
Finite volume effects on the extraction of form factors at zero momentum

Brian C. Tiburzi1,2,3,*
1Department of Physics, The City College of New York, New York, New York 10031, USA

2Graduate School and University Center, The City University of New York,
New York, New York 10016, USA

3RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
(Received 21 July 2014; published 23 September 2014)

Hadronic matrix elements that depend on momentum are required for numerous phenomenological
applications. Probing the low-momentumregime is often problematic for latticeQCDcomputations on account
of the restriction to periodic momentum modes. Recently a novel method has been proposed to compute
matrix elements at zero momentum, for which straightforward evaluation of the matrix elements would
otherwise yield a vanishing result.We clarify an assumption underlying this method, and thereby establish the
theoretical framework required to address the associated finite volume effects. Using the pion electromagnetic
form factor as an example, we show how the charge radius and two higher moments can be calculated at
zero-momentum transfer and determine the corresponding finite volume effects. These computations are
performed using chiral perturbation theory to account for modified infrared physics and can be generalized to
ascertain finite volume effects for other hadronic matrix elements extracted at zero momentum.
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I. INTRODUCTION

Experimental measurement of the Lamb shift and hyper-
fine splitting in muonic hydrogen has led to a determination
of the proton charge radius to unprecedented precision [1,2].
The extracted value lies 7σ away from the Committee on
Data for Science and Technology recommended value for
the charge radius [3], which is determined from the world’s
data on electron-proton scattering as well as the spectrum of
electronic hydrogen. In the wake of such a surprising
determination frommuonic hydrogen, the proton size puzzle
has attracted a considerable amount of attention; see Ref. [4]
for a review. Given the tremendous advances in lattice gauge
theory techniques, insight into the proton size puzzle might
be garnered from first principles lattice QCD computations.
For an overview of the current status of nucleon structure
computations using lattice QCD, see Ref. [5].
There are many issues confronting the determination of

charge radii from lattice QCD. In this work, we focus on
just one aspect of the problem, namely the limitation to
lattice-quantized momentum transfer. This limitation
emerges on account of the periodic boundary conditions
satisfied by quark fields. Many phenomenological
applications require knowledge of the momentum-transfer
dependence of hadronic matrix elements, and this presents
a challenge for lattice QCD computations given the coarse-
grained sampling of momentum transfer possible with
periodic momentum modes. Radii, for example, depend
on the slope of form factors evaluated at vanishing
momentum transfer. As such, these quantities are not
directly accessible with conventional lattice QCD methods,

and one often models the momentum-transfer dependence
of the matrix element to extract the desired quantity. The
theoretical situation essentially parallels the experimental
problem of extracting radii using form factor data. It is thus
desirable to remove this source of uncertainty from lattice
QCD calculations.
One way to overcome the restriction to lattice-

quantized momenta is to impose twisted boundary con-
ditions on the quark fields [6–8]. Indeed for the pion form
factor, for example, twisted boundary conditions have
been utilized to better access the pion charge radius; see
Refs. [9–13]. Because of computational restrictions,
however, the method of twisted boundary conditions is
currently only practicable in a partially twisted scenario
[8,14], i.e. where the valence quarks are subject to twisted
boundary conditions, while sea quarks remain periodic.
Computationally this means that quark propagators are
determined on gauge configurations that are not modified
as the twist parameters vary. One can view the partially
twisted scenario as that of a mixed action [15], where the
valence and sea quarks differ only by their respective
boundary conditions. Unfortunately in this scenario,
lattice results obtained at different values of twist angles
are correlated. When such correlations are properly
accounted for in fitting the momentum dependence of
matrix elements, there is no guarantee that statistically
independent information about the matrix element will be
obtained as the twist varies. As a result, partially twisted
boundary conditions often give one confidence about
modeling the momentum dependence of matrix elements;
however, they do not necessarily reduce the statistical
uncertainty in the extraction of phenomenologically
interesting parameters.*btiburzi@ccny.cuny.edu
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To remove uncertainty associated with the momentum
dependence of matrix elements, a novel method has been
recently proposed [16]. The method hinges on writing
down a Taylor series expansion of lattice correlation
functions in terms of the external momenta. Instead
of computing the momentum dependence of matrix
elements, one computes the Taylor series coefficients
directly at zero momentum. The method provides a
practical lattice definition of momentum-dependent
quantities possessing the correct infinite volume limit.
Because the method is proposed to overcome what is
essentially a restriction to finite volume, we investigate
the associated finite volume effects. Given the motivation
to reduce uncertainties in extracting the proton charge
radius, we additionally extend the zero-momentum
method to charge radii; however, for simplicity, we focus
on the pion charge radius. A straightforward generaliza-
tion of our method will allow one to access directly the
connected part of the proton charge radius. There is an
additional pragmatic reason for our analytic investigation
in advance of numerical studies. In essence, the method
to extract moments of the charge distribution at zero
momentum requires the computation of certain integrals
over n-point functions, with n > 3. Such correlation
functions are considerably challenging to compute; how-
ever, there has been progress in determining all-to-all
quark propagators.1 Estimates of the associated finite
volume effects are valuable in light of the extensive
computational resources demanded by the method.
Our investigation is organized as follows. We begin in

Sec. II with a simple observation about the nature of the
momentum expansion on a lattice of fixed size. To derive
a Taylor series expansion of correlation functions, one
requires that the momentum-carrying quark is subject to a
twisted boundary condition, with the Taylor coefficients
arising from differentiation with respect to twist angle,
and subsequent evaluation at vanishing twist. By deriving
the method on a lattice of fixed size, we are able to
develop a framework to address finite volume correc-
tions. Next in Sec. III, we consider the electromag-
netic form factor of the pion and present correlator
derivatives that can cleanly isolate the pion charge radius
at zero momentum. Two higher moments of the electric
charge distribution are also considered. A brief discussion
is included on the absence of power-law divergent
contributions at finite lattice spacing. The determi-
nation of finite volume corrections to the method at zero

momentum is taken up in Sec. IV. Here we formulate
partially twisted chiral perturbation theory for twisted
initial- and final-state quarks, with periodic spectator and
sea quarks. This enables us to compute the finite volume
current matrix element of the pion in an arbitrary frame.
Subsequent differentiation of this result yields the finite
volume effect on the extraction of the charge radius and
two higher moments using the zero-momentum method.
A technical detail related to computing momentum
derivatives of finite volume mode sums is discussed in
Appendix A. Finally a brief summary in Sec. V concludes
our work.

II. ZERO MOMENTUM EXPANSION

The method of obtaining hadronic form factors at
vanishing momentum [16] hinges on an expansion of
correlation functions in powers of the momenta. A generic
correlation function depending on the three-momentum ~p
and Euclidean time x4 is written as

Cð~p; x4Þ ¼
X
~x

e−i~p·~x
Z

DUP½U�C½x;U�

≡
Z

DUP½U�C½~p; x4;U�; ð1Þ

where U are gauge links and P½U� their corresponding
probabilistic weight in the functional integration. In a fixed
gauge background, one can formally write a momentum
expansion of the correlation function having the form

C½~p; x4;U� ¼ Cð0Þ½x4;U� þ piC
ð1Þ
i ½x4;U�

þ 1

2
pipjC

ð2Þ
ij ½x4;U� þ…; ð2Þ

where the coefficients are to be identified as those of a
Taylor series expansion about vanishing momentum

