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Now that lattice QCD calculations are beginning to include QED, it is important to better understand
how hadronic properties are modified by finite-volume QED effects. They are known to exhibit power-law
scaling with volume, in contrast to the exponential behavior of finite-volume strong interaction effects. We
use nonrelativistic effective field theories describing the low-momentum behavior of hadrons to determine
the finite-volume QED corrections to the masses of mesons, baryons and nuclei out toOð1=L4Þ in a volume
expansion, where L is the spatial extent of the cubic volume. This generalizes the previously determined
expansion for mesons, and extends it by two orders in 1=L to include contributions from the charge radius,
magnetic moment and polarizabilities of the hadron. We make an observation about direct calculations of
the muon g − 2 in a finite volume.
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I. INTRODUCTION

Lattice quantum chromodynamics (LQCD) has
matured to the point where basic properties of the light
hadrons are being calculated at the physical pion mass
[1–5]. In some instances, the up- and down-quark masses
and quenched quantum electrodynamics (QED) have been
included in an effort to precisely postdict the observed
isospin splittings in the spectrum of hadrons [4,6–13].
While naively appearing to be a simple extension of pure
LQCD calculations, there are subtleties associated with
including QED. In particular, Gauss’s law and Ampere’s
law cannot be satisfied when the electromagnetic gauge
field is subject to periodic boundary conditions (PBCs)
[14–16]. However, a uniform background charge density
can be introduced to circumvent this problem and restore
these laws. This is equivalent to removing the zero modes
of the photon in a finite-volume (FV) calculation, which
does not change the infinite-volume value of calculated
quantities. One-loop level calculations in chiral perturba-
tion theory (χPT) and partially quenched χPT (PQχPT)
have been performed [16] to determine the leading FV
modifications to the mass of mesons induced by con-
straining QED to a cubic volume subject to PBCs.1 Due to
the photon being massless, the FV QED corrections to the
mass of the πþ are predicted to be an expansion in powers
of the volume, and have been determined to be of the form
δmπþ ∼ 1=Lþ 2=ðmπþL2Þ þ � � �, where L is the spatial
extent of the cubic volume. As the spatial extents of

present-day gauge-field configurations at the physical
pion mass are not large, with mπL≲ 4, the exponentially
suppressed strong interaction FV effects, Oðe−mπLÞ, are
not negligible for precision studies of hadrons, and when
QED is included, the power-law corrections, although
suppressed by αe, are expected to be important, particu-
larly in mass splittings.
In this paper, we return to the issue of calculating

FV QED effects, and show that nonrelativistic effective
field theories (NREFTs) provide a straightforward
way to calculate such corrections to the properties of
hadrons. With these EFTs, the FV mass shift of
mesons, baryons and nuclei are calculated out to
Oð1=L4Þ in the 1=L expansion, including contributions
from their charge radii, magnetic moments and polar-
izabilities. The NREFTs have the advantage that the
coefficients of operators coupling to the electromagnetic
field are directly related, order-by-order in the αe, to the
electromagnetic moments of the hadrons (in the con-
tinuum limit), as opposed to a perturbative estimate
thereof (as is the case in χPT). For protons and neutrons,
the NREFT is the well-established nonrelativistic QED
(NRQED) [18–26], modified to include the finite extent
of the charge and current densities [27]. Including multi-
nucleon interactions, this framework has been used
extensively to describe the low-energy behavior of
nucleons and nuclear interactions, EFTðπÞ, along with
their interactions with electromagnetic fields [27–32],
and is straightforwardly generalized to hadrons and
nuclei with arbitrary angular momentum. LQCD calcu-
lations performed with background electromagnetic
fields are currently making use of these NREFTs to
extract the properties of hadrons, including magnetic
moments and polarizabilities [33–44].
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1Vector dominance [17] has been previously used to model the

low-momentum contributions to the FV electromagnetic mass
splittings of the pseudoscalar mesons; see Refs. [6,15].
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II. FINITE-VOLUME QED

The issues complicating the inclusion of QED in FV
calculations with PBCs are well known, the most glaring of
which is the inability to preserve Gauss’s law [6,15,16],
which relates the electric flux penetrating any closed
surface to the charge enclosed by the surface, and
Ampere’s law, which relates the integral of the magnetic
field around a closed loop to the current penetrating the
loop. An obvious way to see the problem is to consider the
electric field along the axes of the cubic volume (particu-
larly at the surface) associated with a point charge at the
center. Restating the discussions of Ref. [16], the variation
of the QED action is, for a fermion of charge eQ,

