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Normalized hypercubic smearing improves the behavior of dynamical Wilson-clover fermions, but has
the unwanted side effect that it can occasionally produce spikes in the fermion force. These spikes originate
in the chain rule connecting the derivative with respect to the smeared links to the derivative with respect to
the dynamical links, and are associated with the presence of dislocations in the dynamical gauge field. We
propose and study an action designed to suppress these dislocations. We present evidence for improved
performance of the hybrid Monte Carlo algorithm. A side benefit is improvement in the properties of
valence chiral fermions.
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I. INTRODUCTION

Smeared links are widespread in present-day lattice
gauge theory simulations. A smeared link Vx;μ ∈ UðNcÞ
is a parallel transporter from x to xþ μ̂ that is constructed
from the dynamical gauge field Ux;μ ∈ SUðNcÞ in the
vicinity of the lattice sites x and xþ μ̂. The replacement of
the dynamical, or thin, links Ux;μ in the fermion action by
smeared, or fat, links Vx;μ typically leads to a reduction of
the discretization error. Intuitively, the fat links Vx;μ provide
a smoother background for the fermions to propagate in,
resulting in a more continuum-like behavior and thus
smaller lattice artifacts.
In our own work on lattice gauge theory with fermions in

higher representations, we have been using normalized
hypercubic (nHYP) smeared links in the Wilson-clover
fermion action [1,2]. We have indeed observed much
reduced discretization effects. This allowed us to reach
deeper into strong coupling, as well as to keep the clover
term at its tree-level value cSW ¼ 1 [3,4].
Our simulations with dynamical fermions were carried

out with the standard hybrid Monte Carlo (HMC) algorithm
[5]. We use the familiar tools to accelerate the molecular
dynamics (MD) integration: an additional heavy pseudo-
fermion field as suggested by Hasenbusch [6], multiple
time scales for nested MD integration levels [7], and a
second-order Omelyan integrator [8].
This arsenal of techniques lends itself to many variations.

As an example, one can try to improve the overall
performance of the algorithm by using several intermediate
Hasenbusch masses, each with its own pseudofermion
action, at the same MD integration level. The idea is that,
unlike the number of nested integration levels, which can
only be changed discretely, the masses of the additional
heavy pseudofermions can be tuned continuously, allowing

for a more efficient optimization. This approach turned out
to be successful for domain-wall fermions [9,10].
We have experimented with these improvement

schemes, but in many cases we have been stymied by
continued low acceptance. Examination of our results
suggests that the explanation of the problem lies in our
smearing procedure. In the domain-wall simulations of the
RBC and UKQCD Collaborations [9,10], smeared links
have not been used, and the fermion force was obtained by
directly differentiating the pseudofermion action with
respect to the dynamical links Ux;μ. In our simulations,
on the other hand, we first differentiate the pseudofermion
action with respect to the nHYP links Vx;μ, and then apply
the chain rule that is needed to convert the derivative with
respect to the nHYP links into a derivative with respect to
the dynamical (thin) links Ux;μ. As will be clear below, this
chain rule is the origin of our difficulties.
In this paper, we describe the problem and propose and

study a remedy. Reduced acceptance is a result of spikes in
the force; these appear in the chain-rule calculation because
of dislocations in the dynamical gauge field, which produce
large derivatives through the normalization step in the
smearing. Our remedy is a new term in the gauge action,
which suppresses these dislocations. This tames the fluc-
tuations of the fermion force.
In Sec. II we present the evidence for the connection

between the fat-to-thin chain rule and the acceptance of the
HMC algorithm. In Sec. III we present the new term in the
gauge action, designed to suppress dislocations. In Sec. IV
we display the resulting improvement in performance of the
HMC algorithm. We have also observed a side benefit—
better behavior of chiral valence fermions, as we report in
Sec. V. We conclude with a discussion in Sec. VI.
Of the smearing techniques in widespread use, highly

improved staggered quarks, known as HISQ [11,12], also
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make use of a normalization (i.e., reunitarization) step [see
Eq. (1) below].Our technique can be applied to them aswell.
Stout links [13] do not: The smeared link is an analytic
function of the thin links, and the problem we encounter
with nHYP smearing is avoided. In favor of nHYP links,
we recall their advantage, that the smearing range is small.
Stout smearing, on the other hand, is usually repeated
several times, giving rise to a less local fermion action.
Local hypercubic geometry can be combined with the
analytic stout recipe as HEX [14] or sHYP [2] smearing.

