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We present a lattice QCD calculation of the polarizability of the neutron and other neutral hadrons that
includes the effects of the background field on the sea quarks. This is done by perturbatively reweighting
the charges of the sea quarks to couple them to the background field. The main challenge in such a
calculation is stochastic estimation of the weight factors, and we discuss the difficulties in this estimation.
Here we use an extremely aggressive dilution scheme to reduce the stochastic noise to a manageable level.
The pion mass in our calculation is 300 MeV and the lattice size is 3 fm. For the neutron, we find that
αE ¼ 2.70ð55Þ × 10−4 fm3, which is the most precise lattice QCD determination of the polarizability to
date that includes sea effects.
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I. INTRODUCTION

At leading order, the interaction of hadrons with a
background electromagnetic field can be parametrized with
a variety of electromagnetic polarizabilities which charac-
terize the deformation of the hadron by the field. Of these,
the electric polarizability α describes the induced dipole by
an external static, uniform electric field. It is defined as the
ratio of the electric field and the induced dipole moment:
d ¼ αE. Since this deformation is a direct consequence of
the composite nature of the hadrons, it is a necessary
component of any overall understanding of hadronic
structure.
Measuring the electric polarizabilities of hadrons is

challenging. Few hadron polarizabilities have been deter-
mined, but there are a number of experiments that plan to
measure these quantities for various hadrons in the near
future. On the theory side, lattice QCD can be used to
determine these parameters as predicted by quark-gluon
dynamics. These are challenging calculations, and to
establish the methodology it is useful to first focus on
electrically neutral hadrons, which are not accelerated by
the electric field. Since the hadrons are at rest, it is easier to
detect the effect of electric polarizability. In this paper we
focus on the neutron but we will also present results for the
neutral kaon and neutral pion.
Neutron electric polarizability is difficult to measure

experimentally due to the unavailability of free neutron
targets. It has been measured in the laboratory by scattering
neutron beams on lead [1] and off of deuterons [2]; the
results, respectively, were 12.0ð1.5Þð2.0Þ × 10−4 fm3 and

12.5ð1.8Þ
�þ1.1

−0.6
�
× 10−4 fm3:

A lattice calculation of the neutron electric polarizability
is desirable for at least three reasons. First, the experimental
uncertainties in these quantities are still over 10%, and it

may be the case that eventually the lattice may prove
superior to experiment in attaining a precision measure-
ment of this quantity. Second, if lattice QCD is to be
considered a successful approach to simulating the hadro-
nization of quarks and their properties, then the measure-
ment of such a fundamental property of the neutron is
something of a basic test. Finally, the flexibility of lattice
calculations (the freedom to use nonphysical parameters)
may provide some insight into the origins of the neutron
polarizability.
The first lattice study of the neutron polarizability

was done in 1989 [3], on a 103 × 20 quenched lattice with
a≃ 0.11 fm using unimproved staggered fermions; this
study, along with a subsequent early study using both
Wilson and clover fermions on a quenched sea [4], showed
good agreement with the experimental value. More
recently, improved calculations have produced values that
are substantially smaller [5–10], suggesting that the early
agreement with experiment was coincidental. The early
lattice calculations suffered from a number of problems.
The most worrying of these was an overall error in the sign
of the polarizability coming from the rotation to Euclidean
time. Many of these early calculations also used a linear-
ized phase factor, which fails to capture even all perturba-
tively relevant interactions (since the polarizability involves
a quadratic effect) [6].
It is well understood that neutron polarizability com-

puted from lattice QCD is smaller than the physical value
because the quark mass used is heavier than the physical
one. Chiral perturbation theory (χPT) predicts that the
polarizability of the neutron diverges in the chiral limit. In
fact χPT calculations can be used to predict the value of the
polarizability for unphysical quark masses [11–13]. The
most precise lattice QCD calculation for the neutron
polarizability finds a value that is still significantly different
from the χPT predictions [14]. The difference is most likely
due to a combination of finite-volume effects and a
systematic correction due to the electric charge of the

PHYSICAL REVIEW D 90, 054507 (2014)

1550-7998=2014=90(5)=054507(14) 054507-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.054507
http://dx.doi.org/10.1103/PhysRevD.90.054507
http://dx.doi.org/10.1103/PhysRevD.90.054507
http://dx.doi.org/10.1103/PhysRevD.90.054507


sea quarks. In this paper we present a method for removing
the latter systematic error and use it to compute the correct
value of the polarizability on one of the ensembles used in
our previous study [14].
Since lattice QCD is best able to measure spectroscopic

information about hadronic states, we compute the
polarizability through the induced interaction energy
δE ¼ − 1

2
αE2. This is achieved using the background field

method, where the energy shift is computed by comparing
the mass of the hadrons in the presence of a static electric
field with the one determined when the field is absent. To
include the effects of the charged sea, one could generate
two dynamical ensembles, one with a background field and
one without, and measure the mass shift. However, for the
valence-only calculation these two masses, measured on
the same Monte Carlo ensemble and differing only by the
effects of a perturbatively small background field, are
highly correlated. Thus, the error on the mass shift is
much less than the error on each mass individually.
For instance, in the valence-only calculation on the
ensemble used here, the mass shift for the neutron is
aΔm ¼ 6.28ð57Þ × 10−7, while the neutron mass itself is
am ¼ 0.694ð4Þ, with an error 4 orders of magnitude larger
than the mass shift. Only the strong correlations between
the correlators with and without the background field allow
us to extract this mass shift with an error 105 times smaller
than the error on the masses themselves. Generating two
separate ensembles would destroy this correlation and
greatly inflate the statistical error. What is needed is a
way to obtain ensembles generated with different dynami-
cal properties which are correlated; reweighting provides
such a technique.
The plan of the paper is the following. In Sec. II we will

review briefly the steps relevant for the valence calculation.
In Sec. III we discuss the perturbative reweighting strategy
we use to couple the sea quarks to the background field.
In Sec. IV the stochastic estimators used to compute the
derivatives of the reweighting factors are discussed in
detail. The results are presented in Sec. V.

II. VALENCE CALCULATION

A. Simulation parameters

In this study we will use one of the ensembles from a
previous study [14], labeled EN1 in that paper. The
configurations in this ensemble were generated using
Nf ¼ 2 flavors of nHYP-smeared Wilson-clover fermions
[15]. The ensemble contains 300 lattice configurations of
size 243 × 48. The lattice spacing of 0.1245(16) fm was
determined by a fit to the static quark potential to determine
the Sommer scale r0=a [16] using a value of r0 ¼ 0.5 fm.
The sea quarks have κ ¼ 0.1282, corresponding to
mπ ¼ 306ð1Þ MeV; we use the same κ value for the valence
light quarks as well. The valence strange quark for the kaon
correlators has κs ¼ 0.1266. The gauge configuration

generation was performed with periodic boundary con-
ditions; Dirichlet boundary conditions have been applied
for the valence quarks in the direction of the electric field
and the time direction. We use an optimized multi-GPU
Dslash operator [17] along with an even-odd precondi-
tioned BiCGstab inverter [18] to do the analysis described
here.
While we do not attempt a continuum extrapolation, we

expect the discretization errors to be substantially smaller
than the statistical errors here. In particular, in Ref. [19] the
authors conducted a continuum extrapolation for the
nucleon mass using HEX-smeared clover fermions, quite
similar to the action used here. They found a 3% upper
bound on the neutron mass shift from a ¼ 0.125 fm to the
continuum. We may expect the lattice spacing dependence
of the polarizability to be similar, and thus do not expect
discretization effects to be large in the present calculation.

