
ðB10Þ

and

ατi ¼
gmτX3i

2mW cos β
; αμi ¼

gmμX3i

2mW cos β
; αei ¼

gmeX3i

2mW cos β
ðB11Þ

δτi ¼ −
gmτX�

3i

2mW cos β
; δμi ¼ −

gmμX�
3i

2mW cos β
; δei ¼ −

gmeX�
3i

2mW cos β
ðB12Þ

and where
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βτi ¼ βμi ¼ βei ¼ −eX0�
1i þ

g
cos θW

X0�
2i

�
−
1

2
þ sin2θW

�

ðB13Þ

γτi ¼ γμi ¼ γei ¼ −eX0
1i þ

gsin2θW
cos θW

X0
2i: ðB14Þ

Here X0 are defined by

X0
1i ¼ X1i cos θW þ X2i sin θW ðB15Þ

X0
2i ¼ −X1i sin θW þ X2i cos θW ðB16Þ

where X diagonalizes the neutralino mass matrix and is
defined by Eq. (19).
In addition to the computation of the supersymmetric

loop diagrams, we compute the contributions arising from
the exchange of the W and Z bosons and the leptons and
the mirror leptons in the loops. The relevant interactions
needed are given below. For the W boson exchange the
interactions that enter are given by

−LτWψ ¼ W†
ρ

X4
i¼1

X4
α¼1

ψ̄ iγ
ρ½CW

Liα
PL þ CW

Riα
PR�τα þ H:c:;

ðB17Þ

where

CW
Liα

¼ gffiffiffi
2

p ½Dν
L1iD

τ
L1α þDν

L3iD
τ
L3α þDν

L4iD
τ
L4α� ðB18Þ

CW
Riα

¼ gffiffiffi
2

p ½Dν
R2iD

τ
R2α�: ðB19Þ

For the Z boson exchange the interactions that enter are
given by

−LττZ ¼ Zρ

X4
α¼1

X4
β¼1

τ̄αγ
ρ½CZ

Lαβ
PL þ CZ

Rαβ
PR�τβ; ðB20Þ

where

CZ
Lαβ

¼ g
cos θW

�
xðDτ†

Lα1D
τ
L1β þDτ†

Lα2D
τ
L2β þDτ†

Lα3D
τ
L3β

þDτ†
Lα4D

τ
L4βÞ −

1

2
ðDτ†

Lα1D
τ
L1β þDτ†

Lα3D
τ
L3β

þDτ†
Lα4D

τ
L4βÞ

�
ðB21Þ

and

CZ
Rαβ

¼ g
cos θW

�
xðDτ†

Rα1D
τ
R1β þDτ†

Rα2D
τ
R2β þDτ†

Rα3D
τ
R3β

þDτ†
Rα4D

τ
R4βÞ −

1

2
ðDτ†

Rα2D
τ
R2βÞ

�
ðB22Þ

where x ¼ sin2 θW .

APPENDIX C: THE SCALAR MASS
SQUARED MATRICES

For convenience we collect here all the contributions to
the scalar mass2 matrices arising from the superpotential.
They are given by