II. CHAIN RULE AND ACCEPTANCE RATE

Schematically, a nHYP link V is constructed as

V ¼ PðΩÞ≡ΩQ−1=2; ð1Þ
where1

Q ¼ Ω†Ω; ð2Þ
and Ω is a weighted sum over paths (the precise definition
will be given in the next section). Let S be a pseudofermion
action that depends explicitly only on the fat links, and
suppose that U is one of the thin links on which the
weighted sum Ω depends. The thin-link force ∂S=∂U is
related to the fat-link force ∂S=∂V via the “fat-to-thin”
chain rule,

∂S
∂U ¼

XNc

i;j¼1

� ∂S
∂Vij

∂Vij

∂U þ ∂S
∂V�

ij

∂V�
ij

∂U
�
; ð3aÞ

∂V
∂U ¼ ∂Ω

∂UQ−1=2 þ Ω
∂Q−1=2

∂U : ð3bÞ

Clearly, even if the fat-link force is well behaved, small
eigenvalues of Q can generally lead to large terms in the
thin-link force. For Q to have an exceptionally small
eigenvalue, the dynamical gauge field needs to be rough,
or, loosely speaking, a dislocation should be present. At the
same time, one should keep in mind that a locally rough
gauge field does not always give rise to such exceptionally
small eigenvalues. We will return to these considerations in
more detail below.
The model we used for our tests is an SU(4) gauge theory

with two Dirac fermions in the two-index antisymmetric
(sextet) representation. The gauge action is the usual
Wilson plaquette action

Splaq ¼
β

2Nc
Retr

X

x

X

μ≠ν
ð1 − Ux;μUxþμ̂;νU

†
xþν̂;μU

†
x;νÞ; ð4Þ

with Nc ¼ 4, to which we add a new piece, to be described
below, with coefficient γ. As already mentioned we are

using the Wilson-clover fermion action with nHYP links,
with hopping parameter κ, and with cSW ¼ 1. We have one
Hasenbusch mass μ ¼ 0.2 that effectively separates high-
and low-momentummodes in the fermion determinant. The
total pseudofermion action is thus

Spf ¼ Slow þ Shigh þ Seo; ð5Þ

Slow ¼ ϕ†
1

1

M
ðMM† þ μ2Þ 1

M† ϕ1; ð6Þ

Shigh ¼ ϕ†
2

1

M†M þ μ2
ϕ2; ð7Þ

where ϕ1 and ϕ2 are two independent pseudofermion fields.
Seo is the additional pure-gauge term resulting from even-
odd preconditioning, while M is the even-odd precondi-
tioned fermion matrix. The force due to Slow, which is
sensitive to the small eigenvalues of M, is integrated in the
outer MD level of the Omelyan integrator with n1 steps per
trajectory. The next level, with n2 steps, integrates the force
due to Shigh, which is sensitive to the large eigenvalues ofM,
as well as the force coming from SLU. All these terms depend
on the nHYP links. The force due to the new term, which we
will introduce in the next section, is also integrated at this
level. Finally, the force due to theWilson plaquette action (4)
is integrated in the innermost level with ng steps.
We list the ensembles that we use for comparisons in

Table I. This table also gives figures for the performance of
the HMC algorithm before and after adding the new term,
to be discussed below. In order to verify the similarity of
the ensembles with and without the new term, we present
some results for particle spectra and other physical quan-
tities in Table II.
The crucial diagnostic information for two of our ensem-

bles is presented in Table III. Let us begin with the data that
pertain to the original action, that is, γ ¼ 0. These data,
which are maximum and average impulse before and after
the chain rule, point to what has to be improved. The first
section of three rows, labeled as “fat, high,” provides

TABLE I. Ensembles used in this study and overall perfor-
mance. The parameter γ is the coefficient of the new term in the
gauge action; see Eqs. (10) and (14) below. β is the usual
plaquette coupling, and κ the hopping parameter. n1, n2, and ng
are the number of steps of the three MD integration levels. The
last column gives the acceptance rate. In all cases the lattice size is
L3 × T ¼ 123 × 24, and the trajectory length is set to unity. The
number of configurations in each ensemble ranges between 400
and 800.