B. The background field method

Since the ground-state energy of the neutron is shifted by
an amount δM ¼ − 1

2
αE2 in an external electric field,

spectroscopic measurements on the lattice can provide a
direct avenue to access the polarizability. We use the
notation δM rather than δE to emphasize that, since we
use Dirichlet boundary conditions, we do not measure the
actual neutron mass since we have no zero-momentum
state. The approach is straightforward: we measure the
neutron energy with the background field and without it,
then compute δE, which is then converted to δM to
compute α.
We introduce the electric field by adding a U(1) phase

factor on top of the SU(3) gauge links that corresponds to a
uniform background field; this may be done in any
convenient choice of gauge. In practice, there are several
complications which must be taken into account when
applying this method to the lattice. The simplest is the fact
that in Euclidean time, applying phase factors of the form
eiθ corresponds to an imaginary electric field; to get a real
electric field, one must use an imaginary θ, giving real
exponential factors on the links. However, an imaginary
electric field presents no real problems; this gives a positive
δE as expected, and has little effect on the final result [6].
We also must address the lattice boundary conditions.

With periodic boundary conditions, the phase factor cor-
responding to an arbitrary electric field will have a
discontinuity at the lattice edge, giving a nonphysical spike
in the electric field there. While we can choose values of E
in conjunction with the lattice size and gauge such that the
discontinuity is made to vanish, the size of E required to do
this is so large that one is no longer probing only the
lowest-order effects proportional to E2 for which the
polarizability is defined. Moreover, even if the disconti-
nuity in the U(1) phase is addressed, the electric scalar
potential will not be single valued, possibly inducing quark
lines or charged pions to wind repeatedly around the lattice.
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It is not clear what the effects of this, or of discontinuities in
the U(1) phase, will be.
Thus, we choose to use Dirichlet boundary conditions in

time and in the direction of the electric field, which we
choose as the x̂ direction. While this means that we have no
true zero-momentum state, this can be treated as an addi-
tional finite-size effect whose effect can be partially
compensated for and which will in any case go away in
the infinite-volume limit.
We parametrize the electric field with the dimensionless

parameter

η≡ a2qE; ð1Þ

noting that η depends both on the quark flavor and E, and
choose a gauge for the electric field such that

U4 → U4eiηx=a: ð2Þ
ηd must be chosen small enough that it probes only the
lowest-order (quadratic) effects which correspond to the
electric polarizability and avoids large OðE4Þ effects. Since
there are two sea quarks, we use a different η for up- and
down-quark propagators, and quote ηd as a measure of the
field strength. However, choosing a value which is too
small means that we may encounter issues with numerical
precision, either with the accuracy of inverters or (in the
extreme case) machine precision.
Figure 1 shows the response of the neutral pion corre-

lator, Gπ , to the background field as a function of ηd for a
few different correlator times on one configuration. The
breakdown of quadratic scaling as η becomes large is clear.
Note that Gπðt; ηÞ is symmetrized with respect to η, so that
only even powers of η contribute to this correlator. This

symmetrization is only valid when the sea quarks are not
charged. In this study we used ηd ¼ 10−4, and the valence
correlators on this ensemble were run at this value. Figure 1
shows that this value is well within the quadratic scaling
region, at least for the valence contribution.

C. Extracting the energy shift

To determine the energy shift caused by the external
electric field, we compute hadron correlators Gðt; ExÞ for
positive, zero, and negative values of Ex. This requires the
computation of five quark-line propagators: one at η ¼ 0,
used for both up and down quarks in the case of Ex ¼ 0,
two at η ¼ � 1

3
a2Ex for the down quark, and two at

η ¼ ∓ 2
3
a2Ex for the up quark.

The energy shift caused by the external electric field is
quite small, smaller than the stochastic error in the hadron
energy itself. Thus, in order to resolve it, we must take into
account the fact that the correlators measured with and
without the electric field are strongly correlated, and only
become more strongly correlated as the strength of the
electric field is decreased. We cannot simply, then, do
independent correlator fits to the three correlators. Just as
an ordinary correlator fit must take into account the
correlations between GðtÞ at different t by computing
the covariance between them, we must construct a covari-
ance matrix which includes the mixed covariance between
zero-field and nonzero-field correlators. This is simply an
extension of the standard fitting procedure using the
covariance between all pairs of observables.
We then fit all the data at once, using the fit form

hGðt; ηÞiη ¼ ðAþ ΔAÞe−ðEþΔEÞt; ð3Þ

to extract E and the parameterΔE which is related to α. For
details on determining the polarizability from the energy
shift, see Ref. [14].
For small values of Ex, the covariance matrix is quite

poorly conditioned due to the extremely strong correla-
tions. We have observed that in this case both the
minimization of χ2 and the inversion of the covariance
matrix must be done in extended precision to get consistent
fit results. For ηd ¼ 10−4, we find that the C LONG DOUBLE

type offers sufficient precision.

III. REWEIGHTING

A. General remarks

As mentioned previously, the simplest way to incorpo-
rate the effect of the electric field on the sea quarks would
be to include its effects in gauge generation where the sea
dynamics are simulated. However, generating a separate
Monte Carlo ensemble to compute the correlator in the
presence of a background field would ruin the correlations
which are necessary to achieve a small overall error. Thus,
we turn to reweighting as a method of creating two

FIG. 1 (color online). Dependence of ðlog Gπðt;ηÞ
Gπðt;0ÞÞ=ðtη2Þ for the

neutral pion on a 243 × 48 lattice, as a function of η for different
correlator times. This quantity is roughly equivalent to the shift in
the effective mass at the chosen correlator time divided by η2, and
should be constant in the range where η creates a purely quadratic
effect. As this was only computed on a single configuration there
are no error bars; we emphasize that these data are only useful for
determining the perturbative regime of η.
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ensembles which have different sea-quark actions yet are
correlated. A similar approach has been used before to
compute the strangeness of the nucleon using the Feynman-
Hellman theorem [20], which requires a measurement
of ∂MN∂ms

