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The octet-baryon axial-vector charges and the g1=f1 ratios measured in the semileptonic hyperon decays
are studied up to Oðp3Þ using the covariant baryon chiral perturbation theory with explicit decuplet
contributions. We clarify the role of different low-energy constants and find a good convergence for the
chiral expansion of the axial-vector charges of the baryon octet, g1ð0Þ, with Oðp3Þ corrections typically
around 20% of the leading ones. This is a consequence of strong cancellations between different next-to-
leading-order terms. We show that considering only nonanalytic terms is not enough and that analytic terms
appearing at the same chiral order play an important role in this description. The same effects still hold for
the chiral extrapolation of the axial-vector charges and result in a rather mild quark-mass dependence. As a
result, we report a determination of the leading-order chiral couplings, D ¼ 0.623ð61Þð17Þ and
F ¼ 0.441ð47Þð2Þ, as obtained from a completely consistent chiral analysis up to Oðp3Þ. Furthermore,
we note that the appearance of an unknown low-energy constant precludes the extraction of the proton octet
charge from semileptonic decay data alone, which is relevant for an analysis of the composition of the
proton spin.

DOI: 10.1103/PhysRevD.90.054502 PACS numbers: 12.38.Gc, 12.39.Fe, 14.20.Dh

I. INTRODUCTION

The nonperturbative regime of QCD is dominated by the
spontaneous breaking of the chiral symmetry. Based on
that, an effective field theory of QCD at low energies is
constructed using the pseudoscalar mesons and baryons as
basic degrees of freedom. This theory is called baryon
chiral perturbation theory (BχPT) [1–4], and it parametrizes
the axial-vector (AV) structure of the octet baryons and the
meson-baryon interaction at leading order (LO) by the only
two low-energy constants (LECs), D and F. These are
essential parameters in this model-independent approach,
and they are one of the main topics of this paper.
A reliable experimental source to determine D and F are

the ratios of the axial-vector and vector couplings, g1=f1, as
measured in the semileptonic hyperon decays (SHD).1

It has already been several decades since Cabibbo
proposed a SUð3Þ symmetric model [6] for the weak
hadronic currents. A fit of this model to the current data
is very successful, yielding D ≈ 0.804 and F ≈ 0.463, and
implying that SUð3Þ-symmetry-breaking effects in the
SHD are small [7]. Supporting this interpretation, the
experimental measurements of g1=f1 in the n → peν̄ and
Ξ0 → Σþeν̄ decays, which are predicted by this model to be
exactly equal, differ only by a ∼5% [5,8,9].
From a modern perspective the success of the Cabibbo

model is intriguing given that the SUð3Þ-flavor symmetry
is explicitly broken by ms ≫ mu ∼md. For instance, in
BχPT this model corresponds to the LO approximation,
while nearly all higher-order corrections break the SUð3Þ
symmetry. As a consequence, the next-to-leading-order
(NLO) contributions must arrange themselves in such a
way that the net breaking effects remain small. Additionally,
the total NLO effect has also to be small compared to the LO
one for the chiral expansion to make sense.
These issues were discussed in the foundational papers

of the heavy-baryon ðHBÞχPT approach [10,11], where it
was found that the NLO chiral corrections to the AV
charges can be large and problematic. However, a cancel-
lation mechanism between loops with intermediate octet
and decuplet baryons was revealed and shown to produce a
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1In the SUð2Þ version of BχPT, only the combinationDþ F is

accessible, which is at leading order equal to the AV charge of
the nucleon gA ¼ 1.2701ð25Þ × gV as measured in neutron β
decay [5].
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reasonable description of the data and convergence of the
chiral series. This was later found to be a consequence of
the SUð6Þ spin-flavor symmetry that emerges in the large
Nc limit of the baryonic sector of QCD. Thus, much of the
subsequent work on the axial structure has focused on the
combination of HBχPT and large Nc to ensure the octet-
decuplet cancellations at each level of the perturbative
expansion [12–17].
Nevertheless, from the point of view of the chiral

expansion all the early and later works in HBχPT were
not entirely systematic as they focused on the loop
corrections but neglected the effects of various local
operators appearing at NLO. In fact, there are a total of
six new LECs that contribute to the AV charge in the SHD
at this order. Four of them break SUð3Þ, whereas the other
two have the same structure as D and F but come
multiplied by a singlet combination of quark masses. As
a result, one can absorb the latter into D and F and fit the
resulting six LECs to the six available measurements of
g1=f1. Such a study has been carried out in the infrared (IR)
scheme of covariant BχPT [18,19], and it was shown that
the recoil corrections included in the relativistic calculation
of the loops in this approach could be as large as the LO
contributions. The main conclusion of this work was that
the chiral expansion of AV charges is not convergent [18].
These findings and, in general, the analysis of the AV

couplings in BχPT need to be revisited. In the first place, the
IR-BχPT employed in the latter work is known to introduce
spurious cuts that can have important effects in phenom-
enology [20–23]. Second, the decuplet contributions were
neglected despite the fact that the typical octet-decuplet
mass splitting, ðMΔ −MNÞ=ΛSB ≈ 0.3, is smaller than the
perturbation MK=ΛSB ≈ 0.5, with ΛSB ≈ 1 GeV, and their
effects provide the important source of cancellations at NLO
induced by the symmetries of QCD at large Nc. Finally, the
absorption of the two Oðp3Þ singlet LECs into D and F
precludes a definite discussion on the chiral convergence as
these contributions appear at different orders.
In this work we analyze the AV charges of the baryons in

a completely consistent fashion within BχPT and put the
description of the experimental g1=f1 ratios on a systematic
ground. We employ the extended-on-mass-shell renormal-
ization scheme (EOMS) [24,25], which is a relativistic
solution to the power counting problem found in [4] that
leaves the analytic structure of the relativistic loops intact.
To include explicit decuplet contributions and to ensure the
decoupling of the spurious spin-1/2 components of the
spin-3/2 Rarita-Schwinger fields, we use the consistent
couplings of [26–30]. In contrast to the IR-BχPT study
[18], we do not absorb Oðp3Þ LECs in D and F. In order
to disentangle the two singlet LECs we use the recent
Nf ¼ 2þ 1 lattice QCD (lQCD) calculations [31,32] of the
isovector AV constants g3A of the proton, Σþ and Ξ0. These
are additional data points which we include in our fits along
with the experimental SHD data.

We report that BχPT at Oðp3Þ successfully describes the
AV charges of the baryon octet. The NLO corrections are
typically about ∼20% of the LO ones, which is consistent
with the expectations for a convergent expansion. We
extract D and F at this order and we discuss further
implications of our study for the structure of the spin of the
proton.
The work is organized as follows. Section II defines the

AV form factors and gives the measured transitions used as
fit input. The third section introduces the covariant SUð3Þ
BχPT with explicit decuplet degrees of freedom and the
EOMS renormalization scheme. In the fourth section we
present and discuss the results of our SHD study. The fifth
section summarizes our work and relevant technical
expressions are given in the Appendixes.

II. SEMILEPTONIC HYPERON DECAYS AND
AXIAL-VECTOR FORM FACTORS

The AV structure of the baryon octet can be accessed via
the β-decays of hyperons, B → B0eν̄e. We parametrize the
decay amplitude as [7]

M ¼ Gffiffiffi
2

p ū0ðp0Þ½Oα
VðB0BÞðp0; pÞ þOα

AðB0BÞðp0; pÞ�

× uðpÞūeðpeÞ½γα þ γαγ
5�vνðpνÞ; ð1Þ

with uðpÞ, ū0ðp0Þ the spin-1=2 spinors for the baryonsB and
B0 with momenta p, p0 and ūeðpeÞ, vνðpνÞ as the electron
and anti-neutrino spinors with momenta pe, pν. The
coupling G is defined by G ¼ GFVud for the strangeness-
conserving and G ¼ GFVus for the strangeness-changing
processes with jΔSj ¼ 1, where GF and VudðusÞ are the
Fermi coupling constant and the respective Cabibbo-
Kobayashi-Maskawa matrix elements. Using parity-
invariance arguments, both the vector and AV operators
Oα

VðB0BÞðp0; pÞ and Oα
AðB0BÞðp0; pÞ contain three indepen-

dent Lorentz-structures,

Oα
VðB0BÞðp0; pÞ ¼ fB

0B
1 ðq2Þγα − i

MB
σαβqβfB

0B
2 ðq2Þ

þ 1

MB
qαfB

0B
3 ðq2Þ; ð2Þ

Oα
AðB0BÞðp0; pÞ ¼ gB

0B
1 ðq2Þγαγ5 − i

MB
σαβqβγ5gB

0B
2 ðq2Þ

þ 1

MB
qαγ5gB

0B
3 ðq2Þ; ð3Þ

with σαβ ¼ i½γα; γβ�=2 and qα ¼ ðp0 − pÞα and fi, gi as
the vector and AV form factors, normalized by the mass
MB of the baryon B. These functions contain information
about the internal structure of the baryons as probed by
AV sources.
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The quantities we study in this work are the AV
charges gB