CðnÞ
i��� ½x4;U� ¼

∂nC½~p; x4;U�
∂pi � � �

����
~p¼~0

: ð3Þ

The heart of the method is to compute such coefficients
directly by similarly expanding quark propagators and
vertices in powers of the momenta. These expansions
yield expressions for the coefficients as modified corre-
lation functions depending only on periodic propagators
evaluated at vanishing momentum. In this way, one
circumvents the need to evaluate the correlation function
Cð~p; x4Þ as a function of ~p, and subsequently perform an
extrapolation to obtain the coefficient ∂Cð~p; x4Þ=∂pij~p¼~0,
for example.
In considering the Taylor series expansion in Eq. (2), we

note that the expansion necessarily has the correct infinite
volume limit, by construction. In this limit, the momenta

1There is an alternate approach that sidesteps evaluating the
higher-point functions required of the method. One can introduce
a twisted boundary condition on the active quark propagator and
then numerically evaluate the requisite momentum derivatives of
the propagator. This corresponds to adding a term to the quark
action and then studying the variation which shares many
similarities with recently proposed lattice techniques using the
Feynman-Hellmann theorem; see Ref. [17].
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become continuous variables, and differentiation leads at
once to the Taylor series expansion. In this work, we
concern ourselves with finite volume corrections that arise
from employing the method. In finite volume, by contrast,
the expansion in Eq. (2) can only be justified by using a
twisted boundary condition on the active quark, and the
natural question becomes how to assess the associated
finite volume effects.
To see that the expansion is only justified for a twisted

boundary condition, we exemplify the case of a two-
particle correlation function in a free scalar field theory.
Because this theory describes only noninteracting particles,
we are to set all gauge links to unity and omit the functional
integration over U. To keep the discussion as simple
as possible, we furthermore take the continuum limit.
Consider a compact space of length L in each of the three
spatial directions. The periodic single-particle propagator,
Sðx0; xÞ, is given by

Sðx0; xÞ ¼ 1

L3

X
~n

e2πi~n·ð~x0−~xÞ=L
e−Eð

2π~n
L Þjx0

4
−x4j

2Eð2π~nL Þ ; ð4Þ

where the energy Eð~pÞ satisfies Eð~pÞ2 ¼ ~p2 þm2, with
Eð~pÞ > 0. By virtue of the periodic boundary conditions
satisfied by the scalar field, the spatial momenta are
quantized in the form

~p ¼ 2π

L
~n; ð5Þ

where ~n is a triplet of integers, and, in the propagator,
we have written

P
~n as a shorthand notation for

the summation over all momentum mode numbers,P∞
n1¼−∞

P∞
n2¼−∞

P∞
n3¼−∞.

The two-particle correlation function with total three-
momentum ~p is defined by

Cð~p; x4Þ ¼
Z

L

0

d~xe−i~p·~xSðx; 0ÞSð0; xÞ; ð6Þ

where the integral
R
L
0 d~x is an abbreviation for the volume

integration
R
L
0 dx1

R
L
0 dx2

R
L
0 dx3. In the noninteracting

scalar theory, it is trivial to evaluate the two-particle
correlation function. When ~p is a periodic momentum
mode satisfying the quantization condition in Eq. (5), we
arrive at

C

�
2π~n
L

; x4

�
¼ 1

L3

X
~n0

e−Eð2π~n
0

L Þjx4je−Eð
2π½~n0þ~n�

L Þjx4j

2Eð2π~n0L Þ2Eð2π½~n0þ~n�
L Þ

: ð7Þ

Because all fields are periodic, the only parameter that
distinguishes the external momentum, ~p ¼ 2π

L ~n, from the
internal momentum, ~p0 ¼ 2π

L ~n0, is the vector of integers
~n. A Taylor series expansion of this two-particle

correlation function in powers of ~n, which is required
to arrive at Eq. (2), cannot be mathematically justified.2

To derive the momentum expansion rigorously in the
context of this simple example, let us instead begin with
a scalar field satisfying twisted boundary conditions.
The corresponding single-particle propagator, S~θðx0; xÞ,
consequently obeys

S~θðx0 þ Lêj; xÞ ¼ eiθjS~θðx0; xÞ; ð8Þ

where êj is a unit vector in the jth spatial direction, and
each of the components of ~θ can be varied continuously.
This propagator is then used for one of the particles in a
modified definition for the two-particle correlation function

C
�~θ
L
; x4

�
¼

Z
L

0

d~xe−i~θ·~x=LS~θðx; 0ÞSð0; xÞ; ð9Þ

and this definition reduces to the previous case when each
component of ~θ is an integer multiple of 2π. A graphical
depiction of this simple correlation function is shown in
Fig. 1. To compute the two-particle correlation function, we
associate the phase factor with the active particle by
defining the propagator

Sðx0; xj~θÞ ¼ e−i~θ·ð~x0−~xÞ=LS~θðx0; xÞ; ð10Þ

where this propagator is strictly periodic but is that of a
scalar field coupled to the uniform gauge potential ~A ¼ ~θ

L.
From the explicit form of this propagator, namely

FIG. 1. Graphical depiction of the modified correlation function
C. The single line represents the spectator particle, while the
double line represents the particle carrying momentum. The twist
angles ~θ allow the momentum to be varied continuously and
justify the use of a Taylor series expansion in a fixed volume.

2There is a way to approximate derivatives with respect to a
quantized momentum. Such approximations, however, hinge on
taking large mode numbers and employ differences between such
successive modes. For example, the relative change between
successive modes, Δpi=pi ¼ 1=ni, becomes infinitesimally
small as ni becomes large. For large mode numbers to correspond
to small momenta, however, one requires prohibitively large
lattices; see Ref. [18]. The successive difference approach,
moreover, is not related to the method proposed in Ref. [16].
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Sðx0; xj~θÞ ¼ 1

L3

X
~n

e2πi~n·ð~x0−~xÞ=L
e−Eð

2π~nþ~θ
L Þjx0

4
−x4j

2Eð2π~nþ~θ
L Þ

; ð11Þ

we see that the modified two-particle correlation function in
Eq. (9) is given by

Cð~p; x4Þ ¼
1

L3

X
~n

e−Eð2π
~n

L Þjx4je−Eð2π
~n

L þ~pÞjx4j

2Eð2π~nL Þ2Eð2π~nL þ ~pÞ ; ð12Þ

where the external momentum satisfies the relation

~p ¼
~θ
L
: ð13Þ

Because the twist angles can be continuously varied, one has
the trivial equivalence pi

∂
∂pi

¼ θi
∂
∂θi that justifies the Taylor

series expansion of this correlation function, as in Eq. (2).
We have demonstrated that the Taylor series expansion of

correlation functions, Eq. (2), can be mathematically justi-
fied on a finite lattice of fixed size by imposing a twisted
boundary condition on the active quark, differentiating with
respect to the twist angle, and finally evaluating at vanishing
twist. Because the active quark is singled out in this
procedure, the underlying theoretical framework is strictly
speaking not unitary; however, any violations of unitarity
can only appear as finite volume corrections. In employing
partially twisted chiral perturbation theory below, however,
we do not encounter any unitarity violations. An additional
complication for a general correlation function, such as a
current matrix element, is that there can be numerous active
quarks, and one must sum over all possible momentum
carriers. Lastly we must stress that the procedure employed
by Ref. [16] is not altered in any way. One still computes
modified lattice correlation functions corresponding to the
Taylor coefficients with periodic propagators at vanishing
momentum. To address finite volume effects, by contrast, we
require the underlying theoretical framework that justifies
the use of the Taylor expansion in Eq. (2) on a fixed-size
lattice. This framework is that of partially twisted boundary
conditions imposed on the active quarks, which we
develop below.