.
Reweighting involves a simple modification of

Monte Carlo sampling. Normally, the configurations are
sampled using a probability proportional to e−S. Then a
Monte Carlo estimate for the expectation value of the
correlator GðtÞ would be

hGðtÞi0 ≡
R
DUGðtÞe−S0R
DUe−S0

≈
1

Nconfs

XNconfs

i¼1

GðtÞi: ð4Þ

If we instead want to simulate the physics of a different
action Sη (in our case, with the background electric field)
but have access to Monte Carlo configurations using the
action S0, we can simply modify the Monte Carlo estimate
to correct for the additional portion of the factor e−S:

hGðt; ηÞiη ¼
hGðt; ηÞe−ðSη−S0Þi0

he−ðSη−S0Þi0
≈
P

iGðt; ηÞiwiP
iwi

; ð5Þ

where h·i0 indicates the average with respect to e−S0 and
wi ≡ e−ðSη−S0Þ is the reweighting factor associated with
configuration i.
The contribution to the weight factor from the fermion

sector, using the standard prescription where the fermions
are integrated out, can be written as a ratio of fermion
determinants:

wi ¼
detMEðUiÞ
detM0ðUiÞ

: ð6Þ

We want to include the effect of the electric field on both
flavors of sea quarks; this can be done by simply computing
weight factors at two values of η (corresponding to the
up- and down-quark charges) and multiplying them.
There are two well-known problems associated with

reweighting. The first is that if the overlap between the
target and simulated ensemble is poor, the weight factor
fluctuates too strongly and the reweighted ensemble will
wind up being dominated by just a few configurations,
leading to a lack of statistical power. The second is that the
determinant ratio must be estimated stochastically. The
good news is that since the average over stochastic noises
commutes with the gauge average, any unbiased estimator
for the weight factor will also produce an unbiased estimate
for operators computed on the reweighted ensemble [21],
even if it is quite noisy.
When the reweighting factors are close to one, the

overlap is good and for most estimators the stochastic
noise is also reduced. Since we can get the reweighting
factors arbitrarily close to one by decreasing the value of η,

none of the issues mentioned above create problems for our
calculation. On the other hand, this does not mean that our
calculation gets more precise as η → 0. This is because the
signal we try to measure is encoded in the correlation
between the weight factor and the ones in the hadronic
correlator. As η is decreased both signal and error decrease
in concert, leading to a constant relative error.

B. Perturbative reweighting

As we will see, the most difficult part of performing the
reweighting calculation for the electric field is the estima-
tion of the weight factors, as the stochastic estimators for
the weight factor in our case are substantially more noisy
than in the traditional mass reweighting.
Stochastic estimators for determinant ratios have been

used in many studies, more recently as a technique to fine-
tune the quark mass in dynamical simulations via reweight-
ing [20–22]. We attempted at first to use a similar method to
estimate the weight factors. However, even for large
numbers of stochastic noises, we were unable to resolve
even the difference of the weight factors from unity on a
production-sized lattice [23].
In this study we use an alternative to the standard

stochastic estimator, a perturbative technique for estimating
the weight factor. Since we are interested only in perturba-
tively small E, we can expand the one-flavor weight factor
wq about η ¼ 0:

wqðηÞ ¼ 1þ η
∂wq

∂η
����
η¼0

þ 1

2
η2
∂2wq

∂η2
����
η¼0

þOðη3Þ: ð7Þ

To obtain the two-flavor weight factor w at some particular
value of E corresponding to ηd for the down quark and
−2ηd for the up quark, we simply multiply, keeping terms
only up to η2:

wðηdÞ ¼ wdwu ¼ wqðηdÞwqð−2ηdÞ

¼ 1 − ηd
∂wq

∂η þ η2d

�
5

2

∂2wq

∂η2 − 2

�∂wq

∂η
�

2
�
: ð8Þ

The derivatives are computed for ηd ¼ 0. To simplify
notation, we will denote the derivatives with respect to η
around 0 as w0

q and w00
q. Given estimates of these deriva-

tives, we can evaluate the above at any sufficiently small ηd
to produce a reweighted ensemble on which to apply the
valence calculation. This is a semiperturbative calculation,
since the sea effects are introduced perturbatively via the
perturbative estimates of the weight factors, but these
weight factors are evaluated at finite ηd and used as inputs
to the valence calculation. This differs from the full-
perturbative method introduced by Engelhardt [5,24] in
that the hadron correlators are computed nonperturbatively,
for a small value of η.
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This allows one list of weight factors to be applied to a
variety of hadrons, which would not be possible in a fully
perturbative calculation. Since the determination of the
weight factors requires the majority of the computational
effort, the numerical effort is greatly reduced when
computing the polarizability for a set of hadrons.
Note that we did not include a contribution from the

strange quarks in the perturbative expansion. In part this is
because the strange sea quarks were not included in the
measure used to generate our gauge configurations.
Additionally, to include the correction due to the electric
charge of the sea strange quarks requires evaluating
the derivatives w0

s and w00
s for a different quark mass,

significantly increasing the numerical effort, while their
contribution is expected to be extremely small.
While we are looking only for quadratic effects and

expect no shift in the neutron mass proportional to ηd (due
to reflection symmetry), these can arise in two ways: either
by the sole effect of the quadratic term in the weight factor,
or by a correlation between the first-order term in the
weight factor with a similar linear effect in the neutron
correlator. The latter occurs because reflection symmetry is
not preserved configuration by configuration, but only in
the gauge average. We expect that the gauge average of w0

q
is zero, but on individual configurations it will be nonzero.
To evaluate the derivatives we can use Grassman integral

techniques and we get

w0
q ¼

∂
∂η

detMη

detM0

¼ TrðM0M−1
0 Þ; ð9Þ

and

w00
q ¼

∂2

∂η2
detMη

detM0

¼ TrðM00M−1
0 Þ þ ðTrM0M−1

0 Þ2 − TrðM0M−1
0 Þ2; ð10Þ

where M0 and M″ are the derivatives with respect to η at
η ¼ 0 of the one-flavor fermionic matrix M.
The chief advantage of perturbative reweighting over

conventional reweighting is that computation of the weight
factor coefficients requires the evaluation of traces rather
than determinants. While these traces must still be evalu-
ated stochastically, and naive stochastic estimators of them
are still quite noisy, there are many improvement tech-
niques available for reducing the stochastic noise in trace
estimates; here we make use of dilution. The ability to
evaluate Eq. (8) at any desired η after the fact is an auxiliary
advantage.
Once the derivatives are computed, we can use them to

determine the values of η that are in the small-field region.
Since we do a perturbative expansion, we want to make
sure that the higher-order terms are not important. It may
seem that given that we only keep the terms of interest, we
can set η to any value; the higher-order terms are not

present. On the other hand, the reweighting is successful
only when hwi is close to one. If we choose values of η that
are too large, the individual reweighting factors could even
go negative. In fact, we can choose η such that
h1þ w0ηþ w00η2=2i ¼ 0. It is unclear that the results of
the reweighting are meaningful in this case. To set bounds
on the η value we used as a guiding principle the require-
ment that the Taylor expansion of wðηÞ is a good
approximation.
For the Taylor expansion to be successful, we expect that

the successive terms in the expansion are subdominant. We
ask then that η be such that 1 ≫ w0η ≫ w00η2=2. In Fig. 2
we show both the mean hwi and standard deviation σw for
our ensemble as a function of η when using the first- and
second-order approximations for w. The mean hwi when
including only the first-order term is close to one for all
values of η since hw0i ≈ 0, as demanded by symmetries.
Note that the mean when including the quadratic term in the
approximation deviates quickly from one as we increase η.
This is due to the large value of hw00i. In fact, a large
constant hw00i is not important since it cancels out in the
reweighting ratio from Eq. (5). The fluctuations of w about
the mean are important and that is why we plot σw as a
function of η. Note that the standard deviation is dominated
by the first-order term for values of η much larger than the
ones where the mean deviates from one. In any case,
the value of η ¼ 10−4 used in this study is well inside the
region where the Taylor expansion is working well.