0B
1 ðq2 ¼ 0Þ≡ gB

0B
1 . They are part of the ratios

g1ð0Þ=f1ð0Þ≡ g1=f1 which are measured through the
SHD. The SUð3Þ breaking corrections to the vector charges
are of a few percent [33–36] and can be safely neglected at
the NLO accuracy in the chiral expansion of g1=f1. Thus,
we use the SUð3Þ symmetric values for f1ð0Þ≡ f1 to
extract experimental values for g1.
In Table I we list the only six measured SHD processes

which are not related by isospin symmetry, as e.g. fΞ
0Σþ

1 ¼ffiffiffi
2

p
fΞ

−Σ0

1 and gΞ
0Σþ

1 ¼ ffiffiffi
2

p
gΞ

−Σ0

1 . The data is taken from [5],
where a different notation for the β-decay is used, which
results in a different sign of the g1 definition. For the sign of
the mode Ξ0 → Σþ we also refer to Refs. [8,9].
Furthermore, we list the SUð3Þ symmetric values for the
f1 and g1 results of the Cabibbo model [7], which are
equivalent to the BχPT at LO. Finally, for the Σ− → Λe−ν̄
channel, we expand the decay rate formula [7] in powers of
δ ¼ ðMΣ− −MΛÞ=MΣ− to leading order. Given that f1 ¼ 0

up to Oððmd −muÞ2Þ in this channel, we obtain a formula
directly relating the decay rate only to our form factor of
interest, g1, with an accuracy2 that is better than a 10%.
In addition to the experimental data, we use also lQCD

results from Nf ¼ 2þ 1 ensembles for the isovector AV
charges of the proton, Σ and Ξ. Introducing these results at
different nonphysical quark masses allows for separating
the LO parameters D and F from other p3 LECs. In
particular, we include the lowest Mπ data points from
the Hadron-Spectrum Collaboration [31] as well as the
whole set of the AV ratios for Σþ=P and Ξ0=P from the

QCDSF-UKQCD Collaboration [32]. The latter study is
done along the SUð3Þ singlet line where the quantity
2M2

K þM2
π is kept constant with the pion and kaon masses

each chosen to be smaller than the physical kaon mass. We
individually list all these data points in Table I. However,
we have to note that the AV coupling of the proton is known
to suffer from not fully understood lattice artifacts [37,38].
Therefore, we increase the lQCD uncertainties to be a
∼10% relative to the central values, which is roughly a
factor of 5 larger than the errors usually quoted. We assume
this accounts for lattice systematic effects such as excited-
state contamination, finite-volume or discretization correc-
tions which will not be addressed in this work.
For the isovector AV form factors we use the following

parametrization,

hBðp0Þjq̄γαγ5λ3qjBðpÞi

¼ ū0Bðp0Þ
�
G3

A;BBðq2Þγα þ
1

2MB
G3

P;BBðq2Þqα
�
γ5uBðpÞ;

ð4Þ

with λ3 as a Gell-Mann matrix andG3
A;BBðq2 ¼ 0Þ≡ gBBA;3 as

the isovector AV constant and G3
P;BBðp2Þ the induced

pseudoscalar form factor. It is worth recalling that these
form factors are related by isospin symmetry to those
appearing in the β-decays n → p, Σ− → Σ0, Σ0 → Σþ

and Ξ− → Ξ0.

III. BARYON CHIRAL PERTURBATION THEORY

Chiral perturbation theory (χPT) allows for model-
independent and systematic studies of hadronic phenomena
in the low-energy regime of QCD. It consists of a perturba-
tive expansion in p=ΛSB whereΛSB ¼ 4πfπ ≈ 1 GeV is the
scale of the spontaneous chiral symmetry breaking and p is

TABLE I. Upper table: Semileptonic hyperon data for the decays B → B0e−ν̄e. The values are taken from [5] where the experimental
result for Σ− → Λ is obtained as described in the text. The last two rows correspond to the SUð3Þ symmetric values of the Cabibbo
model. Lower table: The lQCD data from [31,32] entering our fits for the AV charges gXA;3 for the proton (P), Σþ and Ξ0. Note that the
normalization of Σþ in [31] is half the one used here. For Mη we use the Gell-Mann-Okubo mass relation.

n → p Λ → p Σ− → n Σ− → Λa Ξ0 → Σþ Ξ− → Λ

g1=f1 1.270(3) 0.718(15) −0.340ð17Þ 0.698(33) 1.210(50) 0.250(50)

fSUð3Þ
1 1 −

ffiffi
3
2

q
−1 0 1

ffiffi
3
2

q
gSUð3Þ
1 Dþ F −1ffiffi

6
p ðDþ 3FÞ D − F

ffiffi
2
3

q
D Dþ F −1ffiffi

6
p ðD − 3FÞ

P Σþ Ξ0 Σþ
P

Ξ0

P Mπ [MeV] MK [MeV]

1.22 2 × 0.418 −0.262 354 604
0.76 −0.23 350 485
0.76 −0.22 377 473
0.78 −0.22 414 459
0.77 −0.23 443 443
0.78 −0.23 481 420

aSince f1 ¼ 0, we list
ffiffiffiffiffiffiffiffi
3=2

p
g1 instead of g1=f1.

2We have checked that including corrections up to δ2 and
SUð3Þ-symmetric values for the other form factors involved up to
this order of the expansion have very little impact in the
phenomenological discussion below.
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either the typical energy involved in the process or the quark-
masses which break the chiral symmetry explicitly [1–3].
Only chiral-symmetry arguments are used to construct the
effective Lagrangian. The free LECs appearing with the
different operators must be determined using nonperturba-
tive calculations in QCD (e.g. lQCD) or experimental data.
The extension of χPT to the baryon sector implies some

difficulties. One is that the baryon mass introduces a new
hard scale which leads to the breakdown of the naive power
counting [4]. This can be solved by integrating out these
hard modes from the outset, like in HBχPT, although the
recoil corrections to the loop functions, incorporated order-
by-order in the HB expansion, can be large, especially in
SUð3Þ [20,30,39,40]. Alternatively, one can use a mani-
festly covariant formulation exploiting the fact that all the
power-counting breaking terms are analytic [19]. Therefore,
they have the same structure as the local operators of the
most general chiral Lagrangian and can be cancelled by a
suitable renormalization prescription. Two schemes stand
out among the manifestly covariant formalisms, the IR-
BχPT [19] and the EOMS-BχPT [24,25]. The IR-BχPT [19]
uses a regularization procedure which has been shown to
alter the analytic structure of the loops and to spoil the
description of some observables [20–23]. On the other hand,
the EOMS scheme is a minimal-subtraction scheme in
which the finite parts of the available bare LECs cancel
the power-counting-breaking terms [24,25]. This procedure
has the advantage that it incorporates the recoil corrections
of the loop graphs to all orders in consistency with
analyticity. A second difficulty in BχPT is related to the
closeness in mass of the decuplet resonances. Indeed, the
octet-decuplet mass splitting Δ is about 300 MeV, which is

smaller than the maximal scale of perturbations MK ∼
495 MeV, and the decuplet baryons should be introduced
as dynamical degrees of freedom in the framework.
In this work we employ the covariant SUð3Þ BχPT up to

order p3 with inclusion of explicit decuplet degrees of
freedom and the EOMS renormalization scheme [24,25].
The field content of the theory are the octet baryons, BðxÞ,
and decuplet baryons, TðxÞ, interacting with the pseudo-
scalar octet ϕðxÞ and an external AV field aμðxÞ. We use an
equivalent of the small-scale-expansion (SSE) scheme [41]
to count p ∼Mϕ ∼ Δ ∼ ϵ, denoting all small scales com-
monly by ϵ. Accordingly, the chiral order n of a Feynman
graph is given by

n ¼ 4L − 2Nϕ − NB − ND þ
X
k

kVk; ð5Þ

for a graph with L loops, Nϕ internal mesons, NB internal
octet baryons,ND internal decuplet baryons and Vk vertices
from a LðkÞ Lagrangian. Using Eq. (5) together with the
Lagrangian and the renormalization scheme specified
below, we list in Fig. 1 all Feynman graphs that contribute
to the AV charges up to order p3.
For our study, we need the following four terms from the

