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We calculate the next-to-leading-order QCD corrections to the perturbative term in the operator product
expansion of the spectral functions of light tetraquark currents. By using also configuration-space methods
we keep the momentum-space four-loop calculation to a manageable level. We find that the next-to-

leading-order corrections to the perturbative term are large and can amount to O(100%). The corrections to
the corresponding Borel sum rules, however, are small since the nonperturbative condensate contributions

dominate the Borel sum rules.
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I. INTRODUCTION

The nonet of light scalar mesons &(600), «(800),
a(980) and f((980) are prime candidates for the long-
sought-after light tetraquark states. Their mass ordering
m, < m, < mg s precludes a simple (gq) interpretation
[1,2]. Also, in a (gq) picture, their masses are expected to
lie above 1 GeV contrary to experiment [3]. The spectrum
of these four light scalar meson states fits perfectly into a
picture where they are viewed as L = 0 bound states of
color-, flavor- and spin-antisymmetric light diquarks
and antidiquarks [1,2]. In this picture one obtains a
nonet of light scalar mesons composed of the states
ag(l = 1.1 = 0)/fo(I = 0) = ([su][s ] F[sd][5 d])/ V2,
o(I =0) = [ud][id), K° = [ud][i5], &° = [us][it d] and the
corresponding charged states ai and x* in which the
degeneracy of the two states aj and f, is natural and in
which one obtains the above mass hierarchy m, < m, <
my, 5, (see e.g. Refs. [4,5]). Recently Weinberg has inves-
tigated tetraquarks in the large-N, limit of QCD [6] and
found the existence of light tetraquark states to be con-
sistent with large-N . QCD contrary to previous statements
in the literature. An interesting development was described
in Ref. [7]. Instantons produce an effective six-quark vertex
which, among others, provides a mechanism for the
decay f(980) — zx.

A central theoretical issue is the need to theoretically
understand the mass pattern of the light scalar states and
whether a tetraquark interpretation of these states is able to
accommodate or even predict the mass pattern of the light
scalar states. This issue has been addressed in a number of
recent theoretical investigations using the framework of
QCD (Borel) sum rules to study the properties of light
tetraquark states [8—19]. Perhaps the most complete of
these is the analysis by Chen, Hosaka and Zhu [11]. They
studied the most general form of interpolating currents
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including possible mixing effects between them. In the
operator product expansion they included up to dimension-
eight operators. However, in their analysis and in previous
analyses next-to-leading-order (NLO) QCD corrections to
the leading-order (LO) perturbative term were not included.
As has been emphasized by Zhang et al. one needs to
calculate the a, corrections to the current correlators in
order to make the sum rule analysis reliable and predictable
[20]. In momentum space (p space) the NLO corrections to
the light tetraquark current correlators or spectral functions
require the calculation of massless four-loop diagrams
which is not simple. However, if one also uses configu-
ration space (x-space) techniques the task becomes simpler.
This has been demonstrated in two previous papers where
we have calculated the five-loop NLO corrections to
pentaquark current correlators using also x-space tech-
niques [21,22]. The main idea of the x-space calculation is
to first calculate two x-space modules corresponding to
NLO propagator and dipropagator corrections and then to
insert the modules into the full correlator diagram. In this
way the calculation of radiative corrections to multiquark
correlators amounts to purely algebraic manipulations.

The purpose of this paper is twofold. First we expound
on the calculation of the two O(a,) modules that go into the
modular approach to the calculation of radiative corrections
to the current-current correlators of multiquark currents. As
a new feature compared to Refs. [21,22] we show, by using
a general R; gauge, that the sum of the two modules is
gauge invariant when sandwiched between color-neutral
states (mesons, baryons, tetraquarks and pentaquarks).
Second, we present explicit results on the radiative cor-
rections of light tetraquark current correlators for the two
sets of five tetraquark currents (scalar, vector, tensor,
axial vector and pseudoscalar, each for flavor-symmetric
and -antisymmetric diquark configurations) that have been
investigated in Refs. [9—12]. We also present NLO results
on all possible nondiagonal correlators.

