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We formulate the lattice QCD simulation with background classical gravitational fields. This
formulation enables us to study nonperturbative aspects of quantum phenomena in curved spacetimes
from the first principles. As the first application, we perform the simulation with the Friedmann-Lemaítre-
Robertson-Walker metric and analyze particle production in the expanding universe.
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I. INTRODUCTION

Quantum field theory in curved spacetimes has a broad
range of applicability. It covers not only real gravitation,
e.g., the expanding universe and black holes, but also
noninertial reference frames, e.g., accelerated frames and
rotating frames. One of the most prominent quantum
phenomena in curved spacetimes is particle creation from
the vacuum. The particle creation occurs on black holes, in
accelerated frames, and in the expanding universe [1]. The
understanding of such a quantum process at the full
quantum level is a long-standing problem.
Despite enormous efforts, the consistent quantization of

gravity is still difficult due to nonrenormalizability.
At energies below the Planck scale, quantum effects of
gravity can be neglected and gravity can be treated
as a classical field. Whereas quantum gravity is too
difficult, quantum field theory with classical gravity is,
at least in principle, tamable. Practical calculations of
interacting quantum field theory are, however, not easy
even if gravity is classical. In particular, in the strong
coupling region of quantum chromodynamics (QCD), a
perturbative approach does not work successfully. To study
nonperturbative aspects of QCD, we need the lattice
simulation, which is an ab initio nonperturbative approach
in QCD.
In this paper, we formulate lattice QCD with external

gravitational fields. The gravitational fields are classical
backgrounds in this framework, unlike in lattice quantum
gravity [2]. While the backreaction from QCD to gravity is
absent, quantum effects of QCD are exactly taken into
account. Lattice QCD in a curved spacetime was first
formulated in a specific case of a rotating frame [3].
We extend this formalism to general curved spacetimes.
There are pioneering works of Abelian gauge theory
on curved lattices [4]. In addition, some kinds of simu-
lations in flat spacetimes can be regarded as simulations in
curved spacetimes. The examples are an anisotropic lattice
with direction-dependent coupling constant [5] and an
inhomogeneous lattice with coordinate-dependent coupling
constant [6].

II. FORMULATION

We consider a four-dimensional Riemannian spacetime
with the invariant length

ds2 ¼ gμνðxÞdxμdxν: ð1Þ

The metric tensor gμνðxÞ has positive signatures. For
simplicity, we assume that the spacetime is covered with
a single global coordinate patch.
In the continuum, the Yang-Mills action is

SYM ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det g

p 1

2g2YM
gμνgρσtrFμρFνσ ð2Þ

and the fermion action is

SF ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det g

p
ψ̄ ½γμð∂μ þ iAμ þ iΓμÞ þm�ψ ð3Þ

[7]. The connection is

Γμ ¼
1

4
σijωμij ð4Þ

with

σij ¼ i
2
½γi; γj�; ð5Þ

ωμij ¼ gαβeαi ð∂μe
β
j þ Γβ

μνeνjÞ; ð6Þ

Γβ
μν ¼ 1

2
gβρð∂μgρν þ ∂νgμρ − ∂ρgμνÞ: ð7Þ

The Greek and Latin indices refer to the coordinate and
tangent spaces, respectively. They are related through the
vierbein eμi ðxÞ, which satisfies eμi e

ν
jgμν ¼ δij. The gamma

matrix in curved spacetimes is given

γμðxÞ ¼ γieμi ðxÞ; ð8Þ
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where γi is the gamma matrix in the flat Euclid space. In
general, there exists the ambiguity of the choice for the
vierbein and the Dirac operator depends on it.
We embed a hypercubic lattice into a spacetime where

the gravitational field and the coordinate are fixed. Thus
there is no general covariance, i.e., no local gauge invari-
ance of gravity, unlike the dynamical triangulation in lattice
quantum gravity [2]. On the lattice, continuum spacetime
symmetry is broken to discrete symmetries. For example, a
hypercubic lattice has the symmetries of reflection, discrete
rotation of π=2, and discrete translation of a. Some of them
are further broken by background gravitational fields. The
full spacetime symmetry depends on gμνðxÞ.
We here consider the hypercubic lattice with a single

lattice spacing a that is independent of positions and
directions, i.e.,

Z
dxμ ¼ a ð9Þ

between nearest neighbor sites. The SUðNcÞ link variable is
obtained by discretizing the path-ordered product of Aμdxμ,