δS¼
Z

d4x½∂μFμνðxÞ− eQψ̄ðxÞγνψðxÞ�δðAνðxÞÞ

¼
Z

dt
1

L3

X
q

δð ~Aνðt;qÞÞ

×
Z
L3

d3xeiq·x½∂μFμνðt;xÞ− eQψ̄ðt;xÞγνψðt;xÞ�; ð1Þ

where ~Aνðt;qÞ is the spatial Fourier transform of Aνðt;xÞ,
and e ¼ jej is the magnitude of the electronic charge. For
simplicity, here and in what follows, we assume the time
direction of the FV to be infinite2 while the spatial
directions are of length L. Equation (1) leads to ∂μFμν ¼
eQψ̄γνψ for δS ¼ 0 and hence Gauss’s law and Ampere’s
law. This can be modified to ∂μFμν ¼ eQψ̄γνψ þ bν

simply by omitting the spatial zero modes of Aμ, i.e.
~Aνðt; 0Þ ¼ 0, or more generally by setting δ ~Aνðt; 0Þ ¼ 0,
where bν is some uniform background charge distribution
[9].3 This readily eliminates the relation between the
electric flux penetrating a closed surface and the inserted
charge, and the analogous relation between the magnetic
field and current.4 Ensuring this constraint is preserved
under gauge transformations, Aμðt;xÞ → A0

μðt;xÞ ¼
Aμðt;xÞ þ ∂μΛðt;xÞ, where Λ is a periodic function in
the spatial volume, requires ∂0

~Λðt; 0Þ ¼ 0, where ~Λðt;qÞ is
the Fourier transform of Λðt;xÞ. Modes with q ≠ 0 are
subject to the standard gauge-fixing conditions, and in
LQCD calculations it is sometimes convenient to work in
Coulomb gauge, ∇ ·A ¼ 0. This is because of the asym-
metry between the spatial and temporal directions that is
present in most ensembles of gauge field configurations,

along with the fact that the photon fields are generated in
momentum space as opposed to position space [6].
In infinite volume, the Coulomb potential energy

between charges eQ is well known to be UðrÞ ¼ αeQ2

r ,
where αe ¼ e2=4π is the QED fine-structure constant,
while in a cubic spatial volume with the zero modes
removed, it is

Uðr;LÞ ¼ αeQ2

πL

X
n≠0

1

jnj2 e
i2πn·r

L

¼ αeQ2

πL

�
−1þ

X
n≠0

e−jnj2

jnj2 e
i2πn·r

L

þ
X
p

Z
1

0

dt

�
π

t

�
3=2

e−
π2 jp−r=Lj2

t

�
; ð2Þ

where n and p are triplets of integers. The latter, exponen-
tially accelerated, expression in Eq. (2) is obtained from the
former using the Poisson summation formula. The FV
potential energy between two charges with Qe ¼ 1 and the
corresponding infinite-volume Coulomb potential energy
are shown in Fig. 1.
In the next sections, we construct nonrelativistic EFTs to

allow for order-by-order calculations of the FV QED
modifications to the energy of hadrons in the continuum
limit of LQCD calculations, going beyond the first two
orders in the 1=L expansion that have been determined
previously. While these EFTs permit calculations to any
given precision, including quantum fluctuations, some of
the results that will be presented can be determined simply
without the EFTs; a demonstration of which is the self-
energy of a uniformly charged, rigid and fixed, sphere in a
FV. In this textbook case, the self-energy can be determined
directly by integrating the interaction between infinitesimal
volumes of the charge density, as governed by the modified
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FIG. 1 (color online). The FV potential energy between two
charges with Qe ¼ 1 along one of the axes of a cubic volume of
spatial extent L (solid orange curve), obtained from Eq. (2), and
the corresponding infinite-volume Coulomb potential energy
(dashed gray curve).

2In practice, there are thermal effects in LQCD calculations
due to the finite extent of the time direction.

3The introduction of a uniformly charged background is a
technique that has been used extensively to include electromag-
netic interactions into calculations of many-body systems, such
as nuclear matter and condensed matter; see for example
Ref. [45].

4For a discussion about including QED with C-PBCs (anti-
PBCs), see Ref. [46].
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Coulomb potential, Eq. (2), over the sphere of radius R. It is
straightforward to show that the self-energy can be written
in an expansion of R=L,

UsphereðR;LÞ ¼ 3

5

ðQeÞ2
4πR

þ ðQeÞ2
8πL

c1 þ
ðQeÞ2
10L

�
R
L

�
2

þ � � � ;

ð3Þ

where c1 ¼ −2.83729 [47–49]. The leading contribution is
the well-known result for a uniformly charged sphere,
while the second term, the leading order (LO) FV correc-
tion, is independent of the structure of the charge distri-
bution. This suggests that it is also valid for a point particle;
a result that proves to be valid for the corrections to the
masses of single particles calculated with χPT and with the
NREFTs presented in this paper. It is simply the modifi-
cation to the Coulomb self-energy of a point charge. The
third term can be written as ðQeÞ2hr2i=6L3, where hr2i ¼
3
5
R2 is the mean-squared radius of the sphere, and repro-

duces the charge-radius contributions determined with the
NREFTs, as will be shown in the next section.