© 2014 American Physical Society
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Depending on the choice of tetraquark currents the
radiative corrections to the LO perturbative term can
amount to up to 132% at g*> =1 GeV? for the tensor
current to be discussed later on. As a further exemplary case
we consider the spectral density corresponding to the
current correlator of a particular linear combination of
the axial and vector tetraquark current #{ considered in
Ref. [11]. The mixed current was found to be an optimal
interpolating current with a good Borel window for the
o-meson tetraquark current [11]. For the corresponding
spectral function we list the LO perturbative result and the
NLO correction which is calculated in this paper. One has
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Using 42 = 1 GeV? the NLO corrections can be seen to

Pi(s)

amount to a 55% upward correction to the LO term at
g*> = 1 GeV?. Including also the nonperturbative contri-
butions and using the central values for the masses and
condensates from Ref. [11] one finds

(s =1 GeV?)
— (9.03(LO) + 4.94(NLO) — 0.042[d]?
+ (83.89 — 5.80)[d]* — 0.045[d]° — 0.486[d]*)
x 108 GeV?. 2)

The spectral function is dominated by the dimension-four
gluon condensate contribution (¢>GG) listed as the first
dimension-four term in Eq. (2). Such a large contribution
does not appear to be very natural. We mention that the
value of the gluon condensate has not yet been calculated
from first principles but is obtained from fits to QCD sum
rules. For example, the authors of Refs. [23-25] found
(¢*GG) = (0.47 £ 0.47) GeV* compared to (¢*GG) =
(0.48 +0.14) GeV* given in Ref. [26] and used by
Chen et al. in Ref. [11]. This shows that a small or even
vanishing contribution of the sum of the dimension-four
condensates to the spectral function lies within a one-
standard-deviation window of the central value if the results
of Refs. [23-25] are used.

A. Interpolating currents

For the construction of interpolating currents we refer to
the detailed presentation in Ref. [11]. Following these
authors we obtain two sets of five currents each for the
flavor-symmetric and -antisymmetric diquark-antidiquark
states. For conciseness we specify our currents to the
(udi d) sector with hypercharge ¥ = 0 which make up
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the (uditd) components of the o, f,,a, currents. In
Ref. [11] one can find a detailed discussion about the
flavor composition of the various tetraquark currents.

For the flavor-antisymmetric case one has the five
currents

Jg = (uiTC},de)(;,inCajT — itjysCdl),
J5, = W Cptysd’)(ay,ysCdj — ir,ysCd]).
7 = (uiTCGuudj)(,j,igWCZiJT + itjo,,Cdl),
J5. = ' Cyrd?) (i, CdY + ayy,Cdl),
I3, = (u Cdl) (w,Cd" — ;Calr), (3)

where ¢# = I [y*,7"] (see also Appendix A). The lower
index on the currents marks the color multiplicity of the
diquark state which is given by the antisymmetric
(symmetric) color representations in the decomposition
33=3,3®3=6)and3®3=3,383 = 6,).
We mention that the mixed current correlator discussed
above corresponds to the mixed current

J§ = cosOJ; +sin6Jy, (4)

with tan@ = \/5
For the flavor-symmetric case one has the five currents

Jg = (u” Cysd) (75 Cdl + ijysCal),
J9, = (W Cptysd)(yy,rsCd] + ijy,ysCd]),

J%} = (ulTCU”Dd]>(aldﬂycaf - ﬁjaﬂycaf)’
I3, = W Crtd) @y, Cd} -y, Cdf).
J5, = (' Cdi) (w,CdT + 7,Cal). (5)

Except for the LO term the O(«y) perturbative contribu-
tions to the flavor-symmetric and -antisymmetric correla-
tors are not always simply related. The currents in Egs. (3)
and (5) are built from diquark-antidiquark components.
One can also construct the tetraquark currents from meson-
meson components. However, the meson-meson currents
do not lead to new tetraquark configurations since the two
representations are related by a Fierz transformation (see
Ref. [11] and Appendix B).

For an understanding and illustration of the modular
approach it is sufficient to discuss a simplified form of the
scalar current given by

Js(x) = (u'T (x)Cysd’ (x))(@;(x)ysCd] (x))
= 518} (u'™ (x)Cysd/ (x)) (i (x)y5Cd] (x)), (6)

involving only the first part of the scalar current in
Eq. (3). It is not difficult to reinstate the color-symmetrized/
-antisymmetrized form of the current at the final stages of
the calculations.
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B. The correlator

The correlation function' is defined as the vacuum
expectation value of the time-ordered product of two
currents, 1.€.

M(x) = (0|7{J(x)7(0)}|0). (7)

If the current describes a boson (meson or tetraquark), one
has J(0) = J7(0) while in the case of a fermion (baryon or
pentaquark), one has J(0) = J7(0)y°.