γ β κ n1 n2 ng Acceptance rate

0 9.6 0.1292 16 2 6 86%
0 9.65 0.129 16 2 6 92%
0.125 7.8 0.130 12 1 5 82%
0.25 5.6 0.130 12 1 5 92%

1In the numerical implementation we modify Q ¼ Ω†Ωþ ζ
with ζ ¼ 10−6 to avoid accidental crashes.
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information on the fat-link impulse resulting from Shigh.
Next, the “fat, low” section gives information on the fat-link
impulse from Slow. Last, the “thin” section gives information
on the thin-link impulse resulting from the total fat-link
impulse after the application of the fat-to-thin chain rule.
In each section, the first row gives the maximal impulse

per link in each MD trajectory, averaged over trajectories,
separately for accepted and for rejected trajectories. The next
row similarly gives the average impulse. The third row gives
the ratio of mean maximal impulse to average impulse.
The main thing to notice about the fermions’ fat-link

impulses of the γ ¼ 0 ensemble is that they are exactly the
same for accepted and for rejected trajectories. In other
words, there is absolutely no correlation between the
fermions’ fat-link impulses and the result of the
Metropolis test of the trajectory.
By contrast, the thin-link impulses of the γ ¼ 0 ensemble

exhibit a clear distinction between accepted and rejected
trajectories. For accepted trajectories the max/average ratio
is about 30, whereas for rejected trajectories it is twice as
big. Histograms of the maximal thin impulse can be found
in the upper row of Fig. 1. The difference in the mean value
of the maximal impulse between the left and right panels is
clearly visible. Also the shapes of the two distributions are
quite different.

Our hypothesis is that when the bare coupling is strong
enough, dislocations in the dynamical gauge field become
abundant. Sometimes, such dislocations will give rise to
exceptionally small eigenvalues of the matrix Q of Eq. (2).
Through the fat-to-thin chain rule (3), the small eigenvalues
of Q generate spikes in the thin-link impulse, which, in
turn, results in a bigger probability for failing the
Metropolis test at the end of the trajectory.
It is obvious that a large impulse in the final, thin-link

force causes rejection of a trajectory. What is new is
our observation that there is no large impulse in the initial,
fat-link calculation. Evidently the problem lies in the
chain rule. What contributes to the severity of this
problem is that even a single spike for a single link at
a single update step of the whole trajectory, if it is too big,
has the potential of producing such a violation of MD
energy conservation that will result in failing the
Metropolis test. The question is whether we can do
something about it.

III. DISLOCATION-SUPPRESSING ACTION FOR nHYP LINKS

In four dimensions, nHYP links Vx;μ are constructed from the dynamical gauge field Ux;μ via three successive
smearing steps [1,2]. Each step consists of first constructing a weighted sum over staples, which is then reunitarized.
Explicitly,

Ωx;ρ;ξ ¼ ð1 − α3ÞUx;ρ þ
α3
2
ðUx;ξUxþξ̂;ρU

†
xþρ̂;ξ þ U†

x−ξ̂;ξ
Ux−ξ̂;ρUx−ξ̂þρ̂;ξÞ; ð8aÞ

V̄x;ρ;ξ ¼ PðΩx;ρ;ξÞ;
Ω̄x;μ;ν ¼ ð1 − α2ÞUx;μ þ

α2
4

X

ρ≠μ;ν
ξ≠μ;ν;ρ

ðV̄x;ρ;ξV̄xþρ̂;μ;ξV̄
†
xþμ̂;ρ;ξ þ V̄†

x−ρ̂;ρ;ξV̄x−ρ̂;μ;ξV̄x−ρ̂þμ̂;ρ;ξÞ; ð8bÞ

~Vx;μ;ν ¼ PðΩ̄x;μ;νÞ;
~Ωx;μ ¼ ð1 − α1ÞUx;μ þ

α1
6

X

ν≠μ
ð ~Vx;ν;μ

~Vxþν̂;μ;ν
~V†
xþμ̂;ν;μ þ ~V†

x−ν̂;ν;μ
~Vx−ν̂;μ;ν ~Vx−ν̂þμ̂;ν;μÞ;