BχPT Lagrangian,

L ¼ Lð1Þ
B þ Lð3Þ

B þ Lð1Þ
D þ Lð1Þ

BD; ð6Þ
where the last two contributions contain the decuplet fields.
The number in brackets denotes the chiral order of each
part. The first term is the standard leading-order baryon-
octet Lagrangian and the second term the p3-order part
constructed in [42–44]. Their explicit expressions are

Lð1Þ
B ¼ hB̄ðiD −MB0ÞBi þ

D
2
hB̄γμγ5fuμ; Bgi þ

F
2
hB̄γμγ5½uμ; B�i;

Lð3Þ
B ¼ þh38hB̄uμγμγ5Bχþi þ h39hB̄χþγμγ5Buμi þ h40hB̄uμγμγ5Bihχþi þ h41hB̄γμγ5Buμihχþi

þ h42hB̄γμγ5Bihuμχþi þ h43hB̄γμγ5Bfuμ; χþgi þ h44hB̄fuμ; χþgγμγ5Bi þ � � � ; ð7Þ

where h…i denotes the flavor trace and all further notations
are explained in Appendix A. All the LECs in the chiral
Lagrangians are formally defined in the chiral limit where,
for instance, MB0 represents the corresponding baryon

mass. At LO, the complete meson-baryon and AV baryon
interactions are parametrized by only the two LECs D and
F. The Lð2Þ

B does not contain operators that contribute to the
AV couplings of the baryons, while several appear atOðp3Þ

FIG. 1. Feynman diagrams contributing up to Oðp3Þ to the gB
0B

1 AV form factor. Single solid lines denote octet baryons and double
lines decuplet baryons. The dashed lines correspond to mesons and the wiggly line to the external AV field. A number inside the vertex
denote its chiral order.
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that are parameterized by the hi LECs. Note that here we
choose the hi with the opposite sign as in [42–44] and that
only the structures h38;39 and h43;44 contain explicit SUð3Þ
symmetry breaking terms while the structures h40;41 include
SUð3Þ-singlets. Finally, the LEC h42 does not contribute to
the SHD or the isovector couplings (in the isospin limit),
although it contributes to the singlet and octet charges
of the baryons. We will discuss in Sec. IV C the important
consequences of this on the interpretation of the proton’s
spin.
For the decuplet Lagrangians we use

Lð1Þ
D ¼ T̄abc

μ ½γμναi∂α −MD0γ
μν�Tabc

ν

−
H

2M2
D0

ð∂σT̄abi
τ Þγαστuijμ γμγ5γακλð∂κTabjλÞ; ð8Þ

Lð1Þ
DB¼

iC
MD0

½ð∂μT̄
ijk
ν Þγμνλujlλ Bkmþ B̄mkγμνλuljλ ð∂μT

ijk
ν Þ�εilm;

ð9Þ
where Xab denotes the matrix element in the ath row and
bth column. Each entry of the totally symmetric tensor Tabc

is a spin-3=2 Rarita-Schwinger spinor representing a
decuplet baryon. In Appendix A we define explicitly all
relevant quantities. The C and H are the AVoctet-decuplet
and decuplet couplings, respectively, andMD0 is the chiral-
limit decuplet baryon mass. In the case of C, our definition
differs by a factor of 2 as compared to the large Nc
work [14].
The above decuplet Lagrangians implement the consis-

tent couplings of [26–28]. They are consistent in the sense
that the invariance of the free theory under a decuplet field
redefinition ofΨμ → Ψμ þ ∂μϵðxÞ, with ϵðxÞ a spinor field,
carries over to the interacting theory. This ensures the
decoupling of the spurious spin-1=2 components of the
Rarita-Schwinger spinor. In this way we also obtained
the last term in Eq. (8), i.e. by substituting Ψμ →
ði=MD0Þγμανð∂αΨνÞ [29] in the nonconsistent Lagrangian

Lð1Þ
nc ¼ H

2
T̄abi
α uijμ γμγ5Tabjα: ð10Þ

With the above Lagrangians, we can now write down all
terms that contribute up to order p3 to the AV charges gB

0B
1

and gBBA;3. The full unrenormalized result in dimensional
regularization is

gB
0B

X ¼
ffiffiffiffiffiffiffi
ZB0

p ffiffiffiffiffiffi
ZB

p
CB0B
1 þ CB0B

3 þ TB0B
3 þ BB0B

3 þ BB0B
3ab

þDB0B
3 þDB0B

3ab þOðp4Þ; ð11Þ

where the notation matches the one of Fig. 1 and we list all
contributions explicitly in Appendix B. The factors ZB are
the wavefunction-renormalization constants of Fig. 2
which, at this order, only contribute through the LO terms.
Furthermore, we apply the EOMS renormalization scheme
[24,25] at a scale Λ ¼ M̄B0.
We use Eq. (11) to fit in Sec. IV the data of Table I. Some

of the LECs appearing in the loop functions are already
well constrained by other observables than the AV charges
and we will use this additional information. Explicitly,
these are the meson decay constant f0, the baryon masses
MB0 andMD0, and the couplings of the decuplet C andH, all
in the chiral limit. The former three can be determined using
the extrapolation of lQCD data, namely, f0 ≃ 87 MeV [45],
MB0 ≃ 880 MeV [46] and MD0 ≃ 1152 MeV [47]. The
decuplet couplings in the chiral limit are not well known
and we use the large Nc relations C ¼ −D and H ¼ 3D −
9F [14], which are valid up to 1=N2

c corrections.
However, one can also use an alternative set for these

parameters based on their experimental values which are
better known. In this case, f0¼ f̄, MB0 ¼ M̄B and
MD0 ¼ M̄D, where f̄ is the average of physical pion, kaon
and η-decay constants and M̄BðDÞ the average of the physical
baryon masses in the respective multiplet. The octet-
decuplet coupling is determined from the (strong) decuplet
decays to C ¼ −0.85ð15Þ. The experimental decuplet cou-
plingH is not known and we use again the largeNc relation.
In Table II we list the input parameters used in each case.

Note that both choices are equivalent as one can rewrite one
into the other at the expense of higher order contributions.
We will perform our analysis with these two sets of values
in order to assess systematic uncertainties. Furthermore, for
the mass of the η meson, we use the Gell-Mann Okubo
mass formula, 3M2

η ¼ 4M2
K −M2

π , as a deviation from this
would result again only in higher order effects.
As a final remark concerning the determination of D and

F at Oðp3Þ, we note that the LECs h40;41 have the same
structure as the LO couplings but come multiplied by a
singlet of quark masses. We introduce lQCD results on the

TABLE II. Values of low-energy constants fixed in our fits. We list the meson decay constant f0, the pion, kaon and ηmassesMπ ,MK
andMη, and the octet and decuplet massesMB0 andMD0, respectively. As described in the text, we use two perturbatively equivalent sets
for the explicit numerical values entering the fits.

Appearing quantity f0 [MeV] Mπ [MeV] MK [MeV] Mη [MeV] MB0 [MeV] MD0 [MeV] C H

Chiral limit choice 87 140 496 547 880 1152 −D 3D − 9F
Physical average choice 1.17 · 92 140 496 547 1149 1381 −0.85 3D − 9F
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AV couplings in our statistical analysis precisely to disen-
tangle these LECs from the D and F.

IV. RESULTS

In this section we analyze the SHD data and the lQCD
results described in Sec. II and listed in Table I. We use the
covariant BχPT in the EOMS scheme [24,25] up to Oðp3Þ,
which leads to Eq. (11) for the octet-baryon AV charges. In
its complete form, there are eight fitted LECs appearing:D,
F, h38−41;43;44. The Table I contains updated experimental
data as compared to the ones used in previous works. We
start discussing earlier results obtained in analyses done at
LO in the chiral expansion or at NLO in the HBχPT or
IR-BχPT approaches.