III. AT ZERO MOMENTUM AND
ZERO-MOMENTUM TRANSFER

We focus on a particular extension of the zero-momentum
method, namely to the pion’s electromagnetic form factor,
Fðq2Þ. In infinite volume, this form factor is defined
through the current matrix element between pion states

hπð~p0ÞjJμjπð~pÞi ¼ eðp0 þ pÞμFðq2Þ; ð14Þ
where q is the momentum transfer between the initial and
final states, qμ ¼ ðp0 − pÞμ, and e is the unit of electric
charge. The emergence of only one form factor is a
consequence of the Lorentz covariance of the matrix
element and current conservation. Because of properties

under charge conjugation, we have the relations Fπþðq2Þ ¼
−Fπ−ðq2Þ and Fπ0ðq2Þ ¼ 0. There is thus only one pion
form factor to consider, and we take it to be that of the
positively charged pion. In the forward limit, which is
specified by p0

μ ¼ pμ, the value of the form factor is
determined from the Ward identity as the electric charge
of the pion, namely Fð0Þ ¼ 1. The behavior of the form
factor away from the forward limit reflects the charge
distribution within the pion. Moments of the charge
distribution3 appear in the momentum-transfer expansion
of the form factor. We write this expansion in the form

Fðq2Þ ¼ 1þ
X∞
n¼1

ð−q2Þn
ð2nÞ!ð2nþ 1Þ!! hr

2ni; ð15Þ

where hr2i is the mean-square radius and so on. We will
focus on just the lowest few moments. With vanishing
momentum transfer, qμ ¼ 0, none of the moments of the
pion’s charge distribution appear the current matrix element
in Eq. (14).
The pion form factor is accessible through the calcu-

lation of three-point correlation functions using lattice
QCD. We will take the limit of strong isospin and
accordingly work with a single light quark field, denoted
by ψ. Taking a simple pointlike pion interpolating field,
πðxÞ ∼ ψ̄iγ5ψðxÞ, we have the vector-current three-point
correlation function

Cμð~p0; ~pjx4; y4Þ ¼ −
X
~x;~y

e−i~p
0·ð~x−~yÞe−i~p·~y

× hψ̄γ5ψðxÞψ̄γμψðyÞψ̄γ5ψð0Þi; ð16Þ

where x4 is the Euclidean time separation between
the source and sink and y4 is the current insertion time.
Both of these times are assumed positive throughout. The
brackets refer to the stochastic average over gauge con-
figurations. Notice that, due to strong isospin invariance,
the matrix element of the quark electromagnetic current,
Jμ ¼ 2

3
ūγμu − 1

3
d̄γμd, can be computed from a single

matrix element of the vector current, Vμ ¼ ψ̄γμψ , or its
point-split form.4

3Strictly speaking, the Fourier transform of the pion electro-
magnetic form factor is not a charge density, however, the form
factor can be written as the Fourier transform of the transverse
distribution of charge in the infinite momentum frame; see
Refs. [19,20].

4For our particular application of the pion electromagnetic
form factor, we utilize only the temporal component of the
current. Expansion of the three-point correlation function in
powers of spatial momenta does not require us to consider the
momentum expansion of the temporal component of the point-
split vector-current vertex. The spatial components of the three-
point correlation function, on the other hand, additionally require
expanding the vector-current vertex when the point-split current
is utilized.
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Performing the quark contractions, the three-point cor-
relation function becomes

Cμð~p0; ~pjx4; y4Þ ¼
X
~x;~y

e−i~p
0·ð~x−~yÞe−i~p·~y

× hTr½γ5Sðx; yÞγμSðy; 0Þγ5Sð0; xÞ�i;
ð17Þ

where Sðx0; xÞ is used to denote the quark propagator in a
background gauge configuration. On account of isospin
symmetry and the charge conjugation properties of pions,
there are no self-contractions of the current to evaluate
[21,22]. To utilize a Taylor series expansion in both initial-
and final-state momenta, we replace the above correlation
function with a modified one in which the active quarks are
coupled to different uniform gauge fields,

Cμð~p0; ~pjx4; y4Þ ¼
X
~x;~y

hTr½γ5Sðx; yj~θ0Þ

× γμSðy; 0j~θÞγ5Sð0; xÞ�i: ð18Þ

Now the initial- and final-state momenta are continuous
parameters that satisfy ~p ¼ ~θ

L and ~p0 ¼ ~θ0
L. The correlation

function distinguishes between an initial quark, a final
quark, and a spectator quark; see Fig. 2.
Assuming a long Euclidean time separation between

source and sink, as well as from operator insertion to sink,
we have the expected behavior for the temporal component
of the vector-current correlation function,

C4ð~p0; ~pjx4; y4Þ ¼ i½Eð~p0Þ þ Eð~pÞ�Fðq2Þ

× jZj2 e
−Eð~p0Þðx4−y4Þe−Eð~pÞy4

2Eð~p0Þ2Eð~pÞ ; ð19Þ

where we have dropped exponentially suppressed
contributions in the Euclidean time separations. Such

contributions arise from excited states. The factor Z is
the unknown overlap between the interpolating field and
the ground-state pion. Because the initial- and final-state
momenta are continuous, we can perform a Taylor series
expansion to obtain the charge radius and higher moments
of the charge distribution. To aid in isolating these desired
quantities, we observe that the Euclidean momentum
transfer takes the form

q2 ¼ 2½Eð~p0ÞEð~pÞ −m2
π − ~p0 · ~p�: ð20Þ

As a consequence, the charge radius can be determined
from the ratio

hr2i ¼ 3

C4ð~0; ~0Þ
∂2C4ð~p0; ~pÞ
∂p0

1∂p1

����
~p0¼~p¼~0

; ð21Þ

up to exponentially suppressed contributions in the
Euclidean time separations. Generalizations of this formula
allow access to two higher moments of the charge
distribution, namely

hr4i ¼ 45

C4ð~0; ~0Þ
∂4C4ð~p0; ~pÞ

∂p0
1∂p1∂p0

2∂p2

����
~p0¼~p¼~0

; ð22Þ

hr6i ¼ 1575

C4ð~0; ~0Þ
∂6C4ð~p0; ~pÞ

∂p0
1∂p1∂p0

2∂p2∂p0
3∂p3

����
~p0¼~p¼~0

: ð23Þ

Beyond these quantities, we have been unable to find
simple ratios that isolate any higher moments with-
out the introduction of power-law Euclidean time depend-
ence which would contaminate the signal. In fact, any
momentum derivatives of rest-frame (~p ¼ ~0 and ~p0 ¼ ~q)
and Breit-frame (~p ¼ − 1

2
~q and ~p0 ¼ 1

2
~q) three-point cor-

relation functions suffer the same sickness. For this reason,
we consider the three-point function in an arbitrary frame
and have found ratios that cleanly isolate the desired
coefficients without introducing power-law contamination.
Notice that for notational ease we have suppressed the
Euclidean time dependence of the three-point correlation
functions. This time dependence will drop out of the
correlator ratios, provided the ground-state pion saturates
the three-point function.
The various momentum derivatives required of the

temporal component of the vector three-point function in
Eqs. (21)–(23) can be expressed in terms of derivatives of
quark propagators. This remains true with a point-split
current due to our utilization of the temporal component of
the current, i.e. there are no derivatives of the current vertex
required for this particular application. The derivatives of
quark propagators can be expressed in terms of derivatives
of the lattice Dirac operator in a uniform Uð1Þ gauge field.
Using the following abstract notation for quark propagators
and the Dirac operator,