The correlator in Eq. (7) is defined in x space. It can be
transformed to p space by a Fourier transformation with
the result

I(q) = i/l'[(x)ei"xd“x
i / OT{J(D)IO)}0)eid'x,  (8)

where, for the moment, we work in D = 4 dimensions. The
optical theorem relates the p-space correlator to the spectral
density

p(s) = 5 Disell(g)] -, (9)

where the discontinuity Discf(p) is defined by (see e.g.
Ref. [27])

Discf(p) = f(pe®) — f(pe™™),

eti0 = l.inaei"‘f, e>0. (10)

Vice versa, for a given spectral density, the correlator can be
reconstructed by using

) - [ ©pls)ds (1)

s+q2'

For the simplified scalar current in Eq. (6) the tetraquark
correlator in x space reads

I(x) = Tr(S, (x)}rs a7 Te(Su (=) 75Sa(=)T7)

- (12)

where we have made use of the x-space propagator given by
S(x), =8, So(—x*)xty, with So(x*) = (27%x*)~! for D = 4
[cf. Eq. (14)]. The first trace in Eq. (12) contains two quark
propagators with a positive x-space argument while the
second trace contains two antiquark propagators corre-
sponding to quark propagators with a negative x-space

'In the following we use the synonym “correlator.”
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argument. The general rule is that an antiquark propagator
carries an extra minus sign. Note that the color trace in
Eq. (12) connects quarks/antiquarks in the two different
Dirac traces.

II. PROPAGATOR AND
DIPROPAGATOR MODULES

The result in Eq. (12) reflects a very general property of
massless correlators represented by sunrise-type diagrams:
in x space they are obtained by a product of single x-space
propagators. The corresponding p-space calculation is far
more difficult since one would have to perform a genuine
three-loop calculation. This observation sets the strategy for
the evaluation of the radiative corrections to the tetraquark
correlator: do most of the calculation in x space. In detail,
we first calculate the radiative corrections to a single
propagator and the dipropagator in p space (see Fig. 2).
We shall refer to these two corrections as the propagator
and dipropagator modules. In the two modules the Dirac
and color indices are left open. We then Fourier transform
the two modules to x space. Next we assemble the x-space
tetraquark correlator from these two modules augmented by
free propagators as shown in Fig. 2. The assembly is simple
in x space since the free propagators are linked to the
modules in product form. One then does the appropriate
Dirac and color contractions according to the specific
current being investigated. Finally, we Fourier transform
the x-space tetraquark correlator back to p space.

In the following section we first calculate the p-space
propagator and the dipropagator corrections using tradi-
tional momentum integration methods. The propagator
and the dipropagator corrections are then transformed to
X space.

A. The propagator correction

For illustrative reasons we begin by considering the LO
massless propagator in p space which takes the familiar
form

Sq) = ;[ = —ig(~q)). (13)

In order to obtain the corresponding L.O x-space propagator
we have to take the Fourier transform of the propagator in
Eq. (13). Since we are working in dimensional regulariza-
tion one needs to make use of the D-dimensional Fourier
transform (D = 4 — 2¢). The relevant D-dimensional trans-
formation formulas are collected in Appendix C. One
obtains

SY(x) = So(=x?)x, 1. (14)

where we have factored out a frequently occurring function
So(—x?) defined by
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e 22\ e2 —e
So(—xz):%<_1> :% (15)

In Feynman gauge and in p space the propagator correction
[see Fig. 2(a)] reads’

i [ dPk . i i —igap0ap
gl :i/__- ap YE iz oy L 9apOab
1(61) q (2”)1) ( 1gsy a)k( 1gsy b)q (q _ k)2

(16)

In Eqs. (13)-(16) we have suppressed the color index
dependence §&!.

Let us briefly comment on the gauge dependence of our
results. In a general R: gauge the gluon propagator reads

: k k
D(lﬂ(k) = é <_ga/3 + (1 - 6) k2ﬁ> . (17)

The Feynman gauge used in Eq. (16) corresponds to the
choice £ =1. As shown in Appendix D, the gauge
dependence drops out in the sum of the propagator and
dipropagator corrections when sandwiched between color-
neutral states.