A. Leading-order results and previous
NLO BχPT analyses

We examine first the description of the data at leading
order in BχPT, i.e. to OðpÞ. This is equivalent to the
SUð3Þ-symmetric Cabibbo model [6,7] and the fits are
shown in Table III. We approximately reproduce the results
of [7], taking into account the updated SHD data and also
excluding the Σ− → Λ channel. Its consideration worsens
the LO fit as it produces the highest contribution to the χ2.
However, in the next section we will see that the description
improves at NLO. For illustration, we also include the
lQCD data in one of the fits. This gives similarly good
results, which already indicates that the quark-mass
dependence of the AV charges is moderate. Additionally,
this suggests that the interpretation given in [7] that there
are only mild SUð3Þ breaking effects in SHD carries also
over to unphysical quark masses. We will discuss this later
in more detail.
At NLO there are several works on the AV charges in

HBχPT [10,11,48]. Many more studies implement a
combined chiral and 1=Nc expansion that aims at exploit-
ing the cancellations between octet and decuplet loop
diagrams arising in the large Nc limit [12–17]. Here we
will restrict ourselves to the discussion of the previous
analyses of the chiral expansion of g1ð0Þ.
The HB results can be obtained by keeping only the

LO term of a (nonrelativistic) expansion of the covariant

loop-functions in powers of 1=MB. We have checked that
we recover all the nonanalytic structures reported in these
earlier HB works, including those concerning the decuplet
contributions in the SSE [15]. The main difference of
these studies with respect to ours is that all the contribu-
tions from analytic parts were neglected. That is, those
stemming from the loop contributions were removed and
hi ¼ 0 was assumed, as well as the approximations Δ ¼
MD0 −MB0 ¼ 0 and Mπ ¼ 0 were employed. To account
for all this, the errors of the SHD data were increased
globally to 0.2. In using these same approximations and the
data of Table I, we are able to qualitatively reproduce the
results and conclusions of [10,11].
In any case, this treatment of NLO corrections and the

increment of error bars is not systematic. In particular, we
will see below that the role of the analytic terms is
very important and they are a source for cancellations at
NLO that dominate those between the octet and the
decuplet.
Apart from the HB studies, the work in IR-BχPT of

Ref. [18] correctly incorporated the Oðp3Þ contact terms,
i.e. included all the LECs hi. To perform fits, the two SUð3Þ
symmetric LECs h40=41 are absorbed into D and F, leading
to the same number of fit-parameters as of input data. They
specifically investigated the effect of the leading recoil
corrections in the IR-BχPT, and found that these, which
formally are of Oðp4Þ in the HB expansion, are typically
larger than the LO ones. Naturally, the conclusion of this
study was that the convergence of the chiral expansion of
g1ð0Þ is severely broken.
However, this work has some weaknesses that need to

be scrutinized. Firstly, the fitted parameters D and F are
not those defined in the chiral limit but an effective
parametrization which mixes OðpÞ and Oðp3Þ contribu-
tions. This hinders any definite discussion about the
convergence of the chiral expansion of g1ð0Þ. Secondly,
the decuplet contributions are neglected despite of the
important role they play in reducing the overall size of
the loop corrections, as suggested by the previous HB
and large Nc studies. Finally, and most importantly, it
must be investigated if the large size of the recoil
corrections reported in this paper, which are roughly a
factor of 10 larger than expected by power counting, is a
genuine problem of the chiral expansion or, instead, an
artifact introduced by the IR renormalization scheme. In
the next section, we discuss our complete results in the
EOMS scheme where we tackle all the issues men-
tioned above.

FIG. 2. Diagrams contributing to the wave-function renormal-
ization. The notation is the same as in Fig. 1.

TABLE III. Cabibbo model fits to the SHD data. The leading-
order BχPT is equivalent to the Cabibbo model. In the second
column we use the old data of [7] and in the others the data
of Table I where the Ξ0 → Σþ mode is updated [8,9] and the
Σ− → Λ one is included.

[7] SHD SHDþ lQCD

D 0.804(8) 0.800(8) 0.785(5)
F 0.463(8) 0.469(8) 0.483(5)
F=D 0.58 0.59 0.62
χ2red

2.0
3
¼ 0.7 13.6

3
¼ 4.5 23.5

17
¼ 1.4
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B. Results in the EOMS-BχPT at NLO

In Table IV and Fig. 3, we show our final results of the
EOMS-BχPT fits to the SHD data and lQCD results
discussed in Sec. II. The description is excellent at NLO
whether decuplet resonances are explicitly included or not.
Also, the Σ− → Λmode can now be consistently described.

For each channel and fit strategy, we separate the
different contributions to g1ð0Þ. By looking at the last
row in Table IV, it can be noticed that the total NLO
contribution is typically smaller than 20% (30%) of the LO
one, except for the Σ− → n channel which could be up to a
∼68% (∼118%) in the theory with (without) explicit
decuplet baryons. The overall picture is consistent with

FIG. 3 (color online). Axial-vector charges gBB
0

1 and gXA;3 of the SHD and octet baryons compared to our fits including explicit virtual
decuplet states. Blue circle markers denote the fitted input data points. The square markers denote our full BχPT results while the
triangle markers show the LO contribution. The shaded area corresponds to the lQCD input from [31] and [32]. In the case of the lQCD
data from [32], the data points are listed from left to right with increasing Mπ .

TABLE IV. Axial-vector charges and couplings of the octet baryons. We used the average of the physical values for the fixed LECs.
The results are decomposed into their chiral order contributions, i.e. into LO and the individual p3 contributions of the graphs C3, T3 and
loops with virtual octet baryons Bloops or decuplet baryons Dloops. We also show the total NLO contributions relative to the LO one. In
the last four columns are predictions for the strangeness-conserving SHD where the values of gBB

0
1 and gBA;3 are connected by isospin

symmetry.

g1 N → P Λ → P Σ− → n Σ− → Λ Ξ0 → Σþ Ξ− → Λ Σ− → Σ0 Ξ− → Ξ0 gΣ
þ

A;3 gΞ
0

A;3

Exp 1.27(0) −0.88ð2Þ 0.34(2) 0.57(3) 1.21(5) 0.31(6) na na na na

Cov
LO 1.16 −0.89 0.15 0.54 1.16 0.35 0.72 0.15 1.01 −0.150
C3 −0.45 0.59 0.14 −0.30 −0.92 −0.49 −0.50 −0.01 −0.71 0.01
T3 0.27 −0.40 0.07 0.13 0.52 0.16 0.17 0.04 0.24 −0.04
Bloops 0.29 −0.19 −0.03 0.23 0.45 0.22 0.34 0.02 0.48 −0.02
full 1.27(0) −0.89ð2Þ 0.33(2) 0.60(2) 1.21(4) 0.24(4) 0.72(5) 0.20(4) 1.02(7) −0.20ð4Þ
jp3=p1j 0.09 ∼0.0 1.18 0.11 0.04 0.32 ∼0 0.33 ∼0 0.33
Covþ D
LO 1.08 −0.80 0.20 0.52 1.08 0.28 0.62 0.20 0.89 −0.20
C3 −0.18 0.24 0.01 −0.18 −0.28 −0.17 0.08 −0.22 0.11 0.22
T3 0.25 −0.36 0.09 0.12 0.48 0.13 0.15 0.05 0.21 −0.05
Bloops 0.18 −0.09 −0.02 0.17 0.30 0.12 0.24 0.06 0.34 −0.06
Dloops −0.07 0.13 0.06 −0.03 −0.37 −0.15 −0.36 0.15 −0.51 −0.15
full 1.27(0) −0.88ð2Þ 0.33(2) 0.60(2) 1.22(4) 0.21(4) 0.74(6) 0.23(4) 1.05(8) −0.23ð4Þ
jp3=p1j 0.17 0.10 0.68 0.14 0.13 0.24 0.18 0.15 0.18 0.15
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the naive power counting by which one expects the
Oðp3Þ corrections to be around ðMK=ΛÞ2 ∼ 25% of the
OðpÞ ones.
As a consequence, BχPT at NLO is compatible with

small SUð3Þ-breaking effects in the SHD. This is remark-
able since only at LO the Lagrangian is fully SUð3Þ
symmetric and most NLO operators or loop corrections
break the symmetry. This structure, together with the actual
number of LECs, is not arbitrary but dictated by sponta-
neous chiral symmetry breaking and chiral power counting.
In practice, the successful description of the SHD data and
the good convergence are achieved by sizable cancellations
between the different NLO terms. These cancellations
are different in the theories with or without the explicit
decuplet baryons.
In the theory without the decuplet, the loop contributions

are given by the tadpoles (T3) and the diagrams with
internal octet baryons (Bloops) only. Individually, these are
typically 25% of the LO value although they can be as large
as a 50%. On top of that, they have the same sign in almost
all the channels. The large SUð3Þ-breaking thus produced
is not compatible with the SHD data and, as a result,
the LECs hi coming from the Oðp3Þ contact-terms (C3)
are adjusted in the fit to largely cancel the effects of
the loops.
On the other hand, in the theory with explicit decuplet

contributions, the new loops (Dloops) can be as sizable as the
other ones but, generally, with the opposite sign.We observe
that the octet-decuplet cancellations found in [11] carry
over to the covariant formulation of BχPT and using a finite
octet-decuplet mass splitting. The main consequence of
this is an important reduction of the net contribution of the
loops and, hence, of the size of the C3 terms. Although the
results and overall convergence patterns look equivalent in
both theories, the inspection of the different pieces reveals
that thevalues of theLECs in the theorywith the decuplet are
more natural.
In Table V we show the values of our fitted parameters.