IV. STOCHASTIC ESTIMATIONS OF THE
WEIGHT FACTOR

The traces that appear in the expressions for the
determinant derivatives, Eqs. (9) and (10), can be evaluated
stochastically in the standard way, that is

TrO ¼ hξ†Oξiξ; ð11Þ

first order

second order

10 6 10 5 10 4 10 3 10 2
0.0

0.2

0.4

0.6

0.8

1.0

w

first order

second order

10 6 10 5 10 4 10 3 10 2

0.0

0.1

0.2

0.3

0.4

0.5

w

FIG. 2. Dependence of the mean and standard deviation of the
reweighting factor as a function of η for the 243 × 48 ensemble
used in this study. The estimator is computed using Eq. (8). The
solid lines include the quadratic effects in η, whereas the dotted
lines include only the linear term. Vertical lines indicate the η
value we used.
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where ξ are Z(4) noise vectors. We note that only three
estimators are required—TrM0M−1

0 , TrM00M−1
0 , and

TrðM0M−1
0 Þ2—since an estimator for ½TrðM0M−1

0 Þ�2 can
be constructed from two uncorrelated values of the
estimator for the first-order term TrðM0M−1

0 Þ. As
½TrðM0M−1

0 Þ�2 is both computed separately and subdomi-
nant, we refer to the combination of the two second-order
terms that must be explicitly estimated, TrðM00M−1

0 Þ−
TrðM0M−1

0 M0M−1
0 Þ, as ~w00

q. Note that there is no bias
introduced by using the same stochastic noise vector for
the w0

q and ~w00
q, since the ultimate computation of the weight

factor involves only linear combinations of these estimates;
any correlations in the stochastic fluctuations will not cause
the final result to be biased. This reduces the number of
inversions required per noise vector to two.
Standard stochastic estimators of these traces are,

unfortunately, very noisy. For example, on a 44 lattice
we need 5 × 106 noise vectors to obtain a signal-to-noise
ratio greater than one for the first derivative. In Fig. 3 we
compare the stochastic result with the exact result com-
puted via direct evaluation [25]. We see an agreement
between wqðηÞ and the stochastic estimator for w0

q, with the
onset of quadratic behavior visible as η is increased.

A. Estimator quality

Since the limiting factor for this calculation is the
stochastic estimation of the weight factors, it is useful to
understand how far we need to reduce the variance in the
stochastic estimator. Whether using perturbative or non-
perturbative reweighting, it is the variation of the weight
factor between gauge configurations that carries the infor-
mation, and it is this fluctuation that we seek to extract
using a stochastic estimator. Thus the gauge variance
between configurations in the weight factor amounts to a
signal, while the stochastic variance gives the noise in that
signal. This immediately suggests a criterion for judging

the quality of any given stochastic estimation scheme: the
stochastic signal-to-noise ratio

wSNR ≡ σgauge
σnoise

: ð12Þ

Ideally we would like this SNR to be as large as possible. A
SNR substantially less than unity means that the stochastic
estimator scheme used is insufficient to extract whatever
physics differences exist between the original and reweight-
ing ensembles. In our case, this may be because the actual
difference is small, or because the estimator is too noisy;
the only way to distinguish these cases is to carry the
calculation to its conclusion and see how much reweighting
increases the overall error bar.
There are two difficulties which make this SNR a

guideline, rather than a quantitative measurement:
(1) Determining the gauge variance is difficult, since it

requires knowledge of the true weight factors, the
same quantities whose estimation we are concerned
with.

(2) When using a highly diluted estimator (which we
will choose to use in the end), the determination of
the stochastic variance requires the computation of
multiple stochastic estimates. This may involve a
substantial amount of computer power.

We will return to these issues later in the discussion of
specific estimators in Sec. IV B.

B. Mapping the stochastic noise

It can be shown readily that the variance of the stochastic
estimator TrO ¼ hξ†Oξi is

hðξ†OξÞ2i − hξ†Oξi2 ¼
X
i≠j

jOijj2; ð13Þ

the sum of the squares of the off-diagonal elements of O.
Understanding which of these elements dominate is useful
for designing improvements to the stochastic estimator. As
we cannot even afford to compute all of the diagonal
elements (to get an exact value for TrO), we certainly
cannot compute all of the Oij’s. However, we can examine
a representative set to see which are dominant. On a single
configuration from our 243 × 48 ensemble, we have com-
puted all Oij for a set of sources j

S ¼ fjjjx;y;z ∈ f8; 16g; jt ∈ f16; 24; 32gg: ð14Þ

Since we compute all spin-color combinations, the number
of sources is jSj ¼ 12 × 24 ¼ 288. We kept the informa-
tion only for sinks i such that the vector between i and j has
no components larger than 12 (after accounting for periodic
boundary conditions in the y and z directions). The number
of data points is very large and to produce a more
manageable set we bin the points in equivalence classes.

FIG. 3 (color online). Exact values for ½wðηÞ − 1�=η on a 44

lattice, compared with the value predicted by the stochastic
estimator for w0 and its error band. The black circles are derived
from the exact values of the determinant ratio at different η; the
solid red line shows the central value of the stochastic estimator,
and the dashed red lines the stochastic error bands.
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For the purpose of this illustration, we assume that all
source positions are equivalent, so we average together the
squares of all matrix elements corresponding to different
source points. We notice no significant effects on matrix
elements whose sinks are near the Dirichlet boundary, so
we bin together the points where the separation vector
between i and j is related by a reflection in any direction or
a rotation in the ðy; zÞ plane. We also bin together the points
that have the same starting and ending color indices and
separately the ones that have different color indices. We
treat the directions x and t separately due to the effects of
the electric field and collect each of the 16 spinor
combinations in a separate bin. All these data points are
used to create Fig. 4 and to predict the error of the
stochastic estimators for different dilution schemes.
The relative size of the off-diagonal elements as a

function of the Euclidean separation between i and j is
shown in Fig. 4 for both M0M−1

0 , the first-order term, and
M00M−1

0 − ðM0M−1
0 Þ2, the second-order term. We note that

the magnitude of jOijj2 decreases as i and j are further
apart, as expected. The short-range behavior is the source of
our problem. The trace estimator we use works well for
diagonally dominated matrices, where the largest elements
of the matrix lie along the diagonal, and decay quickly as
we go away from it. Unfortunately, for our matrices the
dominant elements are not on the diagonal, as can be easily
seen from Fig. 4. Even among the elements at Euclidean
separation 0, those off-diagonal elementsOij where i and j
differ in spin and color indices are larger than the diagonal
elements. This is a simple depiction of why this stochastic
estimator is so difficult: the diagonal elements (the signal)
are small, while the near-diagonal elements contributing to
noise are much larger. The structure is not unexpected,
sinceM0 amounts to a point-split operator in the t direction.
Figure 4 suggests that the most direct route to reducing

the variance is reducing the short-range off-diagonal
elements of the operators. There are two somewhat redun-
dant techniques we can use to do this: hopping parameter
expansion improvement and dilution. Hopping parameter
expansion has the advantage that its numerical cost is

relatively modest for small orders, but it only cancels the
off-diagonal elements approximately. We explored this
technique in a previous study using an expansion up to
seventh order, the largest order we could afford [26]. We
found that the improvement was insufficient and the signal-
to-noise ratio for polarizability was smaller than one. In this
work we explore an alternative approach: dilution.