III. SCALAR NRQED FOR MESONS
AND J ¼ 0 NUCLEI

LQCD calculations including QED have been largely
focused on the masses of the pions and kaons in an effort to
extract the values of electromagnetic counterterms of χPT,
thus we begin by considering the FV corrections to the
masses of scalar hadrons. In the limit where the volume of
space is much larger than that of the hadron, keeping in
mind that only the zero modes are being excluded from the
photon fields, the FV corrections to the mass of the hadron
will have a power-law dependence upon L, and vanish as
L → ∞. As the modifications to the self-energy arise from
the infrared behavior of the theory, low-energy EFT
provides a tool with which to systematically determine
the FV effects in an expansion in one or more small
parameters.
Using the methods developed to describe heavy-quark

and heavy-hadron systems [18–25,27,44,50], the Lagrange
density describing the low-energy dynamics of a charged
composite scalar particle, ϕ, with charge eQ can be written
as an expansion in 1=mϕ and in the scale of compositeness,

Lϕ ¼ ϕ†
�
iD0 þ

jDj2
2mϕ

þ jDj4
8m3

ϕ

þ ehr2iϕ
6

∇ ·E

þ 2π ~αðϕÞE jEj2 þ 2π ~βðϕÞM jBj2

þiecM
fDi; ð∇ ×BÞig

8m3
ϕ

þ � � ��ϕ; ð4Þ

where mϕ is the mass of the particle, the covariant
derivative is Dμ ¼ ∂μ þ ieQ̂Aμ with Q̂ the charge operator.
hr2iϕ is the mean-squared charge radius of the ϕ, and we

have performed the standard field redefinition to the NR
normalization of states, ϕ → ϕ=

ffiffiffiffiffiffiffiffiffi
2mϕ

p
. The remaining

coefficients of operators involving the electric, E, and
magnetic,B, fields, have been determined by matching this
EFT to scalar QED, to yield

~αðϕÞE ¼αðϕÞE −
αeQ
3mϕ

hr2iϕ; ~βðϕÞM ¼βðϕÞM ; cM¼2

3
m2

ϕhr2iϕ;

ð5Þ

where αðϕÞE ; βðϕÞM are the electric and magnetic polari-
zabilities of the ϕ.5 These coefficients will be modified
at higher orders in perturbation theory, starting at OðαeÞ.
They will also be modified by terms that are exponentially
suppressed by compositeness length scales, e.g. ∼e−mπL for
QCD. The ellipses denote terms that are higher order in
derivatives acting on the fields, with coefficients dictated by
the mass and compositeness scale—the chiral symmetry
breaking scale, Λχ , for mesons and baryons. For one-body
observables, terms beyond ϕ†i∂0ϕ are treated in perturba-
tion theory, providing a systematic expansion in 1=L.
The LO, Oðαe=LÞ, correction to the mass of a charged

scalar particle in FV, δmϕ, is from the one-loop diagram
shown in Fig. 2. While most simply calculated in Coulomb
gauge, the diagram can be calculated in any gauge and, in
agreement with previous determinations [16], is

δmðLOÞ
ϕ ¼ αeQ2

2πL

X̂
n≠0

1

jnj2 ¼
αeQ2

2L
c1; ð6Þ

with c1 ¼ −2.83729. The sum,
P̂

, represents the differ-
ence between the sum over the FV modes and the infinite-
volume integral, e.g.,

FIG. 2. The one-loop diagram providing the LO, Oðαe=LÞ, FV
correction to the mass of a charged scalar particle. The solid
straight line denotes a scalar particle, while the wavy line denotes
a photon.

5The presence of a charge-radius dependent term in the
coefficient of the electric polarizability indicates a subtlety in
using this EFT to describe hadrons in a background electric field
[44]. Such contributions can be canceled by including redundant
operators in the EFT Lagrange density when matching to
S-matrix elements. Since a classical uniform electric field
modifies the equations of motion, such operators must be retained
in the Lagrange density and their coefficients matched directly to
Green functions.
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1

L3

X̂
k≠0

fðkÞ≡ 1

L3

X
k≠0

fðkÞ −
Z

d3k
ð2πÞ3 fðkÞ; ð7Þ

for an arbitrary function fðkÞ, and is therefore finite. This
shift is a power law in 1=L as expected, and provides a
reduction in the mass of the hadron. As the infinite-volume
Coulomb interaction increases the mass, and the FV result
is obtained from the modes that satisfy the PBCs (minus the
zero modes), the sign of the correction is also expected. The
result in Eq. (6) is nothing more than the difference between
the FV and infinite-volume contribution to the Coulomb
self-energy of a charged point particle, as seen from
Eq. (2), Uð0;LÞ=2.
The next-to-LO (NLO) contribution, Oðαe=L2Þ, arises

from a single insertion of the jDj2=2mϕ operator in Eq. (4)
into the one-loop diagrams shown in Fig. 3. The contri-
bution from each of these diagrams depends upon the
choice of gauge, however the sum is gauge independent,6

δmðNLOÞ
ϕ ¼ αeQ2

mϕL2

X̂
n≠0

1

jnj ¼
αeQ2

mϕL2
c1: ð8Þ

This NLO recoil correction agrees with previous calcu-
lations [11,16], and is the highest order in the 1=L

expansion to which these FV effects have been previously
determined.7

At next-to-next-to-LO (N2LO), Oðαe=L3Þ, there are
potentially two contributions—one is a recoil correction
of the form ∼αe=m2