UμðxÞ ¼ Pei
R

dxμAμðxÞ ¼ eiaAμðxÞ: ð10Þ

In this and the following equations, the contraction of the
Lorentz indices is not performed unless otherwise explicitly
summed.
The building block of the lattice gauge action is the

plaquette

UμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ: ð11Þ

The shorthand notation μ̂means the unit lattice vector in the
xμ direction. We construct three symmetric combinations of
the plaquettes,

Ūμν ¼
1

4
½Uμν þ U−μν þUμ−ν þ U−μ−ν�; ð12Þ

V̄μνρ ¼
1

8
½ðUμν −U−μνÞðUνσ −Uν−σÞ

þ ðUμ−ν − U−μ−νÞðU−νσ −U−ν−σÞ�; ð13Þ

W̄μνρσ ¼
1

16
½Uμν −U−μν −Uμ−ν þ U−μ−ν�

× ½Uρσ −U−ρσ − Uρ−σ þ U−ρ−σ�: ð14Þ

The plaquettes with negative directions are defined as
Uμ−νðxÞ ¼ UμðxÞU†

νðxþ μ̂ − ν̂ÞU†
μðx − ν̂ÞUνðx − ν̂Þ, etc.

In the continuum limit,

RetrŪμν ¼ Nc −
a4

2
RetrFμνFμν; ð15Þ

RetrV̄μνρ ¼ −a4RetrFμνFνρ; ð16Þ

RetrW̄μνρσ ¼ −a4RetrFμνFρσ: ð17Þ

The lattice gauge action in curved spacetimes is

SYM ¼ 1

g2YM

X
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðxÞ

p

×

�X
μ≠ν

gμμðxÞgννðxÞðNc − RetrŪμνðxÞÞ

−
1

2

X
fμνρg

gμνðxÞgνρðxÞRetrV̄μνρðxÞ

− 1

2

X
fμνρσg

gμρðxÞgνσðxÞRetrW̄μνρσðxÞ
�
: ð18Þ

The summation
P

fμνρg is performed so as to satisfy μ ≠
ν ≠ ρ ≠ μ and the summation

P
fμνρσg is performed such

that ðμνρσÞ is a permutation of (1234). In this construction,
we adopted the condition that it respects reflection sym-
metry (apart from explicit symmetry breaking by the
metric) and has the smallest number of loops. As long
as the continuum limit is the same, other constructions are
possible. For example, V̄μνρ can be replaced by W̄μννρ but it
has larger number of loops.
Among several choices of lattice fermions, we here

consider the simplest one, i.e., the Wilson fermion. The
Wilson fermion action in curved spacetimes is

SF ¼
X
x1x2

a3ψ̄ðx1Þ
�
ðamþ 4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðx1Þ

p
δx1;x2

−
1

2

X
μ

fð1 − γμðx1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðx1Þ

p

× Vμðx1ÞUμðx1Þδx1þμ̂;x2 þ ð1þ γμðx2ÞÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðx2Þ

p
V†
μðx2ÞU†

μðx2Þδx1−μ̂;x2g
�
ψðx2Þ: ð19Þ

The connection is introduced as the Spin(4) link variable

VμðxÞ ¼ eiaΓμðxÞ: ð20Þ

The splitting of the arguments (x1 or x2) in Eq. (19)
between adjacent lattice sites is determined by requiring γ5