C. Dilution scheme

Dilution is a technique which, with a suitable dilution
scheme, can eliminate the noise contribution from near-
diagonal elements. It entails partitioning the lattice into N
subspaces, estimating the trace over each separately, and
adding the estimates; this is done in practice by generating
noise vectors with support only on one subspace. This
eliminates contributions to the variance from off-diagonal
elementsOij where i and j belong to different subspaces, at
the cost of requiringN evaluations ofO to generate a single
estimate. Thus there is a fundamental tradeoff involved in
dilution. The aim of any stochastic estimation procedure is
to minimize the uncertainty in the stochastic estimate for a
given computational effort, and that uncertainty, rather than
the variance of the estimator itself, should be used as the
yardstick for measuring the utility of a dilution technique.
The variance of the diluted estimator should then be

compared with the variance of an estimate based on the
average of N independent evaluations of the undiluted
estimator. The variance of this mean is smaller by a factor
of N than the variance of a single evaluation. To be more
precise, if we label the partition to which the (spin/color/
spatial) index i belongs as PðiÞ, the variance becomes

varðTrOÞ ¼
X
i≠j

jOijj2δPðiÞPðjÞ; ð15Þ

that is, the sum of only those off-diagonal elements that
connect indices belonging to the same subspace. If all N
subspaces are of equal size (which is generally the case),
then this results in a sum with only 1=N as many terms. The
ratio of uncertainties (the proper figure of merit) between
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FIG. 4. Mapping of a representative set of the off-diagonal elements ofM0M−1
0 (left) andM00M−1

0 − ðM0M−1
0 Þ2 (right). The average of

the square of the 12 diagonal elements, the ones that define the signal, is shown as a horizontal line.

SEA QUARK CONTRIBUTIONS TO THE ELECTRIC … PHYSICAL REVIEW D 90, 054507 (2014)

054507-7



an N-subspace dilution and the mean of N undiluted
estimators, is

P
i≠jjOijj2δPðiÞPðjÞ
1
N

P
i≠jjOijj2

: ð16Þ

Thus dilution will only be a success if the average of the
off-diagonal elements that survive (belong to the same
subspace) is less than the average of all of them. Choosing a
dilution strategy, then, must be done with consideration of
the form of Oij, as it is entirely possible to partition the
lattice in such a way to make the stochastic noise worse.
The most common sort of dilution is spin/color dilution,

where each noise vector has support for a single spin and
color over the entire lattice. As we can see from Fig. 5 this
dilution scheme alone does not help us; it must be used
alongside other dilution schemes in which the subspace
structure also involves spatial separation.
To construct the spatial structure for a dilution scheme

for an operator whose off-diagonal elements are expected to
decrease with increasing Euclidean distance, we want to
allocate sites among the N subspaces so as to maximize the
minimum Euclidean distance separating two sites belong to
the same subspace. We investigate two schemes: a regular
grid and the body-centered hypercubic (BCHC) scheme.
For a regular grid two points belong to the same partition

if

p1 − p2 ¼ 0 ðmod ΔÞ: ð17Þ

The four-dimensional vector Δ defines the steps of the grid
in the four spatial directions. The number of partitions,
which is proportional to the cost of the dilute estimator, is
controlled by the volume of one grid cell N ¼ Q

iΔi. When
used in conjunction with the spin-color dilution, we have

N ¼ 12
Q

iΔi. The minimum Euclidean distance between
two points on the same grid is the smallest grid step miniΔi.
In the BCHC scheme, two points belong to the same

partition if

p1 − p2 ∈ f0;Δg ðmod 2ΔÞ: ð18Þ
This can be thought of as two regular grids of steps 2Δ
displaced by vector Δ, so that the origin of the second grid
lies in the middle of the unit cell 2Δ, creating a body-
centered hypercubic pattern with unit cell 2Δ. The number
of partitions for this scheme is N ¼ 8

Q
iΔi, or N ¼

96
Q

iΔi when spin-color dilution is also used; it is half
that of a grid dilution scheme with the same nearest-
neighbor distance. The minimal distance between two
points from the same partition depends on the relative
magnitude of the components of Δ; when all components
are the same Δi ¼ b, the minimal distance is ‖Δ‖ ¼ 2b.
Note that for a regular grid we would need N twice as
large to achieve this minimal distance. We note that the
“hierarchical probing”method [27] generates, as part of the
hierarchy, both regular and BCHC grids with Δi ¼ 2n.
A disadvantage of large-N dilution strategies is the need

for a large numerical effort to compute even a single
estimate of the trace, even if that single estimate has greatly
reduced stochastic error. This makes it difficult to empiri-
cally determine the variance of a large-N dilution scheme
by repeated application, because the cost of repeating the
estimator enough times to achieve a sufficiently low error
on the variance becomes prohibitive. However, we can use
the off-diagonal element mapping data to estimate the
variance for any dilution scheme. Under the assumptions
outlined above, we estimate

varðTrOÞ ≈ 12 × V lat

N

XN
i∈V

X
j≠i

jOijj2δPðiÞPðjÞ; ð19Þ
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FIG. 5 (color online). Uncertainty estimates for different dilution schemes for the first-order term (left) and second-order term (right)
as a function of the estimator cost, given by the number of partitions in each dilution scheme. The solid (dashed) line indicates the
expected uncertainty for the estimates based on repeated use of the undiluted (spin-color-diluted) estimator. The horizontal line in the left
panel corresponds to the standard deviation of the gauge fluctuations, as estimated in the next section. The point in the bottom right
labeled by a black arrow is the BCHC-64 dilution scheme actually used in the computation.
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where V lat is the lattice volume and the positions and spin/
color of the N sources i are chosen randomly. The sum over
the sinks j extends over the entire lattice, rather than a
limited hypercube as in Fig. 4, eliminating any effects from
small points beyond the horizon on the variance.
Additionally, scattering the points over the entire lattice,
rather than confining them to a central region away from
the Dirichlet walls, correctly incorporates the finite-size
effects from the Dirichlet boundary conditions into the
estimator variance. For N large enough, the result should
quickly converge to the true variance of O. Using 300
randomly chosen lattice points and evaluating all 12 color-
spin indices at these points, we determine the standard
deviation for our estimators with percent-level error on a
few configurations. We find that the standard deviation
varies very little from configuration to configuration. The
mean value over the configurations is used for the data
in Fig. 5.
This is a useful tool to use in planning a dilution scheme.