ϕL
3 and one is from the charge radius,

∼αehr2iϕ=L3. An evaluation of the one-loop diagrams
giving rise to the recoil contributions, Figs. 4(a)–4(d),
shows that while individual diagrams are generally nonzero
for a given gauge, their sum vanishes in any gauge.
Therefore, there are no contributions of the form
αe=m2

ϕL
3 to the mass of ϕ. In contrast, the leading

contribution from the charge radius of the scalar particle,
resulting from the one-loop diagrams shown in Figs. 4(e)
and 4(f) gives a contribution of the form

δmðN2LOÞ
ϕ ¼ −

2παeQ
3L3

hr2iϕ
X̂
n≠0

1 ¼ þ 2παeQ
3L3

hr2iϕ; ð9Þ

where
P̂

n1 ¼ 0.
At N3LO, Oðαe=L4Þ, there are potentially three contri-

butions: recoil corrections, ∼αe=m3
ϕL

4, contributions from
the electric and magnetic polarizability operators,
∼ ~αðϕÞE =L4, ~βðϕÞM =L4, and contributions from the cM operator,

FIG. 3. Diagrams contributing at NLO, Oðαe=mϕL2Þ, in the 1=L expansion. The crossed circle denotes an insertion of the jDj2=2mϕ

operator in the scalar QED Lagrange density, Eq. (4).

FIG. 4. (a)–(d) One-loop diagrams giving rise to the recoil corrections of Oðαe=m2
ϕL

3Þ. The crossed circle denotes an insertion of the
jDj2=2mϕ operator. (e),(f) One-loop diagrams providing the leading contribution from the charge radius of the scalar hadron,
∼αehr2iϕ=L3. The solid square denotes an insertion of the charge-radius operator in the scalar Lagrange density, Eq. (4).

6The sums appearing at LO and NLO are
X̂
n≠0

1

jnj ¼ c1;
X̂
n≠0

1

jnj2 ¼ πc1:

7The OðαeÞ calculations of Ref. [16] at NLO in χPT and
PQχPT do not include the full contributions from the meson
charge radius and polarizabilities, but are perturbatively close.
This is in contrast to the NREFT calculations presented in this
paper where the low-energy coefficients are matched to these
quantities order by order in αe, and provide the result at any given
order in 1=L as an expansion in αe.
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Eq. (4). There are two distinct sets of recoil corrections
at this order. One set is from diagrams involving
three insertions of the jDj2=2mϕ operator, as shown in
Figs. 5(a)–5(d), and the other is from a single insertion of
the jDj4=8m3

ϕ operator, shown in Figs. 5(e) and 5(f). The
sum of diagrams contributing to each set vanishes, and so
there are no contributions of the form αe=m3

ϕL
4. The other

contributions, which include the electric and magnetic
polarizabilities, arise from the one-loop diagrams shown
in Fig. 5(g). A straightforward evaluation yields a mass
shift of

δmðN3LO; ~α; ~βÞ
ϕ ¼ −

4π2

L4
ð ~αðϕÞE þ ~βðϕÞM Þ

X̂
n≠0

jnj

¼ −
4π2

L4
ðαðϕÞE þ βðϕÞM Þc−1 þ

4π2αeQ
3mϕL4

hr2iϕc−1;

ð10Þ
where the regularized sum is the same as that contributing
to the energy density associated with the Casimir effect,
and is c−1 ¼ −0.266596 [48]. A similar calculation yields
the contribution from the cM operator,

δmðN3LO;cMÞ
ϕ ¼ þ 4π2αeQ

3mϕL4
hr2iϕc−1: ð11Þ

Collecting the contributions up to N3LO, the mass shift
of a composite scalar particle in the 1=L expansion is

δmϕ¼
αeQ2

2L
c1

�
1þ 2

mϕL

�
þ2παeQ

3L3

�
1þ 4π

mϕL
c−1

�
hr2iϕ

−
4π2

L4
ðαðϕÞE þβðϕÞM Þc−1: ð12Þ

Therefore, for the charged and neutral pions, the mass
shifts are

δmπþ ¼
αe
2L

c1

�
1þ 2

mπþL

�
þ2παe

3L3

�
1þ 4π

mπþL
c−1

�
hr2iπþ

−
4π2

L4
ðαðπþÞE þβðπ

þÞ
M Þc−1;

δmπ0 ¼−
4π2

L4
ðαðπ0ÞE þβðπ

0Þ
M Þc−1; ð13Þ

where potential complications due to the electromagnetic
decay of the π0 via the anomaly have been neglected.
The shifts of the charged and neutral kaons have the

same form, with mπ�;0 → mK�;0 , hr2iπþ → hr2iKþ , αðπ
�;0Þ

E →

αðK
�;0Þ

E and βðπ
�;0Þ

E → βðK
�;0Þ

E . With the experimental
constraints on the charge radii and polarizabilities
of the pions and kaons, numerical estimates of the FV
corrections can be performed at N3LO. The LO and NLO
contributions are dictated by only the charge and mass of
the meson. The N2LO contribution depends upon the
charge and charge radius, which, for the charged mesons,
are known experimentally to be [51]

ffiffiffiffiffiffiffiffi
hr2i

q
πþ

¼ 0.672� 0.008 fm;ffiffiffiffiffiffiffiffi
hr2i

q
Kþ ¼ 0.560� 0.031 fm: ð14Þ

The N3LO contribution from the electric and magnetic
polarizabilities of the mesons depends upon their sum. The
Baldin sum rule determines the charged pion combination,
while the result of a two-loop χPT calculation is used for
the neutral pion combination [52],