As discussed in Sec. III, one has the freedom at NLO to fix

some the LECs to either their chiral limit values or the
average of their physical ones. Our default choice is the
latter, which corresponds to the results of Table IV.
However, we list the values of the fitted LECs for both
choices and notice that the results are rather insensitive with
respect to these sets of input parameters. In addition, we
also tested the impact of our treatments concerning the
decuplet LECs and the f1 values used to extract the
experimental g1 values. For the former we performed fits
with an up to 10% ∼ 1=N2

c uncertainty to the large Nc input
as well as fits with fixed H ¼ −gAð8=5Þ. For the latter, we
investigated the impact of possible deviations from the
SUð3Þ symmetric f1 by randomly up to 5% [34–36]. In all
cases we obtain results that are compatible within the
statistical uncertainties of those given in Tables IV and V.
In the last row of Table V we show the reduced χ2 for the

different fits. By comparing them to those from the LO fits
in Table III, one notes that the description of the data
improves at NLO. The values of D and F change by ∼21%
and ∼6%, respectively. Furthermore, it is remarkable that at
NLO the ratio F=D is closer to its large Nc prediction of
2=3. As for the Oðp3Þ LECs, there are large differences
between the results in the theory with or without the
decuplet. This is expected on general grounds since the
effects of the resonances are encoded in the values of
the LECs in the latter case.
As a final result for D and F we report

D ¼ 0.623ð61Þð17Þ; F ¼ 0.441ð47Þð2Þ; ð12Þ

which is the average between our results with explicit
decuplet states as listed in Table V. This accounts for the
“naturalness” issuewe addressed above for the decuplet-less
theory and the fact that integrating out decuplet resonances
in a SUð3Þ context is not well justified. The first error is
statistical and the second a systematical one, that covers
the central values of the two fits. As an interesting by-
product of our results, we predict the chiral-limit value of

TABLE V. Fit results of our EOMS BχPT analysis of the data in Table I. In the large NC limit one has F=D ¼ 2=3
and C ¼ −D. We list the results with respect to the choices of fixed parameters as shown in Table II. The choice of
chiral limit parameters is marked with chiral.

Cov Covþ D Cov chiral Covþ D chiral

D 0.658(64) 0.639(61) 0.634(59) 0.606(53)
F 0.507(56) 0.443(47) 0.492(52) 0.439(42)
F=D 0.77 0.69 0.78 0.72
h38 [GeV−2] 0.146(29) −0.008ð34Þ 0.143(27) −0.051ð37Þ
h39 [GeV−2] −0.002ð36Þ 0.032(36) 0.006(38) 0.049(42)
h40 [GeV−2] −0.349ð135Þ −0.077ð102Þ −0.354ð133Þ −0.030ð52Þ
h41 [GeV−2] −0.009ð47Þ −0.151ð49Þ −0.004ð45Þ −0.113ð59Þ
h43 [GeV−2] 0.082(39) 0.159(49) 0.083(39) 0.159(53)
h44 [GeV−2] −0.111ð26Þ −0.062ð22Þ −0.118ð25Þ −0.062ð15Þ
χ2red

7.0
11

¼ 0.64 7.4
11

¼ 0.67 7.2
11

¼ 0.65 7.9
11

¼ 0.72
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gA0 ¼ 1.064ð77Þð19Þ in the SUð3Þ-BχPT, which is smaller
than the physical AV charge of gA ¼ 1.270ð3Þ.
Having obtained a reliable description of the g1=f1 ratios

of the SHD, we are also able to discuss the channels that
did not enter in our fits. These are the SHD Σ− → Σ0

and Ξ− → Ξ0 and the isovector AV charges gΣ
þΣþ

A;3 and

gΞ
0Ξ0

A;3 at the physical point. They are not experimentally
measured yet and our values are predictions. We list the
results in the last four columns of Table IV. Note that the
values shown for the SHD and the charges are related by
isospin. However, for convenience we give both of them
explicitly.
Since we can apply a nonrelativistic expansion to our

covariant formulas, we are also able to perform a similar
SHD study in the HB formalism. We list the results for the
decuplet-less case in Table X of Appendix C. Also with this
approach, we obtain an excellent description of the SHD
data with equivalent conclusions to those discussed above.
These findings, together with our EOMS results above, are
quite the opposite to those in the covariant IR-BχPT study
[18] where very large recoil corrections are reported. As a
result, we conclude that the stated poor chiral convergence
might be related to the problems this covariant prescription
introduces in the analytic structure of the loop functions
[20–23]. Apart from this, we want to stress that the
agreement between covariant and HBχPT is quite remark-
able given the sizable differences that have been found
between these approaches in other SUð3Þ-BχPT applica-
tions [20,30,39]. Probably this is a consequence of the large
number of LECs at NLO, as it can be seen by comparing
the values in the different columns. Differences between the
two approaches might show up in other observables where
the values of these LECs also appear, e.g. in meson-baryon
scattering processes.

Finally, we are also able to discuss how the
SUð3Þ-breaking effects behave for unphysical quark-
masses. In Figs. 4 and 5 we show the chiral behavior of
the isovector AV charges as function of Mπ, together with
the ratios of the NLO contributions over the LO ones, i.e.
their chiral convergences. We also plot the LO contribu-
tions of the NLO fits as well as the results of the pure
Cabibbo model fits (LO BχPT) of Sec. III.
We see that the chiral behavior is quite flat and is in very

good agreement with the LO result and the dependence
shown by the lQCD studies. Therefore, the cancellations
among various p3 terms at the physical point also hold for
unphysical quark masses. The overall chiral convergence is
very acceptable for the whole quark-mass region. Similar

FIG. 4 (color online). Chiral extrapolation of the AV charges gXA;3 of the proton (red), Σþ (blue) and Ξ0 (green) as function ofMπ . The
left figure shows the lowestMπ data from [31] withMK ¼ 604 MeV. The right figure shows the data from [32] along the SUð3Þ singlet
line for gΣ

þ
A;3=g

P
A;3 (blue) and g

Ξ0

A;3=g
P
A;3 (green). We also plot the LO contribution as obtained from the full p3 fit, dashed line, as well as the

LO results of Sec. IVA, dotted line.

FIG. 5 (color online). Chiral convergence of theAV charges.We
show the ratio of NLO contributions over the LO one for the gXA;3 of
the proton (red), Σþ (blue) and Ξ0 (green) as function of Mπ .
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chiral extrapolations can be found in the theory without
explicit decuplet states as well as in the HB approach.

C. Octet axial-vector charges and the quark
contribution to the proton’s spin

Avery important application of the study of the SHD has
been the prediction of the octet axial charge of the proton,
g8A. This is defined as the axial charge corresponding to
hPðp0Þjq̄γμγ5λ8qjPðp0Þi and its importance lies on the fact
that it gives a crucial constraint to obtain the flavor structure
of the quark contribution to the proton’s spin (see [49] for a
recent review). Even though this is an old and persisting
question in nucleon structure, the value of g8A is not well
known yet. At LO in the chiral expansion one recovers
the SUð3Þ prediction that g8A ¼ 3F −D≃ 0.58. The suc-
cess of the Cabibbo model in the description of the SHD
suggests that this determination could be accurate and it is
often used in the phenomenological analyses. However, a
model-independent understanding of the quark contribu-
tion to the proton spin requires a better determination
of g8A and efforts in this direction have been undertaken in
lQCD [50,51].3

In principle, BχPT can be used to improve the deter-
mination to higher orders in the chiral expansion. Such
studies were carried out in the HB [10] and IR [18] schemes
and the conclusions were in both cases that the NLO
correction could be very large which hampered the con-
vergence of the chiral expansion of g8A. However, these
conclusions are afflicted by the same caveats as those
addressed above in Sec. IVA, and they should be revised
in the context of the current full NLO calculation.
Furthermore, the octet axial charge receives a contribution
from a LEC, h42, that is not constrained by SHD data as it
does not contribute to the flavor-changing transitions or to
the isospin related isovectorial charges. This fact has been
overlooked in the previous chiral analyses and it precludes a
determination of g8A from the SHD alone.
Nevertheless, even without a precise value for h42 we are

able to study the convergence of g8A under quite general
assumptions. For this, we assume that g8A is close to its
SUð3Þ-symmetric value, g8A ∼ 0.58, as suggested by a
recent lQCD determination [50], and we fix h42.
In the two first columns of Table VI we show the size

of the LO (3F −D) and NLO contributions to g8A. The
other columns of the table split the NLO part into the
contribution of the corresponding diagrams of Fig. 1.
By comparing the overall LO and NLO contributions,

we see that the convergence in this scenario is good, with
NLO corrections about a 20% (30%) the LO ones in the

decuplet (decuplet-less) theory. In the theory without
decuplet baryons one finds that the total loop contribution
is quite large. As a consequence, the NLO contact-terms are
sizable and as large as the total LO. This leads to the same
naturalness considerations discussed above for the AV
charges. On the other hand, the diagrams with decuplet
baryons reduce the net loop contribution and improve the
convergence.
The current analysis clarifies the structure of the chiral

expansion of the octet axial coupling of the proton and
opens the possibility for a model-independent treatment of
its SUð3Þ-breaking corrections and for an improvement
of the phenomenological extractions of the quark content of
the proton’s spin.