Lmass
F ¼ Lmass

C þ Lmass
N ; ðC1Þ

where Lmass
C gives the mass terms for the charged sleptons

while Lmass
N gives the mass terms for the sneutrinos. For

Lmass
C we have

−Lmass
C ¼

�
v22jf02j2

2
þ jf3j2 þ jf03j2 þ jf003j2

�
~ER

~E�
R þ

�
v22jf02j2

2
þ jf4j2 þ jf04j2 þ jf004j2

�
~EL

~E�
L þ

�
v21jf1j2

2
þ jf4j2

�
~τR ~τ

�
R

þ
�
v21jf1j2

2
þ jf3j2

�
~τL ~τ

�
L þ

�
v21jh1j2

2
þ jf04j2

�
~μR ~μ

�
R þ

�
v21jh1j2

2
þ jf03j2

�
~μL ~μ

�
L þ

�
v21jh2j2

2
þ jf004j2

�
~eR ~e�R

þ
�
v21jh2j2

2
þ jf003j2

�
~eL ~e�L þ

�
−
f1μ�v2ffiffiffi

2
p ~τL ~τ

�
R −

h1μ�v2ffiffiffi
2

p ~μL ~μ
�
R −

f02μ
�v1ffiffiffi
2

p ~EL
~E�
R þ

�
f02v2f

�
3ffiffiffi

2
p þ f4v1f�1ffiffiffi

2
p

�
~EL ~τ

�
L

þ
�
f4v2f0�2ffiffiffi

2
p þ f1v1f�3ffiffiffi

2
p

�
~ER ~τ

�
R þ

�
f03v2f

0�
2ffiffiffi

2
p þ h1v1f0�4ffiffiffi

2
p

�
~EL ~μ

�
L þ

�
f02v2f

0�
4ffiffiffi

2
p þ f03v1h

�
1ffiffiffi

2
p

�
~ER ~μ

�
R

þ
�
f00�3v2f

0
2ffiffiffi

2
p þ f004v1h

�
2ffiffiffi

2
p

�
~EL ~e�L þ

�
f004v2f

0�
2ffiffiffi

2
p þ f00�3v1h

�
2ffiffiffi

2
p

�
~ER ~e�R þ f03f

�
3 ~μL ~τ

�
L þ f4f0�4 ~μR ~τ

�
R þ f4f00�4 ~eR ~τ

�
R

þ f003f
�
3 ~eL ~τ

�
L þ f003f

0�
3 ~eL ~μ

�
L þ f04f

00�
4 ~eR ~μ

�
R −

h2μ�v2ffiffiffi
2

p ~eL ~e�R þ H:c:

�
: ðC2Þ
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We define the scalar mass squared matrix M2
~τ in the basis ð~τL; ~EL; ~τR; ~ER; ~μL; ~μR; ~eL; ~eRÞ. We label the matrix elements of

these as ðM2
~τÞij ¼ M2

ij where the elements of the matrix are given by

M2
11 ¼ ~M2

τL þ v21jf1j2
2

þ jf3j2 −m2
Z cos 2β

�
1

2
− sin2θW

�
;

M2
22 ¼ ~M2

E þ v22jf02j2
2

þ jf4j2 þ jf04j2 þ jf004j2 þm2
Z cos 2βsin

2θW;

M2
33 ¼ ~M2

τ þ
v21jf1j2

2
þ jf4j2 −m2

Z cos 2βsin
2θW;

M2
44 ¼ ~M2

χ þ
v22jf02j2

2
þ jf3j2 þ jf03j2 þ jf003j2 þm2

Z cos 2β

�
1

2
− sin2θW

�
;

M2
55 ¼ ~M2

μL þ v21jh1j2
2

þ jf03j2 −m2
Z cos 2β

�
1

2
− sin2θW

�
;

M2
66 ¼ ~M2

μ þ
v21jh1j2

2
þ jf04j2 −m2

Z cos 2βsin
2θW;

M2
77 ¼ ~M2

eL þ v21jh2j2
2

þ jf003j2 −m2
Z cos 2β

�
1

2
− sin2θW

�
;

M2
88 ¼ ~M2

e þ
v21jh2j2

2
þ jf004j2 −m2

Z cos 2βsin
2θW:

M2
12 ¼ M2�

21 ¼
v2f02f

�
3ffiffiffi

2
p þ v1f4f�1ffiffiffi

2
p ;M2

13 ¼ M2�
31 ¼

f�1ffiffiffi
2

p ðv1A�
τ − μv2Þ;M2

14 ¼ M2�
41 ¼ 0;

M2
15 ¼ M2�

51 ¼ f03f
�
3;M

2�
16 ¼ M2�

61 ¼ 0;M2�
17 ¼ M2�

71 ¼ f003f
�
3;M

2�
18 ¼ M2�

81 ¼ 0;

M2
23 ¼ M2�

32 ¼ 0;M2
24 ¼ M2�

42 ¼
f0�2ffiffiffi
2

p ðv2A�
E − μv1Þ;M2

25 ¼ M2�
52 ¼

v2f03f
0�
2ffiffiffi

2
p þ v1h1f�4ffiffiffi

2
p ;

M2
26 ¼ M2�

62 ¼ 0;M2
27 ¼ M2�

72 ¼
v2f003f

0�
2ffiffiffi

2
p þ v1h1f0�4ffiffiffi

2
p ;M2

28 ¼ M2�
82 ¼ 0;