FIG. 2. Quark-level contractions of the modified three-point
function, Cμ. The single line represents the spectator quark, while
the double lines represent the twisted initial- and final-state
quarks. The twist angles ~θ and ~θ0 are devices that are required to
derive the momentum expansion of the current correlation
function on a lattice of fixed size. They are set to zero after
differentiation.
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Sðx0; xj~θÞ ¼ hx0jSð~θÞjxi;
Dðx0; xj~θÞ ¼ hx0jDð~θÞjxi; ð24Þ

with Dð~θÞSð~θÞ ¼ 1, we have

∂Sð~θÞ
∂θi ¼ −Sð~θÞ ∂Dð~θÞ

∂θi Sð~θÞ: ð25Þ

For the clover-improved Wilson action, the lattice Dirac
operator for a quark in a uniform gauge potential has the
form

Dðx0; xj~θÞ ¼ 1

2

X3
j¼1

½δx0þj;xðγj − 1Þeiθj
N Ujðx0Þ

− δx0;xþjðγj þ 1Þe−iθj
N U†

jðxÞ� þ � � � ; ð26Þ

wherewe havewritten only the ~θ-dependent terms explicitly
and N is the number of lattice sites in each spatial direction,
which is just the length L in lattice units. The required
momentum derivative of the clover action is simply

∂Dðx0; xj~θÞ
∂pi

¼ i
2
½δx0þi;xðγi − 1Þeiθi

N U iðx0Þ

þ δx0;xþiðγi þ 1Þe−iθi
N U†

i ðxÞ�: ð27Þ

Valuable simplifications arise from noticing that mixed
partials of the lattice Dirac operator must vanish,

∂2

∂pi∂pj≠i
Dð~θÞ ¼ 0: ð28Þ

Because of the form of Eqs. (21)–(23), moreover, only first
partial derivatives are required to determine the charge
radius and the two higher moments.
To express the required momentum derivatives of the

three-point correlation function, we identify the point-split
vector-current vertex

∂Dð~θÞ
∂pi

����
~θ¼~0

¼ iVi; ð29Þ

which has the coordinate-space matrix elements

hx0jVμjxi¼
1

2
½δx0þμ;xðγμ−1ÞUμðx0Þþδx0;xþμðγμþ1ÞU†

μðxÞ�:
ð30Þ

The mean-square charge radius can be extracted by
computing the ratio in Eq. (21), with

∂2C4ð~p0; ~pÞ
∂p0

1∂p1

����
~p0¼~p¼~0

¼ −
X
~x;~y

hTr½γ5hxjSV1SjyiV4ðyÞhyjSV1Sj0iγ5h0jSjxi�i; ð31Þ

by virtue of the modified three-point function appearing in Eq. (18). In the above expression, we have replaced the temporal
component of the currentwith its point-split form. The correlator in Eq. (31) is computedwith vanishing initial- and final-state
momenta and is graphically depicted in Fig. 3. For the hr4i moment of the charge distribution, one would need to compute

∂4C4ð~p0; ~pÞ
∂p0

1∂p1∂p0
2∂p2

����
~p0¼~p¼~0

¼ 2hTr½γ5SV1SV2SV4SV1SV2Sγ5S� þ Tr½γ5SV1SV2SV4SV2SV1Sγ5S�i ð32Þ

and determine the ratio in Eq. (22). We have now dropped all coordinate dependence for ease and have appealed to cubic
symmetry to combine terms. Finally the hr6i moment requires evaluating the correlation functions

∂6C4ð~p0; ~pÞ
∂p0

1∂p1∂p0
2∂p2∂p0

3∂p3

����
~p0¼~p¼~0

¼ −6
X

Pð1;2;3Þ
hTr½γ5SV1SV2SV3SV4SVP1

SVP2
SVP3

Sγ5S�i; ð33Þ

where the sum is over all permutations P of 1, 2, 3, which
wewrite asPð1; 2; 3Þ ¼ ðP1;P2;P3Þ. Cubic symmetry has
been employed to reduce the number of terms appearing in
the above expression.
A cause for concern about the zero-momentum method

arises from problems encountered at finite lattice spacing.5

In the context of the hadronic vacuum polarization, for
example, twisted boundary conditions are known to intro-
duce contact terms that diverge with an inverse power of the
lattice spacing in the continuum limit [23,24]. Such contact
terms exist in the product of two vector currents corre-
sponding to the same direction, whereas the divergent
contribution is absent for orthogonal directions. The above
expressions for various derivatives of the temporal current5H. Wittig reminded us of this possibility.
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matrix element, Eqs. (31)–(33), are written in terms of
multiple insertions of the vector current and therefore
appear subject to the same complication. Our use of twisted
boundary conditions, however, is only a theoretical device
to obtain these Taylor coefficients, which are then evaluated
at vanishing twist. We must still worry that differentiation
could produce twist-independent terms that diverge in the
continuum limit; however, we can show that the momen-
tum derivatives required in this particular application
prohibit such contributions.
The starting point for our application of the zero-

momentum method is the temporal current matrix element
computed with twisted initial- and final-state quarks.
Because the twists are taken in the spatial directions, there
can be no additional divergent contribution to the temporal
current matrix element itself. Upon differentiation of this
matrix element, divergent contact terms will be introduced.
For example, the two derivatives with respect to x compo-
nents of momentum required to obtain the charge radius in
Eq. (31) will produce a divergent contribution analogous to
that in the hadronic vacuum polarization. Evaluation at
vanishing x component of twists, however, removes this
divergent contribution. To arrive at Eq. (32), we need
further differentiation, but with respect to the y components
of momentum. This produces another divergent contribu-
tion, which vanishes when the y components of twists are
set to zero. Finally differentiation with respect to the
remaining z components of momentum is necessary to
evaluate Eq. (33) and produces a power-divergent term
which vanishes when the z components of twists are set
to zero.
There is a stronger argument against such power-law

divergences that holds even in the absence of twisted
boundary conditions. In the evaluation of any of the three
modified correlation functions, identical currents are never
at the same temporal location. This owes directly to the fact
that we utilize the temporal current matrix element and
differentiate with respect to the spatial momenta carried by
initial- and final-state quarks, which produces spatial
vector-current vertices. In the absence of contact terms,

three moments of the pion’s charge distribution can thus be
accessed without the need to perform subtractions of
divergent contributions. If one employs rest-frame or
Breit-frame matrix elements, however, we expect power-
law divergences will be encountered in the continuum limit.
This complication arises in addition to the power-law
Euclidean time dependence introduced upon momentum
differentiation of the matrix element in Eq. (19).

IV. FINITE VOLUME CORRECTIONS

With Eqs. (21)–(23), one can determine moments of the
pion’s charge distribution at vanishing initial- and final-
state momenta. As the method has been devised to circum-
vent the restriction to periodic momentum modes on a
lattice of fixed size, it is susceptible to finite volume effects
that are potentially substantial. We use a modification of
chiral perturbation theory to ascertain the size of finite
volume corrections on the required momentum derivatives
of three-point functions.