αðπ
þÞ

E þ βðπ
þÞ

M ¼ ð0.39� 0.04Þ × 10−4 fm3;

αðπ
0Þ

E þ βðπ
0Þ

M ¼ ð1.1� 0.3Þ × 10−4 fm3: ð15Þ

Unfortunately, little is known about the polarizabilities of
the kaons, and so naive dimensional analysis is used to

FIG. 5. One-loop diagrams contributing to the FV corrections to the mass of a scalar hadron at N3LO, Oð1=L4Þ. Diagrams (a)–(d)
involve three insertions of the jDj2=2mϕ operator (crossed circles) in the scalar QED Lagrange density in Eq. (4), while (e) and (f)
involve one insertion of the jDj4=8m3

ϕ operator (the sun cross), giving a Oðαe=m3
ϕL

4Þ correction. Diagram (g) involves an insertion of

~αðϕÞE jEj2 and ~βðϕÞM jBj2, operators (crossed square), contributing terms of the form ∼ðαE þ βMÞ=L4 and ∼αehr2iϕ=mϕL4Þ. A diagram
analogous to (g) provides the leading contribution from the cM operator at Oðαe=mϕL4Þ.
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provide an estimate of their contribution [52], αðK
þÞ

E þβðK
þÞ

M ,

αðK
0Þ

E þ βðK
0Þ

M ¼ ð1� 1Þ × 10−4 fm3. With these values,
along with their experimentally measured masses, the
expected FV corrections to the charged meson masses
are shown in Fig. 6 and to the neutral meson masses
in Fig. 7.8

In a volume with L ¼ 4 fm, the FV QED mass shift
of a charged meson is approximately 0.5 MeV. Figure 6
shows that for volumes with L≳ 4 fm, the meson
charge is responsible for essentially all of the FV mod-
ifications, with their compositeness making only a small
contribution, i.e. the differences between the NLO and

N2LO mass shifts are small. For the neutral mesons, the
contribution from the polarizabilities is very small, but with
substantial uncertainty. It is worth reemphasizing that in
forming these estimates of the QED power-law corrections,
exponential corrections of the form e−mπL have been
neglected.

IV. NRQED FOR THE BARYONS
AND J ¼ 1

2 NUCLEI

In the case of baryons and J ¼ 1
2
nuclei, the method

for determining the FV QED corrections is analogous to
that for the mesons, described in the previous section,
but modified to include the effects of spin and the
reduction from a four-component to a two-component
spinor. The low-energy EFT describing the interactions
between the nucleons and the electromagnetic field is
NRQED, but enhanced to include the compositeness of
the nucleon. A nice review of NRQED, including the
contributions from the non-point-like structure of the
nucleon, can be found in Ref. [53], and the relevant terms
in the NRQED Lagrange density for a N3LO calculation are
[18–25,27,44,50,53]
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FIG. 6 (color online). The FV QED correction to the mass squared of a charged pion (left panel) and kaon (right panel) at rest in a FV
at the physical pion mass. The leading contribution is due to their electric charge, and scales as 1=L. The 1σ-uncertainty bands associated
with each order in the expansion are determined from the uncertainties in the experimental and theoretical inputs.

4 5 6 7 8 9 10
0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

L fm

m
02

M
eV

2

NNNLO
NNLO
NLO
LO

4 5 6 7 8 9 10
2.0

1.5

1.0

0.5

0

0.5

1.0

1.5

2.0

L fm

m
K

0
2

M
eV

2

NNNLO
NNLO
NLO
LO

FIG. 7 (color online). The FV QED correction to the mass squared of a neutral pion (left panel) and kaon (right panel) at rest in a FVat
the physical pion mass. The leading contributions are from their polarizabilities, and scale as 1=L4. The 1σ-uncertainty bands associated
with each order in the expansion are determined from the uncertainties in the experimental and theoretical inputs.

8Whencomparingwith previous results, one shouldnote that the
squared mass shift of the πþ, as an example, due to FV QED is

δm2
πþ ¼ ðmπþ þ δmπþÞ2 −m2

πþ ¼ 2mπþδmπþ þOðα2eÞ:
As is evident, the leading contribution to themass squared scales as
1=L, contrary to a recent suggestion in the literature [10] of 1=L2.
Note that the quantity shown in Figs. 6 and 7 is δm2