Hermiticity of the lattice Wilson-Dirac operator
γ5Dγ5 ¼ D†. In the formalism of the Wilson fermion,
the so-called Wilson term is added to the naive fermion
action to kill the artificial poles of doublers. Since the
detailed form of the Wilson term is irrelevant in the
continuum limit, we added the usual Wilson term which
is the Laplacian Δδ ¼ δμν∂μ∂ν in a flat spacetime. We can
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use the LaplacianΔg ¼ ð1= ffiffiffiffiffiffiffiffiffi
det g

p Þ∂μgμν
ffiffiffiffiffiffiffiffiffi
det g

p ∂ν although
the lattice action becomes more complicated.
As in lattice QCD in flat spacetimes, improved lattice

actions can be constructed by adding higher-order terms of
the lattice spacing, which are irrelevant in the continuum
limit, to reduce discretization artifacts.

III. WICK ROTATION

In the Euclidean path integral formulation, real time t is
transformed to imaginary time τ by the Wick rotation
τ ¼ −it. In Euclidean quantum gravity, the Wick rotation
causes serious problems, such as the conformal instability
[8]. Most of the problems are irrelevant for classical gravity
because they originate from the dynamical Einstein-Hilbert
action and the diffeomorphism invariance. However, also in
classical gravity, the Wick rotation causes the complex
metric problem.
For instance, if gμ0ðtÞ (μ ≠ 0) is nonzero or if gμνðtÞ

includes an odd function of t, then gμνðτÞ is complex and
thus the Euclidean action is complex. Also, if the con-
nection is an imaginary number, the fermion action is
complex. Even if all the elements of the metric tensor is
real, as in the Minkowski space, the action can be negative
and thus non-positive definite. When the total action is not
positive definite, the Monte Carlo simulation does not work
because of the sign fluctuation. This is called the sign
problem. This is a known problem of a quark chemical
potential and an external electric field [9]. The fermion
action with a chemical potential or an electric field is
complex. In curved spacetimes, the sign problem is more
severe because both of the gauge and fermion actions can
be complex.
One approach to avoid the sign problem is to change the

real parameter that makes the action complex to the
imaginary parameter. This is the analogy of an imaginary
quark chemical potential and a Euclidean electric field [9].
The real information in the Lorentzian spacetime is
obtained by analytic continuation. Thus this approach is
justified only when analytic continuation is validated. If
analyticity is lost, for example in the presence of a phase
transition, this approach is not justified. In numerical
simulations, analytic continuation is done as numerical
extrapolation along the parameter. This extrapolation is
expected to be reliable for small parameter region, i.e., in
weakly curved spacetimes.
Another approach is to utilize special symmetry to cancel

the complex phase of the action. For the sign problem of
chemical potentials and electric fields, there are several
known symmetries, e.g., isospin symmetry [10]. For the
complex metric problem, such symmetry is not yet known.
In contrast to the first approach, the second approach is
applicable to large parameter region, i.e., in strongly curved
spacetimes.
An entirely different approach is stochastic quantization

[11]. Although stochastic quantization for complex action

is not fully understood, it is developing rapidly. The direct
simulation of complex metric systems might be possible in
the future.

IV. RENORMALIZATION

The ultraviolet divergence of quantum field theory
comes from infinitely short length scale. When the gravi-
tational field is classical, it has only fixed intrinsic scales.
Therefore classical gravity does not cause new ultraviolet
divergences. Actually, the continuum theory is known
to be renormalizable in general curved spacetimes [12].
Although there is no formal proof of the renormalizability
by lattice regularization, the lattice theory is expected to be
renormalizable.
The lattice spacing is affected by renormalization. The