Vx;μ ¼ Pð ~Ωx;μÞ: ð8cÞ

TABLE II. Physical properties of the ensembles. mq is the
quark mass as determined from the unimproved axial Ward
identity [3]. r1 is the larger Sommer scale [15,16], while mπ and
mρ are the pseudoscalar and vector meson masses, respectively.
All results are given in lattice units.

γ β mq r1 r1m2
π=mq ðmπ=mρÞ2

0 9.6 0.0588(4) 3.04(6) 9.1(2) 0.43(1)
0 9.65 0.0471(4) 3.53(14) 12.2(5) 0.44(1)
0.125 7.8 0.0484(5) 3.12(5) 9.7(2) 0.40(1)
0.25 5.6 0.0575(3) 3.22(5) 10.7(2) 0.48(1)

TABLE III. Maximal and average impulse per trajectory before
and after the chain rule. Results are shown for accepted and for
rejected trajectories separately. We omit the standard deviation if
it is less than 1%.

γ ¼ 0; β ¼ 9.6 γ ¼ 1=4; β ¼ 5.6

Accept Reject Accept Reject

fat, high max 0.0783 0.0787 0.211 0.211
average 0.0312 0.0312 0.0847 0.0848
max/average 2.51 2.52 2.49 2.49

fat, low max 0.093(1) 0.091(2) 0.119(2) 0.112(4)
average 0.0144 0.0144 0.0198 0.0198
max/average 6.4 6.3(1) 6.0(1) 5.7(2)

thin max 0.40(2) 0.80(8) 0.87(2) 0.95(7)
average 0.0134 0.0134 0.0708 0.0708
max/average 30(1) 60(6) 12.3(3) 13(1)
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The reunitarization operator P is defined in Eq. (1).
Keeping track of this construction in reverse order, one
can see that the staple sum extends into a different direction
at each smearing step. The outcome is that a given fat link
Vx;μ depends on a particular thin link Uy;ν if and only if
there exists a hypercube to which both Vx;μ and Uy;ν
belong.2

We are now ready to introduce the dislocation-
suppressing action for nHYP smearing. This is done by
adding to the pure-gauge action Sg a new term,

Sg ¼ Splaq þ SNDS; ð9Þ

where the new term is

SNDS¼
1

2Nc

X

x

tr
�
γ1
X

μ

~Q−1
x;μþγ2

X

μ≠ν
Q̄−1

x;μ;νþγ3
X

ρ≠ξ
Q−1

x;ρ;ξ

�
:

ð10Þ

The motivation for introducing the nHYP dislocation-
suppressing action, or NDS action for short, is clear.
The chain rule can produce spikes in the thin-link force
associated with small eigenvalues of Qx;ρ;ξ, Q̄x;μ;ν, or ~Qx;μ.
The NDS action is designed to suppress them, by creating a
repulsive potential that is proportional to the (sum of)
inverse eigenvalues of the Q matrices.
If we were to add the NDS action SNDS to the usual

plaquette action while holding β fixed, we would be pushed
back into weaker coupling, and smaller lattice spacing.
From the weak-coupling expansion Ux;μ ¼ expðiaAxμÞ we
obtain the bare coupling as

1

g20
¼ β

2Nc
þ 1

Nc

�
γ1α1
3

þ γ2α2 þ γ3α3

�
: ð11Þ

The crucial question, which can only be addressed by
performing numerical tests, is whether the NDS action can
improve the performance of the HMC algorithm under the
same physical conditions. This question will be studied in
the next section.
In concluding this section we note that SNDS is easily

implemented in the existing code. Using the generic
notation of Sec. II, first, Q−1=2 is needed for the
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FIG. 1. Histograms of the maximal thin-link force (corresponding to the “thin” section of Table III), for 400 trajectories each. Notice
the different vertical scales for accepted (left) and for rejected (right) trajectories.