ϕ as opposed to
δmϕ, as it is this that enters into the determination of the light-quark
masses from LQCD calculations.
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Lψ ¼ ψ†
�
iD0 þ

jDj2
2Mψ

þ jDj4
8M3

ψ
þ cF

e
2Mψ

σ ·Bþ cD
e

8M2
ψ
∇ ·EþicS

e
8M2

ψ
σ · ðD×E−E×DÞ þ 2π ~αðψÞE jEj2 þ 2π ~βðψÞM jBj2

þecW1

fD2;σ ·Bg
8M3

ψ
− ecW2

Diσ ·BDi

4M3
ψ

þecp0p
σ ·DB ·DþB ·Dσ ·D

8M3
ψ

þ iecM
fDi; ð∇×BÞig

8M3
ψ

þ � � �
�
ψ ; ð16Þ

where cF ¼ Qþ κψ þOðαeÞ is the coefficient of the magnetic-moment interaction, with κψ related to the anomalous
magnetic moment of ψ . cD ¼ Qþ 4

3
M2

ψ hr2iψ þOðαeÞ contains the leading charge-radius contribution, and
cM ¼ ðcD − cFÞ=2. cS ¼ 2cF −Q is the coefficient of the spin-orbit interaction. The coefficients of the jEj2 and jBj2
terms contain the polarizabilities, 1=Mψ and 1=M3

ψ corrections,

~αðψÞE ¼ αðψÞE −
αe
4M3

ψ
ðQ2 þ κ2ψ Þ −

αeQ
3Mψ

hr2iψ ; ~βðψÞM ¼ βðψÞM þ αeQ2

4M3
ψ
: ð17Þ

The operators with coefficients cW1
, cW2

and cp0p, given in Ref. [53], do not contribute to the FV corrections at this order.
The ellipses denote terms that are higher orders in 1=Mψ and 1=Λχ . Two insertions of the magnetic-moment operator
provide its leading contribution, as shown in Fig. 8. Without replicating the detail presented in the previous section, the sum
of the contributions to the FV self-energy modification of a composite fermion, up to N3LO, is

δMψ ¼ αeQ2

2L
c1

�
1þ 2

MψL

�
þ 2παeQ

3L3
hr2iψ þ παe

M2
ψL3

�
1

2
Q2 þ ðQþ κψ Þ2

�

−
4π2

L4
ð ~αðψÞE þ ~βðψÞM Þc−1 þ

π2αeQ
M3

ψL4

�
4

3
M2

ψhr2iψ − κψ

�
c−1 −

αeπ
2

M3
ψL4

κψðQþ κψÞc−1: ð18Þ

Therefore, for the proton and neutron, the FV QED mass shifts are

δMp ¼ αe
2L

c1

�
1þ 2

MpL

�
þ 2παe

3L3

�
1þ 4π

MpL
c−1

�
hr2ip þ

παe
M2

pL3

�
1

2
þ ð1þ κpÞ2

�

−
4π2

L4
ðαðpÞE þ βðpÞM Þc−1 − 2π2αeκp

M3
pL4

c−1;

δMn ¼ κ2n
παe
M2

nL3
−
4π2

L4
ðαðnÞE þ βðnÞM Þc−1; ð19Þ

where the anomalous magnetic moments of the proton
and neutron give κp ¼ 1.792847356ð23Þ and κn ¼
−1.9130427ð5ÞMn=Mp, respectively [51]. One of the
N2LO contributions to the proton FV QED correction
depends upon its charge radius, which is known exper-
imentally to be hr2ip ¼ 0.768� 0.012 fm2 [51]. Further,
part of the N3LO contribution depends upon the electric
and magnetic polarizabilities, which are constrained by the
Baldin sum rule [52],

αðpÞE þ βðpÞM ¼ ð13.69� 0.14Þ × 10−4 fm3;

αðnÞE þ βðnÞM ¼ ð15.2� 0.5Þ × 10−4 fm3: ð20Þ
With these values for the properties of the proton and
neutron, along with their experimentally measured masses,
the expected FV modifications to their masses are shown in
Fig. 9.
The proton FV QED corrections are consistent with

those of the charged scalar mesons. However, the neutron
corrections, while very small, of the order of a few keVs,
exhibit more structure. The N2LO contribution from the
magnetic moment increases the mass in FV, scaling as
1=M2

nL3, similar to the polarizabilities which make a
positive contribution and scale as 1=L4 (N3LO). Note that
the polarizabilities of the nucleon are dominated by the
response of the pion cloud, while the magnetic moments
are dominated by physics at the chiral symmetry breaking
scale. Further the magnetic-moment contributions are sup-
pressed by two powers of the nucleon mass.

FIG. 8. The N2LO, Oðαe=M2
ψL3Þ, FV QED correction to the

mass of a baryon from its magnetic moment. The crossed
square denotes an insertion of the magnetic moment operator
given in Eq. (16).
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There is an interesting difference between the meson and
baryon FV modifications. As the nucleon mass is approx-
imately 7 times the pion mass, and twice the kaon mass, the
recoil corrections are suppressed compared with those of
the mesons. Further, the nucleons are significantly “softer”
than the mesons, as evidenced by their polarizabilities.
However, the NLO recoil corrections to the proton mass are
of approximately the same size as the N2LO structure
contributions, as seen in Fig. 9.