M2
34 ¼ M2�

43 ¼
v2f4f0�2ffiffiffi

2
p þ v1f1f�3ffiffiffi

2
p ;M2

35 ¼ M2�
53 ¼ 0;M2

36 ¼ M2�
63 ¼ f4f0�4 ;

M2
37 ¼ M2�

73 ¼ 0;M2
38 ¼ M2�

83 ¼ f4f00�4 ;

M2
45 ¼ M2�

54 ¼ 0;M2
46 ¼ M2�

64 ¼
v2f02f

0�
4ffiffiffi

2
p þ v1f03h

�
1ffiffiffi

2
p ;

M2
47 ¼ M2�

74 ¼ 0;M2
48 ¼ M2�

84 ¼
v2f02f

00�
4ffiffiffi

2
p þ v1f003h

�
2ffiffiffi

2
p ;

M2
56 ¼ M2�

65 ¼
h�1ffiffiffi
2

p ðv1A�
μ − μv2Þ;M2

57 ¼ M2�
75 ¼ f003f

0�
3 ;

M2
58 ¼ M2�

85 ¼ 0;M2
67 ¼ M2�

76 ¼ 0;

M2
68 ¼ M2�

86 ¼ f04f
00�
4 ;M2

78 ¼ M2�
87 ¼

h�2ffiffiffi
2

p ðv1A�
e − μv2Þ:

We can diagonalize this Hermitian mass squared matrix by the unitary transformation

~Dτ†M2
~τ
~Dτ ¼ diagðM2

~τ1
;M2

~τ2
;M2

~τ3
;M2

~τ4
;M2

~τ5
;M2

~τ6
;M2

~τ7
;M2

~τ8
Þ: ðC3Þ

For Lmass
N we have
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−Lmass
N ¼

�
v21jf2j2

2
þ jf3j2 þ jf03j2 þ jf003j2

�
~NR

~N�
R þ

�
v21jf2j2

2
þ jf5j2 þ jf05j2 þ jf005j2

�
~NL

~N�
L

þ
�
v22jf01j2

2
þ jf5j2

�
~ντR ~ν

�
τR þ

�
v22jf01j2

2
þ jf3j2

�
~ντL ~ν

�
τL þ

�
v22jh01j2

2
þ jf03j2

�
~νμL ~ν

�
μL

þ
�
v22jh01j2

2
þ jf05j2

�
~νμR ~ν

�
μR þ

�
v22jh02j2

2
þ jf003j2

�
~νeL ~ν

�
eL þ

�
v22jh02j2

2
þ jf005j2

�
~νeR ~ν

�
eR

þ
�
−
f2μ�v2ffiffiffi

2
p ~NL

~N�
R −

f01μ
�v1ffiffiffi
2

p ~ντL ~ν
�
τR −

h01μ
�v1ffiffiffi
2

p ~νμL ~ν
�
μR þ

�
f5v2f0�1ffiffiffi

2
p −

f2v1f�3ffiffiffi
2

p
�
~NL ~ν

�
τL

þ
�
f5v1f�2ffiffiffi

2
p −

f01v2f
�
3ffiffiffi

2
p

�
~NR ~ν

�
τR þ

�
h01v2f

0�
5ffiffiffi

2
p −

f03v1f
�
2ffiffiffi

2
p

�
~NL ~ν

�
μL þ

�
f005v1f

�
2ffiffiffi

2
p −

f00�3 v2h02ffiffiffi
2

p
�
~NR ~ν

�
eR

þ
�
h0�2 v2f

00
5ffiffiffi

2
p −

f00�3 v1f2ffiffiffi
2

p
�
~NL ~ν

�
eL þ

�
f05v1f

�
2ffiffiffi

2
p −

h01v2f
0�
3ffiffiffi

2
p

�
~NR ~ν

�
μR þ f03f

�
3 ~νμL ~ντ�L þ f5f0�5 ~νμR ~ν

�
τR −

h02μ
�v1ffiffiffi
2

p ~νeL ~ν
�
eR

þ f003f
�
3 ~νeL ~ν

�
τL þ f5f00�5 ~νeR ~ν

�
τR þ f003f

0�
3 ~νeL ~ν

�
μL þ f05f

00�
5 ~νeR ~ν

�
μR þ H:c:

�
:

Next we write the mass2 matrix in the sneutrino sector the basis ð~ντL; ~NL; ~ντR; ~NR; ~νμL; ~νμR; ~νeL; ~νeRÞ. Thus here we
denote the sneutrino mass2 matrix in the form ðM2

~νÞij ¼ m2
ij where

m2
11 ¼ ~M2

τL þm2
ντ þ jf3j2 þ

1

2
m2

Z cos 2β;

m2
22 ¼ ~M2

N þm2
N þ jf5j2 þ jf05j2 þ jf005j2;

m2
33 ¼ ~M2

ντ þm2
ντ þ jf5j2;

m2
44 ¼ ~M2

χ þm2
N þ jf3j2 þ jf03j2 þ jf003j2 −

1

2
m2

Z cos 2β;

m2
55 ¼ ~M2

μL þm2
νμ þ jf03j2 þ

1

2
m2

Z cos 2β;

m2
66 ¼ ~M2

νμ þm2
νμ þ jf05j2;

m2
77 ¼ ~M2

eL þm2
νe þ jf003j2 þ

1

2
m2

Z cos 2β;

m2
88 ¼ ~M2

νe þm2
νe þ jf005j2;

m2
12 ¼ m2�

21 ¼
v2f5f0�1ffiffiffi

2
p −

v1f2f�3ffiffiffi
2

p ; m2
13 ¼ m2�

31 ¼
f0�1ffiffiffi
2

p ðv2A�
ντ − μv1Þ

m2
14 ¼ m2�

41 ¼ 0; m2
15 ¼ m2�

51 ¼ f03f
�
3; m

2
16 ¼ m2�

61 ¼ 0;

m2
17 ¼ m2�

71 ¼ f003f
�
3; m

2
18 ¼ m2�

81 ¼ 0;

m2
23 ¼ m2�

32 ¼ 0; m2
24 ¼ m2�

42 ¼
f�2ffiffiffi
2

p ðv1A�
N − μv2Þ;

m2
25 ¼ m2�

52 ¼ −
v1f�2f

0
3ffiffiffi

2
p þ h01v2f

0�
5ffiffiffi

2
p ;

m2
26 ¼ m2�

62 ¼ 0; m2
27 ¼ m2�

72 ¼ −
v1f�2f

00
3ffiffiffi

2
p þ h02v2f

00�
5ffiffiffi

2
p

m2
28 ¼ m2�

82 ¼ 0; m2
34 ¼ m2�

43 ¼
v1f�2f5ffiffiffi

2
p −

v2f01f
�
3ffiffiffi

2
p ;

m2
35 ¼ m2�

53 ¼ 0; m2
36 ¼ m2�

63 ¼ f5f0�5 ;

m2
37 ¼ m2�

73 ¼ 0; m2
38 ¼ m2�

83 ¼ f5f00�5 ;
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m2
45 ¼ m2�

54 ¼ 0; m2
46 ¼ m2�

64 ¼ −
h0�1v2f

0
3ffiffiffi

2
p þ v1f2f0�5ffiffiffi

2
p ;

m2
47 ¼ m2�

74 ¼ 0; m2
48 ¼ m2�

84 ¼
v1f2f00�5ffiffiffi

2
p −

v2h0�2 f
00
3ffiffiffi

2
p ;

m2
56 ¼ m2�

65 ¼
h0�1ffiffiffi
2

p ðv2A�
νμ − μv1Þ;

m2
57 ¼ m2�

75 ¼ f003f
0�
3 ; m

2
58 ¼ m2�

85 ¼ 0;

m2
67 ¼ m2�

76 ¼ 0; m2
68 ¼ m2�

86 ¼ f05f
00�
5 ;

m2
78 ¼ m2�

87 ¼
h0�2ffiffiffi
2

p ðv2A�
νe − μv1Þ: ðC4Þ

We can diagonalize the sneutrino mass square matrix by the unitary transformation

~Dν†M2
~ν
~Dν ¼ diagðM2

~ν1
;M2

~ν2
;M2

~ν3
;M2

~ν4
;M2

~ν5
;M2

~ν6
;M2

~ν7
;M2

~ν8
Þ: ðC5Þ
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