2Like the original thin links, the nHYP links Vx;μ reside in the
fundamental representation. In our work on higher-representation
fermions we first construct the nHYP links Vx;μ, and then apply
the appropriate group theoretic formulas to construct links in the
desired representation from Vx;μ. This also adds a step to the
chain rule in calculating the MD force.
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construction of the nHYP links, so one obtains Q−1 ¼
Q−1=2Q−1=2 with basically no extra cost. Also, for the
calculation of the force we have

∂
∂U trQ−1 ¼ 2tr

�
Q−1=2 ∂Q−1=2

∂U
�
: ð12Þ

Once again, as can be seen from Eq. (3), both Q−1=2 and
∂Q−1=2=∂U have already been calculated, and so it is trivial
to obtain their product.

IV. IMPROVEMENT OF MOLECULAR
DYNAMICS UPDATE

In our numerical work we use the following values for
the smearing parameters [1,2]:

ðα1; α1; α1Þ ¼ ð0.75; 0.6; 0.3Þ: ð13Þ

Also, we have limited our numerical tests of SNDS to the
case

γ1 ¼ γ2 ¼ γ3 ¼ γ; ð14Þ

where the values of γ are shown in the first column of
Table I. We have two ensembles without the NDS action, a
β ¼ 9.65 ensemble with a slightly weaker bare coupling
and a β ¼ 9.6 ensemble with a slightly stronger bare
coupling, one ensemble with γ ¼ 1=8 and β ¼ 7.8, and
one with γ ¼ 1=4 and β ¼ 5.6. In trying to achieve the
same physical conditions, one can never do a perfect job at
nonzero lattice spacing. Still, the physical properties listed
in Table II show that all four ensembles exhibit reasonably
similar physics.3

A. The thin-link force and acceptance

The first piece of evidence that the NDS action actually
works is the performance figures shown in Table I. While
maintaining the good acceptance rate intact, we have been
able to reduce n1 from 16 to 12, and n2 from 2 to 1, which is
a savings of more than 50% in the number of fermion
inversions per trajectory.
In order to understand the origin of this improvement we

look at the impulses of the ensemble with ðγ; βÞ ¼
ð0.25; 5.6Þ and compare them to those of the (0, 9.6)
ensemble, as shown in Table III. First, like the (0, 9.6)
ensemble, also in the case of the (0.25, 5.6) ensemble, the
fat-link impulses are the same for accepted and for rejected

trajectories. Once again, the Metropolis test is uncorrelated
with the fat-link impulses produced by the pseudofermions.
In comparing the actual values of the impulses between

the two ensembles we should keep in mind that the
maximal and average impulses reflect the different numbers
of update steps chosen in the two case. However, the
different time increments cancel out in the max/average
ratios. Indeed, these ratios turn out to be equal in all four
cases: they are basically the same for accepted and rejected
trajectories, as well as for the (0, 9.6) and (0.25, 5.6)
ensembles. This shows that the fermion sector did not bias
the acceptance rate one way or another.
The main difference between the two ensembles is

revealed in the thin-link impulse, in the bottom section
of Table III. While in the case of the (0, 9.6) ensemble the
max/average ratios were 30 and 60 for accepted and for
rejected trajectories respectively, in the case of the (0.25,
5.6) ensemble they are ∼12 for both accepted and rejected
trajectories. The NDS action has produced thin-link
impulse ratios that are, first, smaller, and second, uncorre-
lated with the Metropolis test. These features are also seen
in the histograms in the bottom panels of Fig. 1. Indeed, the
two histograms of the (0.25, 5.6) ensemble have essentially
the same shape.
The conclusion is that, while maintaining roughly the

same physical conditions, the NDS action with γ ¼ 1=4
successfully removes virtually all of the spikes of the thin-
link impulse that resulted from the fat-to-thin chain rule.
This is one of the main results of this paper.
A complementary observation is the following. Unlike

the maximal thin-link impulse, the average thin-link
impulse is the same for accepted and for rejected trajecto-
ries in both the (0, 9.6) and (0.25, 5.6) ensembles. However,
this average value is more than 5 times bigger in the case of
the (0.25, 5.6) ensemble than in the (0, 9.6) ensemble. The
removal of the high-end tail of the distribution of the thin-
link impulse by the NDS action has allowed us to increase
the average impulse (by decreasing the numbers of steps),
without harming the acceptance rate.