A. Partially twisted chiral perturbation theory

To compute the required momentum derivatives of three-
point correlation functions on a lattice of fixed size, we
require partially twisted boundary conditions. In consid-
ering derivatives of the three-point function, we are forced
to distinguish between an initial-state quark, a final-state
quark, and a spectator quark. These quarks, moreover, are
all valence quarks because the current self-contraction does
not contribute to pion matrix elements. Based on these
observations, we consider the partially quenched QCD
Lagrange density

L ¼ Q̄ðDþmQÞQ ð34Þ

for the graded flavor group SUð5j3Þ. The fundamental
vector Q accommodates eight flavors of quark fields:

Qi ¼ ð u1; u2; d; j; l; ~u1; ~u2; ~d Þi: ð35Þ

We employ the isospin limit in the valence and sea sectors.
Accordingly the quark mass matrix has the form

mQ ¼ diagðmv;mv;mv;msea; msea; mv;mv;mvÞ; ð36Þ

with mv the valence quark mass (which must be degenerate
with the ghost quark mass) and msea the sea quark mass.
Even at the unitary mass point, msea ¼ mv, the theory
remains partially quenched by virtue of differing boundary
conditions on the various quark fields. This we refer to as
partially twisted.
To handle the quark boundary conditions, we take the Q

field to be periodic, with the effect of partial twisting
relegated to the gauge-covariant derivative. This derivative
includes a term from uniform gauge fields

FIG. 3. Quark-level contractions required to obtain the pion
charge radius at vanishing momentum. The solid circles represent
the pion source and sink, the square represents the insertion of the
external current, while the open circles are the momentum
derivative vertices. Two higher moments of the charge distribu-
tion can be obtained by further insertions of such vertices on the
initial- and final-state quark lines.
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Dμ ¼ DSUð3Þ
μ þ iBμ; ð37Þ

whereDSUð3Þ
μ is the QCD gauge-covariant derivative and Bμ

encodes the uniform Uð1Þ gauge fields. The uniform fields
have vanishing temporal component Bμ ¼ ð~B; 0Þ, with the
spatial components specified by

Bi ¼
1

L
diagðθi; θ0i; 0; 0; 0; θi; θi0; 0Þ: ð38Þ

From this choice, we see that the quark u1 corresponds to
the initial-state quark, while u2 corresponds to the final-
state quark. The down quark, d, is the spectator quark. The
active and spectator quarks are valence quarks. For this
reason, the theory is graded: we include ghost quarks ~u1,
~u2, and ~d in order for this identification to be made. Finally
the quarks j and l are the sea quarks, which are not twisted.
To induce momentum transfer, the vector current is taken to
correspond to a flavor-changing current,

Vμ ¼ ū2γμu1; ð39Þ

within the extended flavor group.
To address finite volume effects, we consider the low-

energy theory of pions. The low-energy effective theory of
partially quenched QCD is partially quenched chiral
perturbation theory [25–27]. This theory describes the
infrared dynamics of the low-energy pseudoscalar modes
emerging from spontaneous breaking of chiral symmetry.
Our considerations are that of the p regime of finite volume
chiral perturbation theory [28], in which the zero modes of
the Goldstone manifold remain weakly coupled. Chiral
perturbation theory is written in terms of the coset field,
Σ ¼ expð2iΦ=fÞ, where Φ is a matrix of pseudoscalar
meson fields. The dimensionful parameter f can be
identified as the pion decay constant, which has the
numerical value f ≈ 132 MeV in our conventions.
To obtain partially quenched chiral perturbation theory

corresponding to the Lagrange density in Eq. (34), we use
the coset transformation law Σ → LΣR† under a graded
chiral transformation, ðL;RÞ ∈ Uð5j3ÞL ⊗ Uð5j3ÞR. The
effective theory is then written down by enumerating all
chirally invariant operators. Sources of explicit chiral
symmetry breaking are additionally included using the
spurion trick. For our application to the pion form factor
with partially twisted boundary conditions, we must incor-
porate the vector current and the uniform gauge fields, in
addition to the quark mass. In terms of the coset field Σ, the
leading-order Lagrange density has the form

L¼f2

8
strðDμΣ†DμΣÞ−λstrðmQΣ†þmQΣÞþμ20Φ

2
0: ð40Þ

The field Φ0 is the flavor-singlet field, Φ0 ¼ strðΣÞ= ffiffiffi
2

p
,

and has been included only as a device to obtain the

flavor-neutral propagators. The covariant derivative Dμ is
specified by its action on the coset field

DμΣ ¼ ∂μΣþ iAμ½T;Σ� þ i½Bμ;Σ�; ð41Þ

where Aμ is an external vector field, and the matrix T is
given by

Tij ¼ δi2δj1; ð42Þ

which corresponds to the flavor structure of the flavor-
changing vector current in Eq. (39).
The meson fields are embedded in Σ through Φ which

takes the form of an eight-by-eight matrix, which can be
written in blocks

Φ ¼

0
B@

Mvv Mvs χ†gv

Msv Mss χ†gs

χgv χgs Mgg

1
CA: ð43Þ

The blocks Mvv and Mgg contain bosonic mesons com-
posed of a quark-antiquark pair and a ghost quark-ghost
antiquark pair, respectively. Such mesons appear in these
blocks as

Mvv ¼

0
B@

η11 η12 πþ1
η21 η22 πþ2
π−1 π−2 ηd

1
CA ð44Þ

and

Mgg ¼

0
B@

~η11 ~η12 ~πþ1
~η21 ~η22 ~πþ2
~π−1 ~π−2 ~ηd

1
CA: ð45Þ

The ηij mesons have quark content ηij ∼ uiūj, whereas the
~ηij mesons have quark content ~ηij ∼ ~ui ~̄uj. The neutral
meson composed of a spectator quark-antiquark pair is

ηd ∼ dd̄, while the ghostly counterpart is ~ηd ∼ ~d ~̄d. The
electrically charged mesons have been denoted with π’s,

specifically πþi ∼ uid̄ and ~πþi ∼ ~ui ~̄d. The valence-sea and
sea-sea mesons are also bosonic. These degrees of freedom
appear in the matrices Mvs and Mss, with

Mvs ¼
�
ϕju1 ϕju2 ϕjd

ϕlu1 ϕlu2 ϕld

�
ð46Þ

and

Mss ¼
�

ηj πjl

πlj ηl

�
; ð47Þ
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respectively. The remaining mesons are fermionic fields.
Those composed of a ghost quark and a valence
antiquark are contained in the matrix χgv, while those
composed of a ghost quark and a sea antiquark appear
in χsv. These matrices of fermionic mesons have the
form

χgv ¼

0
B@

ϕ ~u1u1 ϕ ~u1u2 ϕ ~u1d

ϕ ~u2u1 ϕ ~u2u2 ϕ ~u2d

ϕ ~du1
ϕ ~du2

ϕ ~dd

1
CA ð48Þ

and

χsg ¼

0
B@

ϕ ~u1j ϕ ~u1l

ϕ ~u2j ϕ ~u2l

ϕ ~dj ϕ ~dl

1
CA: ð49Þ

Treating the Lagrange density to tree level, we see that
the quark-basis mesons with quark contentQ and antiquark
content Q0 have masses given by

m2
QQ0 ¼ λ

4f2
ðmQ þmQ0 Þ: ð50Þ

The flavor-singlet meson, Φ0, has an additional con-
tribution to its mass proportional to μ20. Because
the flavor-singlet axial symmetry of the partially
quenched theory is anomalous, we can integrate the flavor
singlet out of partially quenched chiral perturbation theory
[27]. The resulting Goldstone manifold becomes
SUð5j3ÞL ⊗ SUð5j3ÞR=SUð5j3ÞV ; however, the flavor-
neutral mesons, which appear on the diagonal of the matrix
Φ, do not have simple Klein–Gordon propagators. Instead,
their propagators have both quark-connected and quark-
disconnected terms, where the latter are conventionally
referred to as hairpins. The propagator matrix between
ηa-ηb quark-basis states6 is given by

GηaηbðkÞ ¼
ϵaδab

k2 þm2
ηa

−
1

2

ϵaϵbðk2 þm2
ηjÞ

ðk2 þm2
ηaÞðk2 þm2

ηbÞ
: ð51Þ

The first thing to note is that twisting does not affect the
propagation of flavor-neutral states. For this reason, the
twist angles ~θ and ~θ0 are absent from the flavor-neutral
propagator matrix. In partially quenched chiral perturbation
theory, the lack of unitarity of the theory arises from the
disconnected part of the flavor-singlet propagator; however,

the double pole is absent with degenerate valence and sea
quark masses.7

The propagators of flavor nonsinglet mesons have a
simple Klein–Gordon form; however, they acquire depend-
ence on the twist angles. Writing the scalar propagator in
the form

Gmð~k; k4Þ ¼
1

~k2 þ k24 þm2
; ð52Þ

we see that a meson with quark content Q and anti-
quark content Q0, with Q0 ≠ Q, is described by the
propagator

GmQQ0 ð~kþ ~BQ − ~BQ0 ; k4Þ; ð53Þ

where ~k ¼ 2π~n
L is a periodic momentum mode.