V. SUMMARY

We have studied the axial-vector charges of the octet
baryons in SUð3Þ covariant BχPT up to Oðp3Þ using the
extended-on-mass-shell scheme and including decuplet
resonances. We report that BχPT at this next-to-leading
order consistently describes the charges as well as the ratios
g1=f1 of the axial-vector and vector couplings measured in
the semileptonic hyperon decays. This is a novel feature as
compared with previous BχPT studies in the nonrelativistic
heavy-baryon scheme or the relativistic infrared approach.
Explicitly, we have been able to determine all appearing

low-energy constants from simultaneous fits to the semi-
leptonic hyperon decay data and available lQCD results.
This includes the leading-order constants D and F as well
as all the NLO constants h38−41;43;44. Along this, we have
clarified the role of the different contact terms appearing at
this order which were not treated systematically in the
previous works. Especially, we disentangle the two singlet
LECs h40;41 from D and F, which lead to an accurate
determination of the latter and a consistent discussion of the
chiral convergence for the axial-vector charges.
We report a systematic improvement of the theoretical

understanding of the data with respect to the SUð3Þ-
symmetric Cabibbo model, which is equivalent to the
BχPT at LO. That is, at NLO we are also able to
consistently include the mode Σ− → Λ, as well as we
obtain NLO corrections that are typically 20% of the LO
ones. This size of NLO effects is in agreement with the
naive power counting. Therefore, our analysis shows that
SUð3Þ-symmetry-breaking effects, as given by the sponta-
neous chiral symmetry and the chiral power counting in

TABLE VI. Different contributions to g8A in EOMS-BχPT up to
Oðp3Þ and assuming g8A ¼ 0.58.

LO NLO C3 T3 B3 D3

Octet 0.84 −0.26 −0.72 0.55 −0.09 −
Octetþ Decuplet 0.71 −0.13 −0.38 0.47 −0.13 −0.09

3As a side remark, we note that the quark contribution to the
proton spin is an important input parameter for constraining
beyond-the-standard-model parameters from the spin-dependent
cross section in direct dark matter searches.
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BχPT, are important to understand the semileptonic
hyperon decays data accurately.
In practice, the agreement at Oðp3Þ is achieved by

sizable cancellations between different SUð3Þ breaking
terms, in particular those parameterized by the p3-LECs
hi and the ones from the loops. We showed that considering
only NLO nonanalytic terms is not enough and that NLO
analytic terms play an important role. The cancellations
themselves appear in both theories with and without
explicit decuplet states, however, they have a different
structure. In the case with decuplet baryons, we found that
their explicit contributions are a source of cancellations
which lead to more natural values for theOðp3Þ LECs. This
is in agreement with the expectations derived from the
analysis at large Nc. Furthermore, the fact that in the
decuplet theory we can successfully describe the small
SUð3Þ-breaking in g1ð0Þ by means of a chiral expansion
without anomalously large or small chiral corrections at
NLO is a very nontrivial outcome of our study.
A phenomenological consequence of our work is

the determination of the LO axial couplings D ¼
0.623ð61Þð17Þ and F ¼ 0.441ð47Þð2Þ up to Oðp3Þ accu-
racy in a completely systematic fashion. Remarkably, these
values are closer to the large Nc ratio F=D ∼ 2=3 than at
LO and they predict the axial coupling of the nucleon in the
chiral limit and in SUð3Þ to be gA0 ¼ 1.064ð77Þð19Þ.
We also predict the isovector axial-vector charges for the
Λ, Σþ and Ξ0 or, equivalently, for the semileptonic hyperon
decays channels of Σ− → Σ0 and Ξ− → Ξ−.
Finally, we have discussed an important application of

the analysis of the axial-vector charges, namely the
prediction of the octet axial coupling g8A and its role in
the determination of the quark content of the proton spin.
More specifically, we have found that there is a contribution
from a NLO contact term (whose LEC is labeled by h42)
which is unconstrained by the semileptonic hyperon
decays. Therefore one needs additional experimental or
nonperturbative information to determine this parameter.
Nevertheless, we studied the chiral convergence of g8A and
concluded that it is reasonable. This should allow for a
model-independent determination of this quantity.
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APPENDIX A: NOTATION

The notation for the baryon Lagrangian Eq. (6) is as
follows. The meson field ϕ ¼ ϕðxÞ is defined by

U ¼ ei
ffiffi
2

p
f0
ϕ and u ¼

ffiffiffiffi
U

p
ðA1Þ

ϕ ¼ λaϕaffiffiffi
2

p ¼ 1ffiffiffi
2

p

2
6664
ϕ3 þ 1ffiffi

3
p ϕ8 ϕ1 − iϕ2 ϕ4 − iϕ5

ϕ1 þ iϕ2 −ϕ3 þ 1ffiffi
3

p ϕ8 ϕ6 − iϕ7

ϕ4 þ iϕ5 ϕ6 þ iϕ7 − 2ffiffi
3

p ϕ8

3
7775

¼

2
6664

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

3
7775: ðA2Þ

The octet baryon field BðxÞ is defined by

B ¼ λaffiffiffi
2

p Ba ¼

2
6664

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

3
7775

¼ ðBabÞ; ðA3Þ

B̄ ¼ λaffiffiffi
2

p B̄a ¼

2
6664

1ffiffi
2

p Σ̄0 þ 1ffiffi
6

p Λ̄ Σ̄− Ξ̄−

Σ̄þ − 1ffiffi
2

p Σ̄0 þ 1ffiffi
6

p Λ̄ Ξ̄0

p̄ n̄ − 2ffiffi
6

p Λ̄

3
7775

¼ ðB̄abÞ: ðA4Þ

The decuplet field TðxÞ is defined by the totally symmetric
tensor Tabc,

Tα
111 ¼ΔþþαTν

112¼
1ffiffiffi
3

p Δþα Tα
122 ¼

1ffiffiffi
3

p Δ0αTα
222¼Δ−α

ðA5Þ

Tν
113 ¼

1ffiffiffi
3

p Σ�þα Tν
123 ¼

1ffiffiffi
6

p Σ�0α Tα
223 ¼

1ffiffiffi
3

p Σ�−α

ðA6Þ

Tν
133 ¼

1ffiffiffi
3

p Ξ�0α Tα
233 ¼

1ffiffiffi
3

p Ξ�−α ðA7Þ

Tα
333 ¼ Ω−α; ðA8Þ

together with the decuplet baryon propagator as
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SαβΔ ðpÞ¼ pþMD0

p2−M2
D0þ iε

�
−gαβþ 1

D−1
γαγβ

þ 1

ðD−1ÞMD0

ðγαpβ−γβpαÞþ D−2

ðD−1ÞM2
D0

pαpβ

�
:

ðA9Þ

The external axial-vector field is defined by

aμ ¼ aaμðxÞ
λaffiffiffi
2

p

¼

2
6664

1ffiffi
2

p a0þ 1ffiffi
6

p aη aπ
þ

aK
þ

aπ
− − 1ffiffi

2
p a0þ 1ffiffi

6
p aη aK

0

aK
−

aK̄
0 − 2ffiffi

6
p aη

3
7775: ðA10Þ

All other χPT quantities appearing in Eq. (6) are given by

Γμ ¼
1

2
½u†ð∂μuÞ þ uð∂μu†Þ� −

i
2
½u†rμuþ ulμu†�; ðA11Þ

uμ ¼ i½u†ð∂μuÞ − uð∂μu†Þ� þ ½u†rμu − ulμu†�; ðA12Þ

χþ ¼ u†χu† þ uχ†u; ðA13Þ

DμB ¼ ∂μBþ ½Γμ; B�; ðA14Þ

χ ¼ diag½M2
π;M2

π; 2M2
K −M2

π�; ðA15Þ

fμν− ¼ uFμν
L u† − u†Fμν

R u; ðA16Þ

Fμν
X ¼ ∂μXν − ∂νXμ − i½Xμ; Xν� with X ¼ r; l; ðA17Þ

γαβμ ¼ 1

2

�
1

2
½γα; γβ�; γμ

�
¼ 1

2
ðγαγβγμ − γμγβγαÞ: ðA18Þ

The external fields rμ ¼ vμ þ aμ and lμ ¼ vμ − aμ contain
the external vector and axial-vector fields vμ ¼ vμðxÞ and
aμ ¼ aμðxÞ. For the present work we set vμ ¼ 0.
The Lagrangian Eq. (6) produces the contributions of