B. Integrator instability and “safety trajectories”

With n2 ¼ 1 in the γ ≠ 0 ensembles of Table I, an
interesting practical question is how aggressively can one
reduce the number of steps of the outer level, n1. For
example, how would the acceptance rate change if n1 is
further decreased from 12 to 8?
We have carried out an exploratory study of this question

on ensembles with parameter values that are similar to (but
not necessarily identical with) those of the γ ≠ 0 ensembles
of Table I. Our main finding is that if we keep lowering n1,
at some point we will run into a situation where the HMC
update experiences occasional, but long, sequences of
rejections. The obvious first thought would have been that
the fat-to-thin chain-rule spikes of the thin-link impulse are
back. However, an examination of the pattern of impulses

3In the weak-coupling regime, it follows from Eqs. (11) and
(13) that β must be shifted by −2.3γ in order to keep the bare
coupling g0 fixed. As can be seen from Tables I and II, the actual
ðγ; βÞ pairs that produce roughly equal physics involve a much
bigger shift in β, showing that we are very far from the range of
applicability of Eq. (11).
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leads to a different picture. First, the long sequences of
rejections are typically characterized by spikes in MD
energy nonconservation as large as ΔS ¼ Oð100Þ. Second,
an examination of the MD time histories reveals that the
occurrence of spikes of ΔS is virtually always correlated
with (much smaller) spikes of both the maximal and the
average fat-link force coming from Slow.
The conclusion is that we are looking at a familiar

integrator instability. The breakdown of the MD integration
was nicely exemplified in the case of a free harmonic
oscillator in Ref. [17]. If ω is the frequency of the oscillator,
and δτ is the time increment of the (leapfrog) update, the
breakdown occurs when the product ωδτ exceeds a critical
value that depends on the MD integration scheme.
In our simulations, the time increment δτ was held fixed.

Of course, since we are dealing with an interacting field
theory, many oscillators are present simultaneously, and
their frequencies are changing with the MD evolution. In
effect, there is therefore a maximal frequency ωmax that
scales with λ−2min, where λ2min is the smallest eigenvalue of
M†M [see Eq. (6)]. We have looked at the low-lying
spectrum of M†M on some of our stuck streams and found
that, indeed, the rise in the fat-link force of Slow is
correlated with the occurrence of an exceptionally small
eigenvalue. This, in turn, gives rise to an exceptionally
large value of the product ωmaxδτ, and, ultimately, to the
onset of an integrator instability [17].
The alert reader would notice that the new problem is

itself a sign of success. Indeed, it is the very smooth fat-link
background, provided by the NDS action, which allows for
the Wilson matrix to develop such small eigenvalues that
are eventually capable of generating integrator instabilities.
Various solutions to this problem exist in the literature.

First, obviously, the simplest solution is to avoid reducing
the number of steps too much. The high acceptance rates of
the γ ≠ 0 ensembles reported in Table I suggest that, with
n1 ¼ 12, we did not run into any integrator instabilities.
This is confirmed by an examination of the histories of
these runs. The (0.25, 5.6) ensemble shows no ΔS spikes at
all. Perhaps because of its smaller γ, the (0.125, 7.8)
ensemble has a few spikes, but none of them have generated
a sequence of rejections.
One can do still better by adopting the strategy of