renormalization of the lattice spacing is troublesome in
curved spacetimes. In flat spacetimes, if the classical lattice
spacing is homogeneous and isotropic, the renormalized
lattice spacing is homogeneous and isotropic because it is
protected by spacetime symmetry. In the curved spacetimes
where spacetime symmetry is explicitly broken, even if the
classical lattice spacing is homogeneous and isotropic, the
renormalized lattice spacing can be inhomogeneous and
anisotropic. A famous example is the renormalization of the
anisotropic lattice action [5]. On the anisotropic lattice, the
spatial lattice spacing as and the temporal lattice spacing aτ
are different. Since they are differently affected by the
renormalization, the renormalized anisotropic ratio ξren
deviates from the classical value ξcl ¼ as=aτ. In weakly
curved spacetimes, the renormalization correction may
approximately be neglected. In a strongly curved space-
time, we need to find a (perturbative or nonperturbative)
scheme to determine the renormalized lattice spacing and
the physical unit.
In addition to the quantum correction, the lattice spacing

receives a classical gravitational correction. In a curved
spacetime, the invariant length is ds ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνdxμdxν
p

. The
distance between nearest neighbor sites changes as
a → ffiffiffiffiffiffigμμ

p a. When we calculate a two-point correlator as
a function of time or distance, we should use the proper
time or the proper length l ¼ R

ds ¼ P ffiffiffiffiffiffigμμ
p a.

V. SIMULATION

We explicitly demonstrate the computational implemen-
tation of the above formulation. For a simple and intuitive
example, we consider particle production in an expanding
space. The time evolution of a flat three-dimensional space
is described by the Friedmann-Lemaítre-Robertson-Walker
metric

ds2 ¼ dτ2 þ αðτÞ2ðdx2 þ dy2 þ dz2Þ; ð21Þ
which is used for the cosmological model of the expanding
universe [13]. The functional form of the scale factor αðτÞ
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depends on the contents of the universe, e.g., nonrelativistic
matter, radiation, or the cosmological constant.
The lattice gauge action is

SYM ¼ β
X
x

�X
k

αðτÞ
�
1 −

1

Nc
RetrŪ4kðxÞ

�

þ
X
k>l

αðτÞ−1
�
1 −

1

Nc
RetrŪklðxÞ

��
ð22Þ

with k, l ¼ 1, 2, and 3. The lattice coupling constant is
defined as β ¼ 2Nc=g2YM. This action is similar to the
anisotropic lattice action [5] but the coefficient depends on
coordinates. The lattice fermion action is

SF ¼
X
x1x2

a3ψ̄ 0ðx1Þ
�
δx1;x2

− κ
X
k

fð1 − γkαðτ1Þ−1ÞVkðx1ÞUkðx1Þδx1þk̂;x2

þ ð1þ γkαðτ2Þ−1ÞV†
kðx2ÞU†

kðx2Þδx1−k̂;x2g

− κ

�
ð1 − γ4Þ

�
αðτ1Þ
αðτ2Þ

�3
2

U4ðx1Þδx1þ4̂;x2

þ ð1þ γ4Þ
�
αðτ2Þ
αðτ1Þ

�3
2

U†
4ðx2Þδx1−4̂;x2

��
ψ 0ðx2Þ: ð23Þ

The spinor fields are rescaled as ψ̄ 0ðx1Þ ¼ αðτ1Þ3=2ðamþ
4Þ1=2ψ̄ðx1Þ and ψ 0ðx2Þ ¼ αðτ2Þ3=2ðamþ 4Þ1=2ψðx2Þ. The
hopping parameter is defined as κ ¼ 1=ð2amþ 8Þ. The
connection is

VkðxÞ ¼ exp

�
iγkγ4

∂4αðτÞ
2

�
: ð24Þ

The vierbein is taken as e11 ¼ e22 ¼ e33 ¼ 1=α, e44 ¼ 1, and
eμi ¼ 0 for μ ≠ i.
In this study, we consider the expanding universe with

the cosmological constant. The scale factor is αðtÞ ¼ α0eHt

in the Lorentzian spacetime. The parameterH is the Hubble
constant. The naive Wick rotation to imaginary time
provides the complex scale factor αðτÞ ¼ α0eiHτ, and
causes the sign problem. To avoid this, we introduce the
“imaginary” Hubble constant HI ¼ iH and the Euclidean
expansion as

αðτÞ ¼ α0eHIτ: ð25Þ

The metric tensor is real and the lattice action is positive
definite, as seen in Eqs. (22) and (23). Note that we cannot
directly relate the following result to particle production in
the Lorentzian spacetime without analytic continuation. We
here treat the Euclidean expansion itself, as the theoretical
study of QCD with an imaginary chemical potential.