Fig. 1 for which we need the following loop integrals in
D ¼ 4 − 2ε dimensions,

J0ðM2;Λ2Þ¼ −i
ð4πÞ2 ðM

2Þ2
�
L−1þ ln

M2

Λ2
−
1

2

�
; ðA19Þ

J1ðM2;Λ2Þ ¼ −i
ð4πÞ2M

2

�
L − 1þ ln

M2

Λ2

�
; ðA20Þ

J2ðM2;Λ2Þ ¼ −i
ð4πÞ2

�
Lþ ln

M2

Λ2

�
; ðA21Þ

J3ðM2;Λ2Þ ¼ −i
ð4πÞ2

1

2

1

M2
; ðA22Þ

with L ¼ − 1
ε þ γE − ln 4π. We renormalize all contribu-

tions proportional to L.

APPENDIX B: AXIAL-VECTOR FORM FACTORS

We list here all unrenormalized results of Figs. 1 and 2
that contribute to the structure ū0ðp0Þγμγ5uðpÞ at q2 ¼ 0.
The explicit contributions of Eq. (11) for a given process
B0 → B are

C1 ¼ KC1; ðB1Þ
C3 ¼ KC3; ðB2Þ

X ¼
X

ϕ¼π;K;η

Xϕ for

X ¼ T3; B3ab; B3; D3ab; D3;ΣB3ðpÞ;ΣD3ðpÞ; ðB3Þ
ffiffiffiffiffiffi
ZB

p
¼ 1þ 1

2

∂
∂pΣð3Þ

B ðMB0Þ þOðp3Þ; ðB4Þ

with

Tϕ
3 ¼ −Kϕ

T3

M2
ϕ

ð4πf0Þ2
�
L − 1þ ln

M2
ϕ

Λ2

�
; ðB5Þ

Bϕ
3ab ¼ −i½Kϕ

3a − Kϕ
3b�

1

f20

Z
1

0

dz½ð−2þ εÞJB1 −M2
Bz

2JB2 �;

ðB6Þ

Bϕ
3 ¼ iKϕ

3

1

f20

Z
1

0

dz2z

��
3 −

5

2
ε

�
JB1 −M2

Bð−1 − 3z2 þ εð2þ z2ÞÞJB2 þM4
Bz

4JB3

�
; ðB7Þ

Dϕ
3ab ¼ −i½Kϕ

D3a þ Kϕ
D3b�

C2

f20M
2
D

Z
1

0

dy
Z

1

0

dz2z
1

18
MB

× ððð9 − 6εÞMD þMBð30 − 12zþ εð7z − 19ÞÞÞJDB
1 þ ðε − 3ÞM2

Bðz − 2Þ2ððz − 1ÞMB −MDÞJDB
2 Þ; ðB8Þ

Dϕ
3 ¼ iKϕ

D3

C2H
f20M

4
D

Z
1

0

dz2z
1

108
M2

B½−2ðð109ε − 60ÞM2
D − 2ð139ε − 60ÞMBMDðz − 1Þ þ 6ð41ε − 15ÞM2

Bðz − 1Þ2ÞJD1
þ ð60 − 319εÞJD0 − 2ð31ε − 15ÞM2

Bð1 − zÞ2ðMB þMD −MBzÞ2JD2 �; ðB9Þ
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TABLE VII. Coefficients of the graphs C1, T3, B3ab, B3 C3 and the decuplet ones D3ab and D3 contributing to the semileptonic
hyperon decays.