B. Pion current matrix element in an
arbitrary frame

Having spelled out the necessary ingredients of partially
quenched chiral perturbation theory, we now detail the
computation of the pion electromagnetic form factor. The
form factor can be determined in the effective theory by
computing the matrix element

Mμð~p0; ~pÞ≡ hπþ2 ð~0ÞjVμjπþ1 ð~0ÞiL
⟶
L→∞hπþð~p0ÞjVμjπþð~pÞi: ð54Þ

On the first line, we label the matrix element of pions by
their vanishing Fourier momentum. On the second line, we
show the infinite volume limit of the matrix element. By
virtue of partial twisting, the initial-state pion carries

momentum ~p ¼ ~θ
L, and the final-state pion carries momen-

tum ~p0 ¼ ~θ0
L. In taking the infinite volume limit, it is

assumed that ~p and ~p0 are held fixed. These momenta
can be continuously varied on a lattice of fixed size and
enable us to perform the Taylor series expansion of current
correlation functions in chiral perturbation theory.
The momentum derivatives required to evaluate moments
of the charge distribution at vanishing momentum,
Eqs. (21)–(23), can all be derived from the pion current
matrix element calculated in an arbitrary frame. For this
reason, we determine the general expression for the finite
volume effect in an arbitrary frame in this section and

6Because of our notation for the various mesons, one must be
careful to note that this propagator matrix only applies to the
diagonal entries of the matrix Φ. These states are the flavor-
neutral mesons, whereas other η states that are off the diagonal,
such as the η12, are only electrically neutral rather than flavor
neutral.

7In generalizing to include the strange quark, the result remains
true. Because flavor-neutral states are unaffected by twisting, the
double-pole sickness also goes away when valence quarks are
made degenerate with their sea quark counterparts. In this limit,
the lack of unitarity of the partially twisted theory does not lead to
any enhancement of the finite volume effects.
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evaluate the required Taylor series coefficients in the
following section.8

To compute the finite volume corrections to the current
matrix element in Eq. (54), we must evaluate the one-loop
diagrams shown in Fig. 4. Because of rather fortuitous
cancellations, there are no hairpin contributions to the
current matrix element. Additionally complete cancellation
of valence-valence meson contributions against those of
valence-ghost mesons leads to dependence only on the
valence-sea meson mass, which is known to occur for the
infinite volume partially quenched pion form factor [29]. For
the sake of notational ease, we denote themass of valence-sea
mesons simply bym. The finite volume effect on the temporal
component of the current matrix element is defined by

ΔM4 ¼ M4ðLÞ −M4ðL ¼ ∞Þ: ð55Þ

Evaluation of the diagrams shown in the figure can be cast in
the general form

ΔM4 ¼ ðp0
4 þ p4ÞΔF þ q4ΔG; ð56Þ

where ΔF and ΔG represent frame-dependent finite
volume corrections to the current matrix element. The latter
contribution, ΔG, is forbidden in infinite volume due to
current conservation; however, in a finite volumewith twisted
boundary conditions, this contribution becomes essential to
maintain the Ward-Takahashi identity; see Ref. [30].
While the explicit form of ΔG is rather lengthy in an

arbitrary frame, it will fortunately not be needed for our
computation. To see this, we notice that the momentum
derivatives of the current matrix element which are required
to determine the charge radius at zero momentum have the
form

∂2

∂p0
1∂p1

ΔM4j~p0¼~p¼~0; ð57Þ

with further momentum derivatives of the matrix element
needed to obtain the two higher moments of the charge
distribution. The crucial observation is that the ΔG term of
the current matrix element in Eq. (56) drops out of these
momentum derivatives when evaluated at zero initial- and
final-state momenta. Focusing on the differentiation
required for the charge radius, we have

∂2

∂p0
1∂p1

q4ΔG ¼ ∂p0
4

∂p0
1

∂ΔG
∂p1

−
∂p4

∂p1

∂ΔG
∂p0

1

þ q4
∂2ΔG
∂p0

1∂p1

:

ð58Þ

Because the current matrix element must be well behaved at
~p ¼ ~0 and at ~p0 ¼ ~0, the first term on the right-hand side
above vanishes when evaluated at p0

1 ¼ 0, the second term
vanishes when evaluated at p1 ¼ 0, and the last term
vanishes when evaluated at ~p0 ¼ ~p. Consequently the finite
volume effect proportional to q4ΔG will not contribute to
the derivatives required to determine the charge radius at
zero momentum, ~p0 ¼ ~p ¼ ~0. The same conclusion can
easily be reached for the two higher moments of the charge
distribution. One merely takes further momentum deriva-
tives of Eq. (58), and observes that all terms produced
necessarily vanish when evaluated at vanishing initial- and
final-state momenta.
To compute the effect of finite volume on the method of

extracting moments of the charge distribution at zero
momentum, we thus need only the function ΔF appearing
in the finite volume current matrix element, Eq. (56).
Taking contributions from all one-loop diagrams, we find

ΔF ¼ 1

f2

Z
1

0

dxI 1
2
½x~p0 þ ð1 − xÞ~p;m2 þ xð1 − xÞq2�

−
1

2f2
½I 1

2
ð~p0; mÞ þ I 1

2
ð~p;mÞ�: ð59Þ

FIG. 4. One-loop contributions to the pion current matrix
element in partially quenched chiral perturbation theory. The
top panel shows diagrams required to determine the pion wave
function renormalization. Dashed lines represent mesons, while
the cross represents the partially quenched hairpin interaction.
The wiggly line shows the insertion of the vector current, which
corresponds to a flavor-changing transition in the effective theory.
The flavors differ only by their boundary conditions.

8In passing, we note an equivalent alternate method. One can
compute the finite volume corrections by momentum expanding
the meson propagators and vertices appearing in partially twisted
chiral perturbation theory. The coefficients of the Taylor series
expansion are then computed directly by using appropriately
modified correlation functions at zero momentum in the effective
theory. For the three moments of the charge distribution deter-
mined above, this would mean three separate, though related,
computations. We find it easier to evaluate the original current
matrix element at finite twist angles and derive all three results
from differentiation.
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This finite volume effect has been compactly written in
terms of the basic functions

Iβð~p;mÞ≡ 1

L3

X
~n

1

½ð2πL ~nþ ~pÞ2 þm2�β

−
Z

d~k
ð2πÞ3

1

½ð~kþ ~pÞ2 þm2�β
; ð60Þ

which encompass the difference between the finite volume
mode sum and the infinite volume momentum integration.
In taking derivatives with respect to pi, removing the ~p
from the integral by translating the momentum integration
over ~k leads to spurious infinite volume contributions. This
peculiarity is detailed in the Appendix. The functions
defined above can be recast in terms of Jacobi elliptic-
theta functions [8,31], for which we have