The geometry is schematically shown in Fig. 1. The
three-dimensional space starts to expand at τ ¼ 0 and ends
at τ ¼ aðLτ − 1Þ, where Dirichlet boundary conditions are
imposed. The initial scale factor is set to αð0Þ ¼ α0 ¼ 1. In
the three-dimensional space, periodic boundary conditions
are imposed. The lattice size is LxLyLz × Lτ ¼ 103 × 20.
We performed quenched QCD simulation with β ¼ 5.9 and
κ ¼ 0.154. We only consider small parameter region
aHI ≪ 1.
For particle production in the Euclidean expansion, we

computed the imaginary particle number of fermions at
fixed time slices

NIðτÞ ¼
Z

d3x
ffiffiffiffiffiffiffiffiffi
det g

p
nIðxÞ ð26Þ

nIðxÞ ¼ −ij4ðxÞ ¼ −ihψ̄ðxÞγ4ψðxÞi: ð27Þ

As shown in Figs. 2 and 3, nonzero positive NI and nI are
produced in the Euclidean expansion. The data of NI is
rescaled by multiplying a factor 1=ðLxLyLzÞ ¼ 10−3. The
inequality NI=ðLxLyLzÞ ≥ nI holds in this expanding
space because of

ffiffiffiffiffiffiffiffiffi
det g

p ¼ α3 ≥ 1. From numerical
fitting, we obtained NI=ðLxLyLzÞ ¼ C1HI½ðτ=aÞ þ C2�
and nI ¼ C1HI½ðτ=aÞ þ C2�α−3 with C1 ¼ 0.012� 0.001
and C2 ¼ 57� 8. The best-fit functions are shown in the
figures.

FIG. 1 (color online). Expanding lattice.

FIG. 2 (color online). τ-dependence of the total fermion number
NI and the fermion number density nI with aHI ¼ 0.03.
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VI. CONCLUSION

We have formulated lattice QCD in curved spacetimes to
study gravitational effects on QCD. We have performed the
first simulation to demonstrate the computational imple-
mentation. For practical applications to phenomenology,
there are open issues to be discussed in more detail, in
particular, analytic continuation and renormalization. The
full QCD simulation is also necessary for the study of
particle production. By performing quantitative analysis,
we can discuss nonperturbative QCD effects on cosmology.
For example, the functional dependence on the Hubble
constant is essential for a scenario of dark energy [14].

There are a large number of future developments of this
framework. On the theoretical side, we can also formulate
other kinds of lattice field theory in curved spacetimes, e.g.,
scalar field theory, electroweak gauge theory, and non-
relativistic field theory, and so on. In scalar field theory, the
action includes the renormalizable term Rϕ2, which cou-
ples to a scalar curvature R. On the practical side, by
applying this framework, we can study nonperturbative
phenomena of QCD in various curved spacetimes, e.g., on
black holes, in the anti-de Sitter space, and so on.
We have considered only the case that the spacetime is

covered with a single regular coordinate patch. In several
physically interesting spacetimes, the metric tensor gμν is
singular, e.g., on black holes, or the inverse metric tensor
gμν is singular, e.g., in polar coordinates. When such
singularities exist, we need the scheme to resolve it:
(i) transforming a singular coordinate to a regular one,
(ii) cutting the region around the singularities, or (iii) intro-
ducing several local coordinate patches and gluing them at
boundary regions. The formulation of this scheme on the
lattice is also a future work.
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