In Fig. 5 we compare the predicted uncertainty for our
stochastic estimator using various dilution schemes. Except
for the solid line, all estimators use spin-color dilution. As
noted before, the spin-color dilution by itself (indicated by
the dashed line) is inferior to the undiluted estimator. At
first order, moderately aggressive dilution schemes essen-
tially keep pace with the decline in the estimator variance
caused by simple repetition. Dilution begins to win out
once the minimum Euclidean distance between adjacent
points in the same subspace, reflected in the increasing
cost, increases. At second order, only an extremely small
improvement is seen; this is due to the substantially slower
falloff of the off-diagonal elements seen in Fig. 4. Either a
more aggressive dilution scheme or an operator-improve-
ment technique used in tandem with dilution is needed to
see much improvement over simple repetition of the naive
estimator.
The BCHC dilution schemes should show at best a

reduction in the cost by a factor of 2 compared to grid
schemes, since they achieve the same minimum distance
with half as many partitions. The actual gain is less than
this, because a grid source has only eight nearest neighbors,
while the BCHC source has 16. Nonetheless, for both the
first- and second-order estimators, the BCHC dilution
outperforms grid dilution by a small amount.
To reduce the stochastic variance to a level comparable

with the gauge variance we need a large grid spacing. In the
left panel of Fig. 5 we see that this happens for the first-
order derivative only when Δ ¼ f6; 6; 6; 6g. This is the
dilution scheme used in the subsequent calculation. In this
scheme, the minimal Euclidean distance between two
points in the same partition is 12 and the number of
partitions is N ¼ 96

Q
iΔi ¼ 124416. Evaluating the

needed traces requires two inversions per partition per
configuration; the evaluation of them all on this ensemble
required approximately 150 000 GPU-hours.

D. Gauge variance

Off-diagonal element data allows us to determine the
expected variance for our estimators. However, it provides
no indication as to the level of gauge variance, which we
also need to know to determine whether a dilution scheme
noise is smaller that the expected signal, as discussed in
Sec. IVA. To estimate gauge variance we perform two tests:
an extrapolation from small lattices where we can compute
the operators exactly and a more computationally intensive
study where we evaluate our expensive high-quality esti-
mator (BCHC with Δ ¼ f6; 6; 6; 6g) on a couple of lattices
from our ensemble.
We discuss first the direct evaluation of our estimator on

243 × 48 lattices. For the first two lattice configurations in
our ensemble we run several evaluations of our estimator.
The results of this test are shown in Table I. We first note
that the standard deviation for the stochastic estimators is
consistent with the estimate from the previous section. For
the first-order term wq

0 ¼ TrM0M−1
0 the gauge fluctuations

are 16(8). This estimate takes into account the fact that the
gauge average is zero, by reflection symmetry, for the first-
order term. A correction factor is used to account for the
bias in the standard deviation estimator. The stochastic
fluctuations are smaller than the gauge fluctuations. This
suggests that this estimator is precise enough to follow the
gauge fluctuations.
For the second-order term, the gauge average value is

−196881ð491Þ. The standard deviation of the gauge
fluctuations is σgauge ¼ 919ð694Þ, of similar order with
the stochastic uncertainty. It is not clear whether the signal-
to-noise ratio is good enough for this estimator, especially
since our determination is also compatible with small
values for the gauge fluctuations. We will see that the
extrapolation from small volumes predicts that σgauge is on
the small side of the estimate. This suggests that the
second-order estimator is noisy. Note that the cost of this
seemingly simple study is 2.5 million inversions, about 3%
of the cost of the entire calculation.
We turn now to the extrapolation from small volumes.

We generated a set of small lattices of different geometries
and computed the first- and second-order derivatives
exactly using the compression method for Wilson fermions
[25,28]. More precisely, we computed the fermionic

TABLE I. Repeated trials of the BCHC diluted estimator for
two configurations. The standard deviation field indicates the
stochastic error, which we determined in Sec. IV C to be 9.5(6)
for the first-order estimator and 1038(76) for the second-order
one.

w0
q ~w00

q

Config Nest Mean Std-dev Mean Std-dev

2 6 −2.8ð2.7Þ 6.5(2.1) −196362ð468Þ 1147(371)
3 4 −19.9ð4.7Þ 9.4(4.0) −197399ð324Þ 648(274)
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determinant on these lattices exactly for seven different
values of the electric field parameter η and then evaluated
the derivatives numerically using a Oðη6Þ finite-difference
scheme

f0 ≈
1

η

X3
k¼−3

c0kfðkηÞ; f″ ≈
1

η2
X3
k¼−3

c00kfðkηÞ; ð20Þ

where fðηÞ ¼ log detMðηÞ. It is straightforward to relate
these derivatives to the derivatives of the reweighting
factor: w0

q ¼ f0 and ~w00
q ¼ f00. The coefficients for these

approximations are given in Table II. We use a value of
η ¼ 0.01 which is sufficiently precise.
For each lattice geometry we generated ten configura-

tions. We used the Wilson pure gauge action with β ¼ 6.0.
The lattice spacing is a=r0 ¼ 0.186 [29], which is similar to
the lattice spacing for our large configurations. For the
fermionic matrix, we used nHYP fermions with
κ ¼ 0.1267. The parameter κ was adjusted to produce a
pion mass around 300MeV to match the sea-quark mass on
the large configurations.
To make sure that we are not in the deconfined

phase, we have to keep r0=L < r0Tc ¼ 0.7498ð50Þ [30].
This means that all of our lattice dimensions ni ¼ Li=a
should satisfy ni ≥ 8. Since this is already at the upper range
of lattice volumes where we can compute the determinant
exactly, to investigate a wider range of volumes we have to
use geometries that do not satisfy this constraint. For these
lattices, we take advantage of the Dirichlet boundary
conditions in the x and t directions and cut out these lattices
from larger ones, with nx ¼ nt ¼ 12, that are in the confined
phase. The only delicate step in this process is that we have
to smear the links on the larger lattice and then cut it, so that
the boundary does not introduce discontinuities. We use
72 different lattice geometries: ny; nz ∈ f8; 10; 12g,
ðnxjntÞ ∈ f4j4; 4j6; 6j4; 4j8; 8j4; 4j10; 10j4; 6j6g.
For each ensemble we determine the gauge standard

deviation for both derivatives and mean for the second
derivative. We analyzed the dependence of each of these
three quantities as we varied the dimension of the lattice in
each direction. In most cases we found that these quantities
vary linearly with the dimension (either relatively constant
or raising linearly). The only exception is the mean of the
second-order derivative which requires quadratic terms to
describe its dependence on nx, the extent of the lattice in the
direction of the external field. Based on these observations
and taking into account the rotational symmetry in the

ðy; zÞ plane, the fit functions we use in our extrapolations
are

σw0
q
¼ αðnx þ βxÞð1þ γnyÞð1þ γnzÞðnt þ βtÞ;

h ~w00
qi ¼ αðnx þ βx þ γn2xÞnynzðnt þ βtÞ;

σ ~w00
q
¼ αðnx þ βxÞð1þ γnyÞð1þ γnzÞðnt þ βtÞ: ð21Þ

The results of the fits are presented in Table III. Using these
coefficients and their cross correlations, we estimate that
for a 243 × 48 lattice the gauge averages and standard
deviations should be

σw0
q
¼ 17ð4Þ; h ~w00

qi ¼ −212ð2Þ × 103; σ ~w00
q
¼ 164ð62Þ:

ð22Þ

We note that all these results are compatible with the values
determined via repeated evaluation of the stochastic esti-
mator on two full-size configurations. As we mentioned
earlier, the gauge standard deviation for ~w00

q is lower than the
stochastic uncertainty, indicating a noisy estimator.