n → p Λ → p Σ− → n Σ− → Λ Ξ0 → Σþ Ξ− → Σ0 Ξ− → Λ

KC1 Dþ F −
ffiffi
1
6

q
ðDþ 3FÞ D − F

ffiffi
2
3

q
D Dþ F

ffiffi
1
2

q
ðDþ FÞ

ffiffi
1
6

q
ð3F −DÞ

Kπ
T3 Dþ F − 1

8

ffiffi
3
2

q
ðDþ 3FÞ 3

8
ðD − FÞ

ffiffi
2
3

q
D 3

8
ðDþ FÞ 3

8
ffiffi
2

p ðDþ FÞ − 1
8

ffiffi
3
2

q
ðD − 3FÞ

KK
T3

1
2
ðDþ FÞ − 1

4

ffiffi
3
2

q
ðDþ 3FÞ 3

4
ðD − FÞ

ffiffi
1
6

q
D 3

4
ðDþ FÞ 3

4

ffiffi
1
2

q
ðDþ FÞ − 1

4

ffiffi
3
2

q
ðD − 3FÞ

Kη
T3 0 − 1

8

ffiffi
3
2

q
ðDþ 3FÞ 3

8
ðD − FÞ 0 3

8
ðDþ FÞ 3

8
ffiffi
2

p ðDþ FÞ − 1
8

ffiffi
3
2

q
ðD − 3FÞ

Kπ
3a Dþ F − 3

4

ffiffi
3
2

q
ðDþ FÞ 1

4
ðDþ FÞ 2

ffiffi
2
3

q
D 1

2
ðDþ 2FÞ 1

2
ffiffi
2

p ðDþ 2FÞ 1
2

ffiffi
3
2

q
D

KK
3a

1
2
ðDþ FÞ 0 D − F − Dffiffi

6
p DþF

2
DþF
2
ffiffi
2

p − 1
2

ffiffi
3
2

q
ðD − 3FÞ

Kη
3a 0 1

4

ffiffi
3
2

q
ðD − 3FÞ 1

4
ðD − 3FÞ 0 D

2
D

2
ffiffi
2

p − 1
2

ffiffi
3
2

q
D

Kπ
3b −D − F − 1

2

ffiffi
3
2

q
D 1

2
ð2F −DÞ 0 − D−F

4
− D−F

4
ffiffi
2

p 3
4

ffiffi
3
2

q
ðD − FÞ

KK
3b − 1

2
ðDþ FÞ 1

2

ffiffi
3
2

q
ðDþ 3FÞ 1

2
ð−Dþ FÞ −

ffiffi
3
2

q
D −ðDþ FÞ − DþFffiffi

2
p 0

Kη
3b 0 1

2

ffiffi
3
2

q
D − D

2
0 − ðDþ3FÞ

4
− ðDþ3FÞ

4
ffiffi
2

p − 1
4

ffiffi
3
2

q
ðDþ 3FÞ

KC3∶ n → p 8ðh38 þ h40ÞM2
K − ð4h38 − 4h40 − 8h44ÞM2

π

KC3∶ Λ → p −
ffiffi
2
3

q
ð8h38 þ 8h40 − 4h41 − 4h43 þ 8h44ÞM2

K −
ffiffi
2
3

q
ð−4h38 − 2h39 þ 4h40 − 2h41ÞM2

π

KC3∶ Σ− → n 8ðh41 þ h43ÞM2
K þ 4ðh39 þ h41ÞM2

π

KC3∶ Σ− → Λ 4
ffiffi
2
3

q
ðh40 þ h41ÞM2

K −
ffiffi
2
3

q
ð−2h38 − 2h39 − 2h40 − 2h41 − 4h43 − 4h44ÞM2

π

KC3∶ Ξ0 → Σþ 8ðh40 þ h44ÞM2
K þ 4ðh38 þ h40ÞM2

π

KC3∶ Ξ− → Σ0 4
ffiffiffi
2

p ðh40 þ h44ÞM2
K þ 2

ffiffiffi
2

p ðh38 þ h40ÞM2
π

KC3∶ Ξ− → Λ −
ffiffi
2
3

q
ð8h39 − 4h40 þ 8h41 þ 8h43 − 4h44ÞM2

K −
ffiffi
2
3

q
ð−2h38 − 4h39 − 2h40 þ 4h41ÞM2

π

Kϕ
3 ϕ ¼ π ϕ ¼ K ϕ ¼ η

n → p 1
4
ðDþ FÞ3 1

3
ðD3 −D2F þ 3DF2 − 3F3Þ − 1

12
ðD − 3FÞ2ðDþ FÞ

Λ → p 1
2

ffiffi
3
2

q
Dð−D2 þ F2Þ 5D3−15D2F−9DF2þ27F3

6
ffiffi
6

p DðD2−9F2Þ
6
ffiffi
6

p

Σ− → n 1
6
ðD3 − 2D2F þ 3DF2 þ 6F3Þ 1

6
ðD3 þD2F þ 3DF2 þ 3F3Þ 1

6
DðD2 − 4DF þ 3F2Þ

Σ− → Λ − 1
3

ffiffi
2
3

q
DðD2 − 6F2Þ DðD2−F2Þffiffi

6
p 1

3

ffiffi
2
3

q
D3

Ξ0 → Σþ D3þ2D2Fþ3DF2−6F3

6
D3−D2Fþ3DF2−3F3

6

DðD2þ4DFþ3F2Þ
6

Ξ− → Σ0 D3þ2D2Fþ3DF2−6F3

6
ffiffi
2

p D3−D2Fþ3DF2−3F3

6
ffiffi
2

p DðD2þ4DFþ3F2Þ
6
ffiffi
2

p

Ξ− → Λ 1
2

ffiffi
3
2

q
Dð−D2 þ F2Þ 5D3þ15D2F−9DF2−27F3

6
ffiffi
6

p DðD2−9F2Þ
6
ffiffi
6

p

Kϕ
D n → p Λ → p Σ− → n Σ− → Λ Ξ−0 → Σþ Ξ− → Σ0 Ξ− → Λ

Kπ
D3a

8
3
ðDþ FÞ −

ffiffi
3
2

q
ðDþ FÞ 2

3
ðDþ FÞ − 2

3

ffiffi
2
3

q
D 2

3
ðDþ 2FÞ 1

3

ffiffiffi
2

p ðDþ 2FÞ −
ffiffi
2
3

q
D

KK
D3a

1
3
ð3Dþ FÞ −2

ffiffi
2
3

q
D 4F

3
1
3

ffiffi
2
3

q
ð5Dþ 9FÞ 7Dþ5F

3
7Dþ5F
3
ffiffi
2

p
ffiffi
3
2

q
ðD − FÞ

Kη
D3a 0 0 − 1

3
ðD − 3FÞ

ffiffi
2
3

q
D 2

3
D

ffiffi
2

p
3
D

ffiffi
2
3

q
D

Kπ
D3b

8
3
ðDþ FÞ −4

ffiffi
2
3

q
D 8F

3

ffiffi
2
3

q
ðDþ 2FÞ 2

3
ðD − FÞ 1

3

ffiffiffi
2

p ðD − FÞ
ffiffi
3
2

q
ðD − FÞ

KK
D3b

1
3
ð3Dþ FÞ D−3Fffiffi

6
p 1

3
ðDþ FÞ

ffiffi
2
3

q
ðDþ FÞ 8

3
ðDþ FÞ 4

3

ffiffiffi
2

p ðDþ FÞ 0

Kη
D3b 0 0 0 0 Dþ3F

3
Dþ3F
3
ffiffi
2

p 0

Kπ
D3

20
9

−2
ffiffi
2
3

q
− 4

9

2
ffiffi
2
3

p
3

4
9

2
ffiffi
2

p
9

ffiffi
2
3

q
KK

D3
4
9

−
ffiffi
2
3

q
− 2

9

ffiffi
2
3

p
3

14
9

7
ffiffi
2

p
9

ffiffi
2
3

q
Kη

D3 0 0 0 0 2
3

ffiffi
2

p
3

0
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Σϕ
B3ðpÞ ¼ iKϕ

B
1

f20

Z
1

0

dz½z2p2ðpð1 − zÞ −MBÞJB2 þ ðð−2þ εÞMB − ð1þ 3zÞpþ εð1þ zÞpÞJB1 �; ðB10Þ

Σϕ
D3ðpÞ ¼ iKϕ

D
C2

f20M
2
D

Z
1

0

dzp2ðzpþMDÞð1 − εÞJD1 ; ðB11Þ

note that we put MB0 ¼ MB and MD0 ¼ MD, and used JXi ¼ JXi ðM2
X;Λ

2Þ with

M2
B ¼ ð1 − zÞM2

ϕ − zð1 − zÞp2 þ zM2
B; ðB12Þ

M2
DB ¼ ð1 − zÞM2

ϕ þ z2M2
B þ zyðM2

D −M2
BÞ; ðB13Þ

M2
D ¼ ð1 − zÞM2

ϕ − zð1 − zÞp2 þ zM2
D: ðB14Þ

All the coefficients Ki are listed in the Tables VII–IX.

TABLE VIII. Coefficients of the self-energy graphs contributing to the octet baryon mass.

N Λ Σ Ξ

Kϕ
B

3
4
ðDþ FÞ2 D2 1

3
ðD2 þ 6F2Þ 3

4
ðD − FÞ2

KK
B

1
6
ð5D2 − 6FDþ 9F2Þ 2

3
ðD2 þ 9F2Þ ðD2 þ F2Þ 1

6
ð9F2 þ 6FDþ 5D2Þ

Kη
B

1
12
ð3F −DÞ2 1

3
D2 1

3
D2 1

12
ð3F þDÞ2

Kπ
D −4 −3 − 2

3
−1

KK
D −1 −2 − 10

3
−3

Kη
D 0 0 −1 −1

TABLE IX. Coefficients for graphs C1, T3, B3ab, B3 C3 and the decuplet graphsD3ab andD3 contributing to the axial-vector isovector
baryon charges gλ¼3

A;BB.

p → p Σþ → Σþ Ξ0 → Ξ0 p → p Σþ → Σþ Ξ0 → Ξ0

KC1 Dþ F 2F −Dþ F

Kπ
T3 Dþ F 2F −Dþ F Kπ

D3
20
9

2
9

− 1
9

KK
T3

1
2
ðDþ FÞ F 1

2
ð−Dþ FÞ KK

D3
4
9

22
9

4
9

Kη
T3 0 0 0 Kη

D3 0 2
3

1
3

Kπ
3a Dþ F 2F −Dþ F Kπ

D3a
8ðDþFÞ

3

2ðDþFÞ
3

D−F
3

KK
3a

1
2
ðDþ FÞ F 1

2
ð−Dþ FÞ KK

D3a Dþ F
3

2D − 2F
3

1
3
ð−D − 5FÞ

Kη
3a 0 0 0 Kη

D3a 0 2D
3

1
3
ð−D − 3FÞ

Kπ
3b −D − F −2F D − F Kπ

D3b
8ðDþFÞ

3

2ðDþFÞ
3

D−F
3

KK
3b − 1

2
ðDþ FÞ −F 1

2
ðD − FÞ KK

D3b Dþ F
3

2D − 2F
3

1
3
ð−D − 5FÞ

Kη
3b 0 0 0 Kη

D3b 0 2D
3

1
3
ð−D − 3FÞ

Kϕ
3 ϕ ¼ π ϕ ¼ K ϕ ¼ η

p → p 1
4
ðDþ FÞ3 1

3
ðD − FÞð3Fð−Dþ FÞ þDðDþ 3FÞÞ − 1

12
ðD − 3FÞ2ðDþ FÞ

Σþ → Σþ 1
3
ð4D2F − 6F3Þ FðD2 − F2Þ − 2D2F

3

Ξ0 → Ξ0 − 1
4
ðD − FÞ3 − 1

3
ðDþ FÞðDðD − 3FÞ þ 3FðDþ FÞÞ 1

12
ðD − FÞðDþ 3FÞ2

KC3∶ p → p 8h44M2
π þ 4h38ð2M2

K −M2
πÞ þ 4h40ð2M2

K þM2
πÞ

KC3∶ Σþ → Σþ 4h38M2
π − 4h39M2

π − 8h43M2
π þ 8h44M2

π þ 4h40ð2M2
K þM2

πÞ − 4h41ð2M2
K þM2

πÞ
KC3∶ Ξ0 → Ξ0 −8h43M2

π − 4h39ð2M2
K −M2

πÞ − 4h41ð2M2
K þM2

πÞ
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APPENDIX C: HEAVY-BARYON RESULTS
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¼ 0.62

g1 n → p Λ → p Σ− → n Σ− → Λ Ξ0 → Σþ Ξ− → Λ Σ− → Σ0 Ξ− → Ξ0 gΣ
þ

A;3 gΞ
0

A;3
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