Ref. [18]. According to this strategy, one uses a relatively
small number of steps for most trajectories. Every once in a
while, a larger number of steps is used for a “safety
trajectory.” The idea is that, in case the simulation has
run into a sequence of rejections resulting from an
integrator breakdown, that sequence will terminate at the
next safety trajectory, where, thanks to its finer time
increment, the trajectory will (very likely) be accepted.
We have found that, as long as integrator instabilities are

rare, even a modest increase in n1 is usually enough to
eliminate all of them. As an example, the already noted
high acceptance rates of the γ ≠ 0 ensembles of Table I

suggest that we might use n1 ¼ 12 only for the safety
trajectories, while using a smaller number of steps, perhaps
n1 ¼ 8, for most trajectories. The interval between two
safety trajectories might be taken to be 5 or 10 trajectories.4

The question of what is the optimal combination invites
study, but it is clear that the insertion of safety trajectories is
a very cheap cure for the instability problem.

V. IMPROVEMENT OF VALENCE
CHIRAL FERMIONS

Chiral fermions—domain-wall fermions and overlap
fermions—are widely used nowadays [19–21]. While
domain-wall fermions are used both as dynamical
[10,22] and as valence fermions, overlap fermions are
mostly used as valence fermions (see, however, Ref. [23]).
These chiral fermions are built from a kernel K, which is

a supercritical Wilson-like (hermitian) operator. Ideally, the
kernel would have a spectral gap. In reality, there is never a
clean gap. Instead the kernel operator has a mobility edge
that is at Oð1Þ in lattice units, with a localized spectrum
below the mobility edge and an extended spectrum above it
[24]. The near-zero spectrum of localized eigenmodes is
always undesirable. In the case of domain-wall fermions it
is a dominant source for the residual mass, which is a
measure of the imperfection of the chiral symmetry of the
domain-wall system. In the case of overlap fermions, such
near-zero eigenmodes need to be deflated during the
construction of the overlap operator itself. When more
of them are present, this makes the numerical construction
more expensive and/or less accurate.
Since it is localized, a near-zero eigenmode of the kernel

operator often owes its existence to a dislocation in the
gauge field [25]. Now, the NDS action suppresses a certain
family of dislocations, and so it is interesting to study
whether it has any effect on the behavior of chiral fermions.
As we will see, we indeed find a clear improvement.
We have used nHYP links to construct the kernel

operator introduced in Ref. [26], and studied its properties
on our set of ensembles. The third column of Table IV gives
the average value λ̄ of the 10 lowest kernel eigenvalues jλij,
i ¼ 1;…; 10. We see that λ̄ grows with γ, and that, for
γ ¼ 1=4, it is significantly larger than in the other cases.
This shows that the dislocation-suppressing effect of the
NDS action also helps in reducing the number of near-zero
eigenvalues of the kernel operator. This effect is also seen in
Fig. 2, which shows histograms of the same 10 lowest
kernel eigenvalues. Moreover, the depletion of the near-
zero spectrum speeds up the numerical construction of the
(valence) overlap operator. This can be seen in the last
column of Table IV, which shows the average number of
matrix multiplications by the kernelK that is needed for the
construction process to converge to a given precision. For

4Reversibility of the MD update requires that the interval
between two safety trajectories will be fixed beforehand.
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valence domain-wall fermions, we would correspondingly
expect a reduction of the residual mass at a fixed size of the
fifth dimension.

VI. DISCUSSION

The chain rule relating a force with respect to nHYP
links to a force with respect to the dynamical links can give
rise to relatively rare, but large, spikes of the total impulse,
which, in turn, degrade the performance of the HMC
algorithm. In this paper we propose a new term in the
gauge action aimed to suppress such spikes. We have
shown that, for (approximately) fixed physical parameters,
the new term indeed improves the performance of the HMC
algorithm. As a side benefit, it improves the behavior of
chiral valence fermions.
We have attributed the chain-rule spikes in the force to

dislocations in the gauge field—a somewhat vague term.
Indeed we have identified the dislocations, operationally,
by the very fact that some of the Q matrices [Eqs. (2) and
(10)] have exceptionally small eigenvalues. This is analo-
gous to what is customary when dealing with domain-wall

or overlap fermions, where the presence of a dislocation is
identified by the existence of a near-zero (localized)
eigenvalue in the spectrum of the kernel operator. What
is common to both cases is that one is not interested in the
general roughness of the gauge field per se, but rather in
concrete undesirable effects that this roughness can
produce.
Over the years, a large body of work has been devoted to