V. RESULTS

A. Reweighting factors

Before we turn to the main results in this paper—hadron
polarizabilities—we present the results for the reweighting
factors, as evaluated on the full ensemble using the
estimators described in the previous section.
The resulting estimates for w0

q, ~w00
q, and ðTrM0M−1

0 Þ2 are
given in Fig. 6. We discuss here briefly the estimator for
w02
q ¼ ðTrM0M−1

0 Þ2. When more than one estimate per
configuration of the first-order term w0

q is available, such
as in the previous study using hoping parameter expansion
improvement where we used thousands of cheap estimators
per configuration [26], we may construct one estimate for
w02
q out of two independent estimates of w0

q. However, in
this study we used an expensive BCHC-diluted estimator
and there is no second estimate of w0

q available.
Constructing a second one in the same manner as the first,
using the N ¼ 124416 dilution scheme, would require a

TABLE II. Coefficients for the finite-difference derivatives.

k −3 −2 −1 0 1 2 3

c0k −1=60 3=20 −3=4 0 3=4 −3=20 1=60
c00k 1=90 −3=20 3=2 −49=18 3=2 −3=20 1=90

TABLE III. Fit parameters for extrapolation from small
volumes. Q is the conventional confidence level of the fit: one
minus the cumulative χ2 distribution evaluated at the obtained
value of χ2, taking into account the corrections due to the use of
the same data for both estimating the covariance matrix and
performing the fit [31].

Q α βx βt γ

σw0
q

0.15 0.0017(10) −1.6ð3Þ 1.9(1.2) 0.08(4)
h ~w00

qi 0.85 −0.09ð2Þ −3.95ð3Þ −1.61ð7Þ 0.118(5)
σ ~w00

q
0.27 0.09(3) −3.1ð1Þ 3(2) 0.014(16)
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large extra effort. However, we observed from the previous
study that the stochastic fluctuations of this term compared
to the fluctuations of the rest of the traces involved in ~w00

q are
small. Thus it is acceptable to use a less labor-intensive
method to estimate it. Since we have the estimates of w0

q

from the prior run saved to disk, we use them in combi-
nation with the new diluted estimates of w0

q to produce an
estimate of w02

q on each configuration.
For the first-order term we find that the standard

deviation is σw0
q
¼ 23ð1Þ. This includes both the stochastic

noise and the gauge fluctuations. The determination is
compatible with our estimates described in the previous
section. For the second-order term, ~w00

q, the mean value is
h ~w00

qi ¼ −197549ð83Þ and the standard deviation is
σ ~w00

q
¼ 1429ð58Þ, again in agreement with the values

estimated in the previous section. We note that the
combined standard deviation is larger than the gauge
one estimated from the extrapolation from small volumes,
indicating that the stochastic noise is dominant for this
estimator.
For the w02

q estimator we find that the standard deviation
is σw02

q
¼ 1655ð68Þ. This is comparable with the standard

deviation for ~w00
q and it would seem that this term will add

significant variance to the final result. To see why this term
is subdominant we have to expand Eq. (8) in terms of
traces:

wðηdÞ ¼ 1 − ηdw0
q þ

1

2
η2dð5 ~w″

q þ w02
q Þ: ð23Þ

We see that in the final result, the quadratic term w00 ¼
5 ~w00

q þ w02
q is dominated by ~w00

q. Indeed the total standard
deviation for the quadratic term is σw00 ¼ 7231ð295Þ,
compared to the contribution coming from ~w00

q alone,
5 × σ ~w00

q
¼ 7147ð292Þ.

B. Hadron polarizabilities

The power-series expansion given in Eq. (8) can be used
to determine the weight factor at any desired ηd on each
configuration; these weight factors can then be combined
with the valence correlators computed previously to com-
plete the calculation. We note that one set of weight-factor
estimates may be used without modification for all hadrons;
this is a strength of the reweighting approach. Full details of
the valence correlators are given in Ref. [14]; we repeat
only the essential elements here. We use point interpolators
for both source and sink. To improve the signal-to-noise
ratio, we use 28 sources per configuration; in any case the
expense of the many sources is dwarfed by the cost of the
weight-factor estimates. These sources are spread evenly in
the ðy; zÞ plane but are along the centerline x ¼ 12 to avoid
the Dirichlet walls. We determined suitable correlator
fitting ranges by varying the minimum fit distance and
looking for a plateau in the extracted mass; this indicated a
fitting range of 9–21 for the neutron and 14–30 for the pion
and kaon. Detailed information about the choice of these
fitting ranges and the effect of varying them can be found in
Ref. [14]. We note that similar plateaus also appear in the
polarizability itself as a function of tmin, although those data
are noisier.
It is informative to turn on the reweighting one order at a

time; we additionally add the extra second-order term, w02
q ,

separate from the others that comprise ~w″
q. Using these

approximations for the reweighting factors we compute the
hadron propagators using Eq. (5) and do a correlated fit for
zero-field and nonzero-field propagators using the model in
Eq. (3). The fit ranges for these fits are the same as in our
previous valence study [14]. The results for these fits are
presented in Table IV. Focusing on the energy shift, aΔE,
note that the uncertainty remains relatively constant when
including only the first-order terms, indicating that our
estimator adds very little noise. The second-order term, in
particular ~w″

q, introduces significantly more uncertainty,
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FIG. 6. Distribution of the values of the stochastic estimators on the full 300-configuration ensemble. The two leftmost panels are the
stochastic estimators for w0

q and ~w00
q using BCHC dilution. The right panel is the estimator for w02

q using a combination of BCHC dilution
and hopping parameter expansion estimators, as described in the text. Note that for the center panel we shifted the distribution by
subtracting its mean.
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doubling or tripling the size of the error bars. In principle
this could be due to either the gauge fluctuations of the
second-order term causing a large fluctuation in the weight
factor or to the stochastic noise in the estimator. However,
in our case the estimated stochastic error for ~w00

q is fairly
large compared to the overall variation of the estimator, so
we suspect that the largest share of the fluctuations in our
estimates are due to stochastic noise, despite the substantial
effort involved in the estimator. As discussed previously,
the addition of the w02

q estimate has very little effect both on
the value of the energy shift and its error.
Figure 7 shows the effective mass of the neutron as a

function of correlator separation, as well as the shift in the
effective mass induced by the electric field with full
reweighting. We caution that the shift in the effective mass
played no part in our analysis, which was done with the full
correlated fit described above, and is presented only as an
illustration of trends in the data.
To convert the energy shift to a value for the polar-

izability we use the relation

α ¼ 2a3e2

9η2d
ðaΔmÞ ¼ 2a3e2

9η2d

aE
aM

ðaΔEÞ; ð24Þ

where M is the mass of the hadron of interest, computed
using periodic boundary conditions. These masses were
computed for this ensemble in a previous study [14]. For
the neutron, a correction due to the magnetic moment is
required, αc ¼ αþ μ2=ð2mÞ [10,14,32]. The polarizability
values are given in Table V. We will discuss now each
hadron separately.
We remind the reader that the neutral pion correlator