Iβð~p;mÞ ¼ 1

ð4πÞ32ΓðβÞ

Z
∞

0

dssβ−
5
2e−sm

2

×

"Y3
j¼1

ϑ3

�
Lpj

2
; e−

L2
4s

�
− 1

#
: ð61Þ

In working at zero momentum, we will often employ the
abbreviated notation IβðmÞ≡ Iβð~0; mÞ.
The expression for the finite volume effect ΔF in

Eq. (59) can be checked against results known in various
limits. First notice that in the forward limit we have

ΔFj~p0¼~p ¼ 0; ð62Þ

which consequently leads to a vanishing volume correction
to the time component of the current, ΔM4 ¼ 0. This
corresponds to nonrenormalization of the pion charge due
to finite volume and is a consequence of the Ward identity.
The Ward identity happens to be satisfied for the time
component of the current due to our specification of an
infinite temporal extent; see Ref. [32]. Evaluating the finite
volume effect ΔF in the pion rest frame, which is specified
by setting ~p ¼ ~0 with ~q ¼ ~p0, we recover the correspond-
ing result for ΔF determined from isospin twisted boun-
dary conditions [33]. To compare with the latter result, we
must set the down quark twist to zero in order for the setup
to match that used in the present work. Finally we can use
our result for ΔF in an arbitrary frame to determine the
finite volume effect in the Breit frame, which is specified by
the kinematics ~p ¼ − 1

2
~q and ~p0 ¼ 1

2
~q. With this choice,

one obtains from ΔF in Eq. (59) the result of Ref. [34].

C. Finite volume corrections at zero momentum

To evaluate the effect of finite volume on determining
form factors at zero momentum, we return to the vector-
current correlation function in Eq. (19). We detailed the
expected behavior of this correlation function in infinite

volume, and now we consider the modifications arising in
finite volume. Generalizing this correlation function to
finite volume, we have

C4ð~p0; ~pjx4; y4Þ ¼ jZj2M4ð~p0; ~pÞ e
−Eð~p0Þðx4−y4Þe−Eð~pÞy4

2Eð~p0Þ2Eð~pÞ :

ð63Þ

The overlap factor in finite volume is denoted by Z, which
is momentum independent. Additionally appearing in the
above expression is the temporal component of the finite
volume current matrix element, M4ð~p0; ~pÞ, as well as the
charged pion energy in finite volume, Eð~pÞ, which has been
determined using partially twisted chiral perturbation
theory in Ref. [33]. For our application, it is important
to note that Eð~pÞ has a regular expansion about vanishing
twist, ~p ¼ ~0; i.e. it can be written in the form

Eð~pÞ2 ¼ ~p2 þm2 þ Δm2ð~pÞ; ð64Þ

with Δm2ð~pÞ ¼ δm2 þ ~p2δp2 þ � � �. Here, Δm2ð~pÞ is
the finite volume correction to the mass. It retains twist-
angle dependence, and so can either be thought of as a
momentum-dependent finite volume mass shift [30] or as
arising from renormalization of the pion momentum [33].
From the twist-angle expansion in Eq. (64), we see
∂Eð~pÞ=∂pjjpj¼0 ¼ 0 and can conclude that the required
momentum derivatives acting on the finite volume corre-
lation function, Eq. (63), all act on M4ð~p0; ~pÞ or else
evaluate to zero at vanishing momentum.
In light of these observations, we can ascertain the finite

volume corrections to the zero-momentum method. First,
we define the finite volume effect on the charge radius,Δr2,
using the finite volume current correlation functions

3

C4ð~0; ~0Þ
∂2C4ð~p0; ~pÞ
∂p0

1∂p1

j~p0¼~p¼~0 ¼ hr2i þ Δr2: ð65Þ

Recalling the form of Eqs. (22) and (23), the finite volume
effect on the two higher moments, Δr4 andΔr6, can then be
defined in a completely analogous fashion. Taking the
required derivatives of the finite volume current correlation
function in Eq. (63), and using the finite volume current
matrix element inEq. (56),wearrive at the simple expressions

Δr2 ¼ 3
∂2ΔF
∂p0

1∂p1

����
~p0¼~p¼~0

; ð66Þ

Δr4 ¼ 45
∂4ΔF

∂p0
1∂p1∂p0

2∂p2

����
~p0¼~p¼~0

; ð67Þ

Δr6 ¼ 1575
∂6ΔF

∂p0
1∂p1∂p0

2∂p2∂p0
3∂p3

����
~p0¼~p¼~0

: ð68Þ

FINITE VOLUME EFFECTS ON THE EXTRACTION OF … PHYSICAL REVIEW D 90, 054508 (2014)

054508-11



Finally, we can evaluate these finite volume corrections by
explicitly taking derivatives of the result determined from
chiral perturbation theory, Eq. (59).
To expedite computation of the derivatives, we notice the

property of the energy denominator appearing in the finite
volume mode sum and momentum integral,

½~kþ x~p0 þ ð1 − xÞ~p�2 þm2 þ xð1 − xÞq2

¼ ~k2 þ 2~k · ½x~p0 þ ð1 − xÞ~p� þm2 þ fð~p02; ~p2Þ; ð69Þ

where fð~0; ~0Þ ¼ 0. Because of the vanishing of
∂fð~p02; ~p2Þ=∂pjjpj¼0, and similarly for the derivative with
respect to the final-state momentum, p0

j, we can effectively
replace fð~p02; ~p2Þ → 0when taking momentum derivatives
and evaluating at zero momentum. The finite volume
correction to the charge radius determined at zero momen-
tum is given by

Δr2 ¼ 1

2f2
½I 3

2
ðmÞ −m2I 5

2
ðmÞ�; ð70Þ

while the finite volume corrections to the two higher
moments take the form

Δr4 ¼ 21

2f2
½I 5

2
ðmÞ − 2m2I 7

2
ðmÞ þm4I 9

2
ðmÞ�; ð71Þ

Δr6 ¼ 4455

4f2
½I 7

2
ðmÞ − 3m2I 9

2
ðmÞ

þ 3m4I 11
2
ðmÞ −m6I 13

2
ðmÞ�: ð72Þ

To assess the finite volume effect on the radius, we will
compare to the physical pion charge radius, hr2πi ¼
ð0.67 fmÞ2 [35]. For the higher moments, we will use
the corresponding infinite volume result determined from
chiral perturbation theory at one-loop order. Using
the dimensionally regulated form of the infinite volume
integral in Eq. (59), we can write the form factor as

Fðq2Þ ¼ 1þ ð4πμ2Þϵ
8π2f2

Z
1

0

dx
Z

∞

0

ds
s2−ϵ

e−sm
2

× ½e−sxð1−xÞq2 − 1�: ð73Þ
Carrying out subtraction of the ϵ-pole in the MS scheme,
we can identify the charge radius

hr2i ¼ 1

8π2f2

�
− log

m2

μ2
þ cðμÞ

�
; ð74Þ

where cðμÞ is the coefficient of a local operator from the
next-to-leading-order chiral Lagrangian. This result is in
agreement with Ref. [36]. Carrying out the momentum
expansion further, and using the definition of the higher
moments of the charge distribution in Eq. (15), we arrive at

hr2ni ¼ n!ðn − 2Þ!ð2n − 1Þ!!
8π2f2ðm2Þn−1 ; ð75Þ

for all n > 1. Using this one-loop result from chiral
perturbation theory gives us the values hr4i ¼
ð0.77 fmÞ4 and hr6i ¼ ð1.4 fmÞ6.
The finite volume effect on moments of the pion’s charge

distribution is shown in Fig. 5. For the first three nontrivial
moments, n ¼ 1–3, we plot the finite volume effect
normalized by the corresponding infinite volume value,
Δr2n=hr2ni, as a function of the size of the lattice with mπ

fixed to its physical value. A clear trend toward larger
volume effects as a function of n is shown. This lines up
with physical intuition. In the conventional evaluation of
the current matrix element, greater momentum resolution is
required to determine the higher moments. Such resolution
requires prohibitively large volumes. In the method at zero
momentum, this difficulty is mirrored by the rather com-
plicated form of the modified correlation functions that