improving the performance of chiral fermions. While it is
beyond the scope of this paper to review all this work, we
would like to draw some useful lessons.5 A common way to
improve the behavior of chiral fermions is to use so-called
improved gauge actions. Examples include various variants
of the Symanzik action, the Iwasaki action, and the DBW2
action. Each of these actions consists of a sum over a few
Wilson loops. The relative weight of each Wilson loop is
fixed either by finding an approximate solution of a
truncated renormalization group transformation, or by
demanding the elimination of the leading discretization
effects perturbatively. Generally speaking, these improved
actions produce a smoother gauge field than the simple
plaquette action (4). The decreased roughness of the gauge
field typically gives rise to fewer near-zero modes in the
kernel’s spectrum [24,27].
One method designed to suppress the near-zero eigen-

values of the chiral fermions’ kernel K is the so-called
dislocation-suppressing determinant ratio (DSDR) [10,28].
The basic idea is that, if we were to add to the gauge action
the term

TABLE IV. Properties of the kernel operator [26]. The third
column gives the average value of its 10 lowest eigenvalues. The
last column gives the number of matrix multiplications needed for
the construction of the overlap operator.

γ β λ̄ Nop × 105

0 9.6 0.106(12) 3.0
0 9.65 0.163(11) 1.7
0.125 7.8 0.182(11) 1.7
0.25 5.6 0.322(15) 1.1

FIG. 2. Histograms of the lowest 10 eigenvalues of the kernel operator. The vertical axis is the average number of eigenvalues per bin,
where the bin size is 0.05. For the ðγ; βÞ ¼ ð0; 9.6Þ ensemble, the lowest 10 eigenvalues of all the configurations were within the shown
interval, whereas for the other cases, some of these eigenvalues fall outside of this interval. Notice the depletion of near-zero eigenvalues
as γ is increased.

5The interested reader may consult Refs. [24,27,28] and
references therein.
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− log detðK†KÞ; ð15Þ
this would produce a logarithmically divergent repulsive
potential that entirely suppresses any exact zero modes of
the kernel operator. In practice, using the term (15) also has
undesirable effects, and so, instead, one replacesK†K in the
above expression by a certain rational polynomial of K†K.
The NDS action (10) is analogous to DSDR in that it

targets those dislocations that are responsible for a specific
undesirable feature. Now, such dislocations represent local,
lattice-size structures in the dynamical gauge field that do
not scale. Hence, there is no particular reason to fix the
weight of the dedicated, NDS term relative to other terms in
the gauge action, and it might be more natural to hold fixed
the absolute coefficient of the NDS term while varying the
coefficient of the plaquette action (or of any improved
action, if one is being used). This is what is being done in
effect in the domain-wall simulations of the RBC and
UKQCD Collaborations: A fixed DSDR term is used while
the coefficient of the Iwasaki gauge action is being varied.
Such technical details need not obscure the basic fact that

all of the various types of improvement usually play in
concert, as was found in the context of domain-wall and
overlap fermions [10,28]. A new example is what we have
found in this paper: The NDS action, designed specifically
to remove chain-rule spikes in the force for nHYP smear-
ing, also reduces the density of near-zero kernel eigenval-
ues for chiral fermions.

An alternative way to avoid the chain-rule spikes of the
force is to reduce the values of the smearing parameters [see
Eq. (13)]. It was observed in Ref. [29] that the matrix Q is
positive definite if all the smearing parameters are smaller
than 0.5. The dislocations will still be there, however, and
their effect on chiral valence fermions will be undimin-
ished. Moreover, weakening the smearing will destroy
some of its benefit for approaching the continuum limit.
We mentioned HISQ fermions [11,12], which also

incorporate the reunitarization step (1). Indeed the same
correlation between small eigenvalues of the matrix Q and
peaks of the MD force has been reported in this case.6 It is
likely that building a dislocation-suppressing action
adapted for this type of smearing would similarly improve
the performance of HISQ simulations.
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