used in this study does not include the disconnected
diagrams that are required due to the isospin breaking
introduced by the electric field. This is a common limitation
for lattice calculations, since the inclusion of these terms is
computationally expensive. For the neutral pion, chiral
perturbation theory predicts a polarizability around
απ0 ≈ −0.5 × 10−4 fm3. In the absence of the disconnected
contributions, the prediction is that the polarizability would
be positive and an order of magnitude smaller in absolute
value [9]. Lattice calculations of this quantity indicate that
the connected neutral pion polarizability turns negative as

the pion mass is lowered below 400 MeV, contradicting
these expectations [9,14,33]. It was suggested that this
discrepancy is due to finite-volume corrections [9], but this
does not seem to be the case [33]. The correction associated
with charging the sea quarks might also be responsible for
this discrepancy. As we can see from Table V, the polar-
izability for the neutral pion seems to change signs as we
charge the sea quarks. However, the current errors are too
large, relative to the size of polarizability, so no definitive
conclusions can be drawn. We also measured the change in
the energy shift induced by the reweighting taking into

FIG. 7 (color online). Effective mass (above) and effective mass
shift (below) for the neutron. For the effective mass, the mass
shift is sufficiently small that the plot symbols with and without
the electric field are indistinguishable. In both cases, the value of
the mass or mass shift extracted from the full correlated fit is
shown as a colored error band; its horizontal extent indicates the
chosen fitting range of 9–21 for the neutron. For the effective
mass shift, the data at larger values of t lie outside the plot range
and are not shown.

TABLE IV. Results for the energy and energy shift for the pion, neutron, and kaon with differing orders of reweighting: none (the
valence-only calculation), first order in ηd, second order including only the dominant contribution in ~w00

q, and the full calculation to
second order. For the energy shifts, the values are in units of 10−8. Q is the confidence level for the fits corrected to account for the
sample size [31].

Valence only First order ~w00
q only Second order

aE aΔE × 108 Q aE aΔE × 108 Q aE aΔE × 108 Q aE aΔE × 108 Q

π0 0.245(1) −5.4ð3.4Þ 0.17 0.245(1) −6.0ð3.4Þ 0.18 0.245(1) 5.4(5.6) 0.15 0.245(1) 5.6(5.7) 0.15
K0 0.352(1) 4.2(0.8) 0.12 0.352(1) 3.7(1.0) 0.07 0.352(1) 10.5(3.4) 0.03 0.352(1) 11.1(3.4) 0.02
Neutron 0.694(4) 62.8(5.7) 0.65 0.694(4) 63.9(6.5) 0.57 0.695(4) 72.5(16.4) 0.53 0.695(4) 67.0(16.3) 0.43
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account the correlations between the original and
reweighted measurements; the result was consistent with
zero. We note that the valence-only result is very close to
zero; the ensemble in question happens to lie very near the
value of mπ where the polarizability of the neutral pion
changes sign [14,33].
The neutral kaon polarizability is not shifted by the first-

order reweighting. When the second order is included, both
the central value and its uncertainty increase. In this case
the shift in polarizability is statistically significant. It is
interesting to note that this behavior is consistent with the
features we observed in our previous study: the kaon
polarizability was insensitive to the change in mass of
the valence light quarks, but it shifted significantly when
the mass of the light sea quarks was changed [14]. This was
in contrast with the pion polarizability which seems to
depend strongly on the valence-quark mass, but it was
fairly insensitive to the sea. It is then not surprising that the
kaon polarizability should be sensitive to charging the light
sea quarks. In any case, the chiral extrapolation performed
in our previous study for the kaon polarizability needs to be
revisited, given the significant shift induced by charging
the sea.
The neutron, the benchmark hadron for this type of

calculations, shows no statistically significant change when
the coupling to the sea is turned on via reweighting. This is
a bit puzzling since the chiral perturbation theory expect-
ation is that the neutron polarizability increases by
1–2 × 10−4 fm3 when the sea quarks are charged [34]
and our error bars, even after including the second-order
correction, are small enough to resolve this difference. It is
still possible that this increase shows up after removing the
finite-volume effects, which are expected to be significant
for this quantity. We note that our calculation of the neutron
polarizability, including sea effects, improves upon the
precision of the only other such calculation known to us
[5,24] in both precision and pion mass.
While the effects of charging the sea quarks are not

statistically significant here, with the exception of the kaon,
we expect them to be enhanced both by enlarging the lattice
volume and by approaching the chiral limit. Considering
the chiral limit, when the pion mass is reduced it is easier to
create virtual pion loops which increases the size of the
pion cloud and its contribution to polarizability. Similarly,

increasing the size of the box reduces the momentum of the
lowest pion state (recall that we use Dirichlet boundary
conditions), reducing the cost of exciting pions, with
similar consequences. We thus expect the effect of charging
the sea to be substantially larger at lower pion mass and on
larger boxes.

VI. CONCLUSION

While the result for the neutron here is physically
significant, as it improves on the previously attained
precision, we treat it more as a proof of concept for the
perturbative reweighting method which will soon be
applied to ensembles with larger volumes and smaller pion
masses, where we expect the effect to be larger. We caution
that this result is evaluated on only one ensemble without
the necessary continuum, chiral, and infinite-volume
extrapolations required to produce a physical result. We
expect the effects of the finite volume to be significant and
are currently conducting a similar calculation on a larger
ensemble. Experience with a similar action in Ref. [19]
indicates that the effect of the continuum extrapolation is
likely to be small compared to the statistical uncertainty.
The perturbative estimate for the weight factor correctly
predicts the slope of the exact determinant ratio on small
lattices where it can be computed exactly, but like the
conventional reweighting estimator it is quite noisy.
However, dilution can be used to reduce its variance.
Strong dilution with the body-centered hypercubic pattern
outperforms hopping parameter expansion and it is cer-
tainly simpler to formulate and more flexible.
Our results suggest that while these estimates of the first-

order term w0
q are sufficient, a reduction in the stochastic

noise from the second-order term would be welcome, given
that the other ensembles in the study will be inherently
more expensive. Dilution completely eliminates the near-
diagonal contributions, at the cost of indirectly increasing
the contributions away from the diagonal since we no
longer average together many estimates. The long-distance
behavior of the off-diagonal elements is exponential and its
slope is governed by mπ. We are exploring the use of low-
mode subtraction to eliminate the lowest-lying modes of
the Dirac operator from the operators in question and thus
increase the exponent of the falloff; preliminary studies of
this technique look promising.
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TABLE V. Electric polarizability for the pion, neutron, and
kaon with differing orders of reweighting: none (the valence-only
calculation), first order in ηd, second order including only the
dominant contribution in ~w00

q, and the full calculation to second
order. Values are in units of 10−4 fm3.

Valence only First order ~w00
q only Second order

π0 −0.21ð14Þ −0.24ð14Þ 0.21(22) 0.22(23)
K0 0.14(3) 0.13(3) 0.36(12) 0.38(12)
Neutron 2.56(19) 2.60(22) 2.89(55) 2.70(55)
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