FIG. 5 (color online). Finite volume effect on moments of the
pion’s charge distribution determined at zero momentum. The
relative differences Δr2=hr2i, Δr4=hr4i, and Δr6=hr6i are plotted
as a function of the lattice size, L, and pion mass,mπ . The infinite
volume value of the charge radius is taken from experiment, while
values of the two higher moments are the one-loop predictions
from chiral perturbation theory. In the first plot, the pion mass is
fixed to its physical value, while in the second plot, the lattice size
is fixed to 5.0 fm
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must be computed. Because of the momentum differentia-
tion, furthermore, the finite volume effects are considerably
enhanced over those for the current matrix element. For
comparison, the asymptotic behavior of the finite volume
correction to the current matrix element has the form

ΔM4 ∼m1=2
π L−3=2e−mπL; ð76Þ

while the finite volume effects on charge distribution
moments have the asymptotic behavior

Δr2 ∼m1=2
π L1=2e−mπL;

Δr4 ∼m1=2
π L5=2e−mπL;

Δr6 ∼m1=2
π L9=2e−mπL: ð77Þ

Despite such enhancement of finite volume effects, the
overall scaling remains exponential. Fortunately it appears
that the determination of the charge radius at zeromomentum
is considerably insensitive to the volume. In the figure, we
also investigate the finite volume effects at a fixed lattice size
as a function of the pionmass. As the pionmass increases, the
infinite volume values of the higher moments rapidly fall off
and there is a competition between power-law and expo-
nential dependence on the pionmass in the ratios plotted. For
values of the pion mass around twice the physical value, the
finite volume effects on all three moments of the charge
distribution are predicted to be quite small.

V. SUMMARY

Above we investigate the novel method proposed by
Ref. [16] to overcome large extrapolations to zero momen-
tum. Our particular concern is with the extension of the
method to the case of radii and the assessment of corre-
sponding finite volume effects. For moments of the pion’s
charge distribution, we find that the modified correlation
functions given in Eqs. (31)–(33) cleanly isolate the desired
quantities at vanishing momentum. These correlation
functions require taking momentum derivatives with
respect to initial- and final-state quarks. To address finite
volume effects, we must understand how to arrive at the
modified correlation functions on a torus. The zero-
momentum method can be derived on a finite lattice of
fixed size by treating the active quarks as subject to twisted
boundary conditions. Because the twist angles are con-
tinuous parameters, a Taylor series expansion can be
performed about vanishing twist. The coefficients of the
Taylor series expansion correspond to modified correlation
functions, and these are to be determined using lattice QCD
calculations, as proposed by Ref. [16]. Such calculations
require only periodic quark fields and are evaluated at zero
momentum. Finite volume corrections can correspondingly
be derived by formulating chiral perturbation theory for
twisted active quarks. In this work, an expression for the
finite volume effect on the temporal component of the pion

current matrix element in an arbitrary frame using an
extended SUð5j3Þ flavor group is derived. Differentiation
and evaluation of this expression at vanishing twist angles
leads to the finite volume effect on the extraction of the
charge radius (and two higher moments) at zero momen-
tum. Our expectation from chiral perturbation theory is that
the volume corrections to determining the charge radius at
zero momentum will be quite small.
Straightforward generalization of the method will allow

one to investigate moments of the electric andmagnetic form
factors of the nucleon, for example. Because of the extra
spectator quark, chiral perturbation theory computations for
the nucleon will require the flavor group to be extended to
SUð6j4Þ, as was pursued for Breit-frame computations in
Ref. [31]. Because the magnetic form factor arises from the
spatial component of the electromagnetic current, one
generally expects larger volume corrections to magnetic
observables. As the magnetic form factor drops out of the
current matrix element at vanishing momentum transfer, an
additional momentum derivative will be required over the
electric case. This extra differentiation will lead to further
enhancement of the finite volume effects on magnetic
quantities. It would be advantageous to assess these volume
effects using chiral perturbation theory. In general, care must
be taken in the zero-momentum method to avoid power-
divergent contributions in the continuum limit; however, the
approach advocated here avoids these contributions, as well
as removes power-law Euclidean time dependence from the
Taylor coefficients. Finally we remark that we have been
unable to find a generalization of the method for the case of
disconnected current insertions. In such cases, both quarks
and gluons are momentum carriers, and this feature ulti-
mately seems to require a different approach.
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APPENDIX: DERIVATIVES OF MODE SUMS

For completeness, we detail how to take momentum
derivatives of mode sums without introducing spurious
infinite volume contributions. Consider the basic finite
volume function Iβð~p;mÞ defined in Eq. (60). Its Taylor
series expansion has the form

Iβð~p;mÞ ¼ IβðmÞ þ 1

2
~p2I ð2Þ

β ðmÞ þ � � � : ðA1Þ

Using the expression for Iβð~p;mÞ after Poisson summa-
tion, namely that given in Eq. (61), we arrive at the second
Taylor coefficient,
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I ð2Þ
β ðmÞ ¼ L2

4ð4πÞ32ΓðβÞ

Z
∞

0

dssβ−
5
2e−sm

2

× ϑ003

�
0; e−

L2
4s

�
ϑ3

�
0; e−

L2
4s

�
2

; ðA2Þ

which vanishes in infinite volume.
At this point, it is useful to recall the definition of the

Jacobi elliptic-theta function

ϑ3ðz; qÞ ¼
X∞
ν¼−∞

cosð2νzÞqν2 ; ðA3Þ

and, as customary, primes denote derivatives with respect to
the first argument, for example ϑ03ðz; qÞ ¼ ∂ϑ3ðz; qÞ=∂z.
The elliptic-theta functions satisfy a diffusion equation,

�
4
∂
∂η −

∂2

∂z2
�
ϑ3ðz; e−ηÞ ¼ 0: ðA4Þ

Consequently, we have the relation

ϑ003

�
0; e−

L2
4s

�
ϑ3

�
0; e−

L2
4s

�
2

¼ −
16s2

3L2

d
ds

�
ϑ3

�
0; e−

L2
4s

�
3

− 1

�
: ðA5Þ

The arbitrary s-independent constant was added in order to
avoid a surface term below. Returning to the expression for
the second Taylor coefficient and performing an integration
by parts, we see that

I ð2Þ
β ðmÞ ¼ 4βðβ þ 1Þ

3ð4πÞ32Γðβ þ 2Þ

Z
∞

0

dssβ−
1
2e−sm

2

×
�
β − 1

2

s
−m2

��
ϑ3

�
0; e−

L2
4s

�
3

− 1

�
: ðA6Þ

Comparing with Eq. (61) allows us to identify

I ð2Þ
β ðmÞ ¼ 4

3
βðβ þ 1Þ

�
β − 1

2

β þ 1
Iβþ1ðmÞ −m2Iβþ2ðmÞ

�
;

ðA7Þ

which is precisely the Taylor series coefficient that we find
from directly differentiating Eq. (60) provided that the
momentum ~p remains in the subtracted infinite volume
integral. If this momentum is translated away, coefficients
in the Taylor series expansion about zero momentum will
no longer vanish in infinite volume.
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