V. NUCLEI

A small number of LQCD collaborations have been
calculating the binding of light nuclei and hypernuclei at
unphysical light-quark masses in the isospin limit and
without QED [54–63]. However, it is known that as the
atomic number of a nucleus increases, the Coulomb energy
increases with the square of its charge, and significantly
reduces the binding of large nuclei. The simplest nucleus
is the deuteron, but as it is weakly bound at the physical

light-quark masses, and consequently unnaturally large, it
is likely that it will be easier for LQCD collaborations to
compute other light nuclei, such as 4He, rather than the
deuteron.
A NREFT for vector QED shares the features of the

NREFTs for scalars and fermions that are relevant for the
current analysis. One difference is in the magnetic moment
contribution, and another is the contribution from the
quadrupole interaction. The FV corrections to the deuteron
mass and binding energy, δBd, are shown in Fig. 10, where
the experimentally determined charge radius, magnetic
moment and polarizabilities have been used. Due to the
large size of the deuteron, and its large polarizability, the
1=L expansion converges slowly in modest volumes, and it
appears that L≳ 12 fm is required for a reliable determi-
nation of the QED FV effects, consistent with the size of
volumes required to extract the binding and S-matrix
parameters of the deuteron in the absence of QED [64].
The QED FV corrections to the deuteron binding energy
are seen to be significantly smaller than its total energy in
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FIG. 9 (color online). The FV QED correction to the mass of the proton (left panel) and neutron (right panel) at rest in a FV at the
physical pion mass. The leading contribution to the proton mass shift is due to its electric charge, and scales as 1=L, while the leading
contribution to the neutron mass shift is due to its magnetic moment, and scales as 1=L3. The 1σ-uncertainty bands associated with each
order in the expansion are determined from the uncertainties in the experimental and theoretical inputs.
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FIG. 10 (color online). The left panel shows the FV QED correction to the mass of the deuteron at rest in a FV at the physical pion
mass. The leading contribution is from its electric charges, and scales as 1=L. The right panel shows the FV QED correction to the
deuteron binding energy for which the 1=L contributions cancel. The 1σ-uncertainty bands associated with each order in the expansion
are determined from the uncertainties in the experimental and theoretical inputs.
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large volumes, largely because the leading contribution to
the deuteron and to the proton cancel. As the deuteron has
spin and parity of Jπ ¼ 1þ, it also possesses a quadrupole
moment which contributes to the FV QED effects at
Oð1=L5Þ through two insertions.
The NREFTs used to study the FV contributions to the

mass of the pions in the previous section also apply to the
4He nucleus, and the FV corrections to the mass of 4He and
its binding energy, δB4He, are shown in Fig. 11. Unlike the
deuteron, the leading FV corrections to 4He do not cancel
in the binding energy due to the interactions between the
two protons, but are reduced by a factor of 2.

VI. ANOMALOUS MAGNETIC MOMENT
OF THE MUON

Experimental and theoretical determinations of the
anomalous magnetic moment of the muon are providing
a stringent test of the standard model of particle physics.
The current discrepancy between the theoretical [65,66]
and experimental determinations [67], at the level of 2.9 to
3.6σ, but not 5σ, cannot yet be interpreted as a signal of
new physics. As upcoming experiments, Fermilab E989
and J-PARC E34, plan to reduce the experimental uncer-
tainty down to 0.14 ppm, theoretical calculations of non-
perturbative hadronic contributions must be refined in the
short term. LQCD is expected to contribute to improving
the theoretical prediction of the standard model, and several
recent efforts have been directed at obtaining the hadronic
vacuum-polarization and hadronic light-by-light contribu-
tions to the muon g − 2 [68–78]. Theoretical challenges
facing these calculations have been identified and will be
addressed during the next few years.
Here we show that the most naive scheme to obtain the

magnetic moment of the muon by a direct calculation has
volume effects that scale as Oðαe=ðmμLÞÞ, requiring
unrealistically large volumes to achieve the precision
required to be sensitive to new physics. A detailed

exploration of the issues related to extracting matrix
elements of the electromagnetic current from LQCD
calculations can be found in Ref. [79]. Although it might
appear that the leading contribution to the FV modification
of the magnetic moment of the muon in NRQED will arise
from one-loop diagrams involving one insertion of the the
magnetic moment operator, such contributions vanish. In
fact, the leading 1=ðmμLÞ FV correction comes from the
tree-level insertion of the magnetic-moment operator multi-
plied by a factor of E=mμ, where E is the energy of the
muon, giving rise to, at OðαeÞ,

κμ ≡ gμ − 2

2
¼ αe

2π

�
1þ πc1

mμL
þO

�
1

m2
μL2

��
: ð21Þ

The factor of E=mμ arises in matching the NR theory
to QED [25], in which each external leg in the NR

theory must be accompanied by a factor of
ffiffiffiffiffi
E
mμ

q
. Since

E ¼ mμ þ e2
8π

c1
L þ � � �, it can be readily seen that the

effective tree-level vertex multiplied by this normalization
factor results in the κμ given in Eq. (21). This contribution is
present in the LO QED contribution to the anomalous
magnetic moment (Schwinger term) when calculated in a
cubic FV with PBCs and the photon zero mode removed.
To better understand the severity of the volume correc-

tions to such a naive calculation, it is sufficient to note that
in order to reduce the FV correction to 1 ppm (comparable
to the current experimental error), a volume of ∼ð60 nmÞ3
is required. In the largest volumes that will be available to
LQCDþ QED calculations in the near future, with
L≲ 10 fm, the FV corrections to a direct calculation of
the muon magnetic moment will flip the sign of the
anomalous magnetic moment. It is important to note that
lattice practitioners are not attempting direct calculations of
the muon g-2, but rather are isolating the hadronic con-
tributions, which have enormously smaller FV effects
compared to the one we have identified. In some sense,
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FIG. 11 (color online). The left panel shows the FV QED correction to the mass of 4He at rest in a FVat the physical pion mass. The
leading contribution is from its electric charge, and scales as 1=L. The right panel shows the FV QED correction to the 4He binding
energy. The uncertainty bands associated with each order in the expansion are determined from the uncertainties in the experimental and
theoretical inputs.
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the result we have presented in this section is for enter-
tainment purposes only.

VII. LATTICE ARTIFACTS

The results that we have presented in the previous
sections have assumed a continuous spacetime, and have
not yet considered the impact of a finite lattice spacing.
With the inclusion of QED, there are two distinct sources of
lattice spacing artifacts that will modify the FV QED
corrections we have considered. The coefficients of each of
the higher dimension operators in the NREFTs will receive
lattice spacing corrections, and for an OðaÞ-improved
action (a is the lattice spacing) they are a polynomial in
powers of a of the form di ∼ di0 þ di2a2 þ di3a3 þ � � �.
The coefficients dij are determined by the strong interaction
dynamics and the particular discretizations used in a given
calculation. In addition, the electromagnetic interaction will
be modified in analogy with the strong sector, giving rise to
further lattice spacing artifacts in the matching conditions
between the full and the NR theories, and also in the value
of one-loop diagrams.9 For an improved action, the naive
expectation is that such correction will first appear, beyond
the trivial correction from the modified hadron mass in the
NLO term, at αea2=L3 in the 1=L expansion. They are a
N2LO contribution arising from modifications to the one-
loop Coulomb self-energy diagram. This is the same order
as contributions from the charge radius, recoil corrections
and the magnetic moment, which are found to make a small
contribution to the mass shift in modest lattice volumes. As
the lattice spacing is small compared to the size of the
proton and the inverse mass of the proton, these lattice
artifacts are expected to provide a small modification to the
N2LO terms we have determined. In addition, there are
operators in the Symanzik action [80–82] that violate
Lorentz symmetry as the calculations are performed on
an underlying hypercubic grid. Such operators require the
contraction of at least four Lorentz vectors in order to form
a hypercubically invariant, but Lorentz-violating, operator,
for instance three derivatives and one electromagnetic field,
or four derivatives. The suppression of Lorentz-violating
contributions at small lattice spacings, along with smearing,
has been discussed in Ref. [83].

A second artifact arises from the lattice volume. The
NREFTs are constructed as an expansion in derivatives
acting on fields near their classical trajectory. As empha-
sized by Tiburzi [79] and others, this leads to modifications
in calculated matrix elements because derivatives are
approximated by finite differences in lattice calculations.
For large momenta, this is a small effect because of the
large density of states, but at low momenta, particularly
near zero, this can be a non-negligible effect that must be
accounted for. This leads to a complication in determining,
for instance, magnetic moments from the forward limit of a
form factor, relevant to the discussion in the previous
section. However, this does not impact the present calcu-
lations of FV QED corrections to the masses of the mesons,
baryons and nuclei.

VIII. CONCLUSIONS

For lattice QCD calculations performed in volumes that
are much larger than the inverse pion mass, the finite-
volume electromagnetic corrections to hadron masses can
be calculated systematically using a NREFT. The leading
two orders in the 1=L expansion for mesons have been
previously calculated using chiral perturbation theory, and
depend only upon their electric charge and mass. We have
shown that these two orders are universal FV QED
corrections to the mass of charged particles. Higher orders
in the expansion are determined by recoil corrections and
by the structure of the hadron, such as its electromagnetic
multipole moments and polarizabilities, which we calculate
using a NREFT. One advantage enjoyed by the NREFT is
that the coefficients of the operators in the Lagrange density
are directly related to the structure of the hadron, order by
order in αe, as opposed to being perturbative approxima-
tions as computed, for instance, in χPT. For the mesons and
baryons, the FV QED effects associated with their struc-
ture, beyond their charge, are found to be small even in
modest lattice volumes. For nuclei, as long as the volume is
large enough so that the non-QED effects are exponentially
small, dictated by the nuclear radius, their charge domi-
nates the FV QED corrections, with only small modifica-
tions due to the structure of the nucleus.
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9The lattice artifacts will depend upon whether the compact or
noncompact formulation of QED is employed—the former
inducing nonlinearities in the electromagnetic field which vanish
in the continuum limit. The discussions we present in this section
apply to both the compact and noncompact formulations.
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