Returning to Eq. (16) we proceed with the Feynman
gauge calculation and obtain

sia) = (0-2z1.1, % [ ok k1 g

q) QoK (q-k1q

It is convenient to define the dimensionless one-loop
two-point integrals G(n;, n,) through

i
(47)P/?

dPk 1
= wrerca o

After setting the tadpole contributions to zero, the integral
in Eq. (18) can be expressed in terms of the standard
integral G(1,1) given by

(=) Gy )

£ 2 — &
G(1,1) = F<rg—(lzg) ) _

F(1+el*(1-¢) G
eF(2-2¢) &
(20)

The one-loop integral G(1, 1) is divergent. In Eq. (20) we
have introduced the factor G=T"(1+¢&)[?(1—¢)/el(2—2¢)
because we want to absorb the I factors in Eq. (20) into the
definition of the renormalization scale. We shall refer to this

“In dimensional regularization the strong charge §, has a mass
dimension which will be absorbed into the renormalization scale
such that one remains with a dimensionless renormalized charge

9s = Ys (/’l)
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scheme as the G scheme. The relation to the (modified)
minimal substraction scheme is given by

He = GAnpuys)*s  Hg = s = Ane’ g, (21)

The corrected NLO p-space propagator finally reads

Si(q) = —aﬁF (%— 1) (-%) _eé. (22)

With the help of Eq. (C7) in Appendix C (with @ = 1 + ¢)
one obtains the corresponding x-space result

5100 ==So(-x) 5" (1 0(e) ) (et (29

We have introduced an x-space scale pu, as a new
renormalization scale, defined by

I'(l—¢) (1\¢ ,.
2 __ _ 2¢
i = (5)

4y = 4,,675/41%/[5 +0(e) = 62V5M12\Ts +0(e). (24)

Altogether the O(a,) x-space propagator reads

510 =su(=2){ 1-F 1+ 00e) ) (e + (e

XX,y (25)

As expected, the propagator correction has the spatial
structure of the LO term in Eq. (14).

B. The dipropagator correction

In order to familiarize the reader with the calculational
procedure and the notation, we start our discussion with the
calculation of the uncorrected dipropagator. In p space the
uncorrected dipropagator consists of a single loop integral
where the two pairs of Dirac and color indices are left open
and uncontracted. The one-loop integral reads (color
indices are suppressed)

50~ [y (250

ok ka-h),
_/(zﬂ)DkZ(q_k)zo/ ®}’)
=Lu(9) (" ®7r"). (26)

Expanding the tensor integral Iﬂu into the two covariants
ngzw and 4.9,> one has
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B dPk k,(q—k), B
80~ [ Gaptaar -

A%q,q, + B4*g,,.
(27)

By contracting Eq. (27) with ¢** and ¢”¢", calculating the
resulting scalar integrals, dropping tadpole contributions
and solving for A° and B° one obtains

o —iG(1,1)(D-2)

© 4(4m)P2(D 1)
—iG(1,1)

4(47)P2(D - 1)

(=g?)P/22,

BO — (—=g?)P/22, (28)

where the scalar integral G(1,1) is listed in Eq. (20).
Altogether one has

—iG(1,1)
4(47)P2(D - 1)
X ((D=2)q,q, + ¢*9u) 7" @ 7"). (29)

SO( ) (_ 2)D/2—2

We then Fourier transform $9(g) to x space using the
results in Appendix C [Eq. (C9) with a =2 —D/2 = ¢,
A=D-2=2(1-¢) and B = 1]. One obtains
G(L,1)I'(D-1) x>\ P
32(47m)P(D - 1)[(2 - D/2) 4
X (=2(D = 1)(D = 2)x,x,)(r* ® ")
= (So(—2*))*x,x, (" ® 1)
= $H(x) ® S}(x). (30)

$(x) =

where S9(x) is defined in Eq. (14). The factorized result in
the second line of Eq. (30) is a special case of the general
x-space result for a massless n-loop sunrise diagram written
down in Refs. [27-30].

In order to calculate the NLO dipropagator correction we
start again in p space. A symbolic representation of the
corresponding two-loop Feynman diagram is shown in
Fig. 2(b). The endpoints of the momentum lines in the
initial and final states have not been joined together in order
to symbolize the fact that the color and Dirac indices in the
diagram are left open. The two-loop correction to the
dipropagator is given by the twofold integral

(4m)P
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D D
o [,
(27)P (27)P
i o~ i _igaﬁ5ab
ar S AT,y — | ¥ a0
X(k( 195y )® ( 1G5y b)q_l/) k=17
=(T,®T,)7: W“y”®V,/7anf)lﬁl”/(q} (31)

where

Wy s d’k dPl kﬂlu(q - k)ﬂ/(q - l)l/
T (Q) = l/(zﬂ_)D (27[)D kzlz(q _ k)Z(q — l)z(k _ 1)2‘
(32)

The integral IZL’”(q) can be seen to be symmetric under
the simultaneous interchange of y <> v and ' <> /. Tt is
therefore expedient to split the gamma matrix string
y*v?y" (and, accordingly, y,y.yy) into its u <> v and
' <> UV symmetric and antisymmetric parts,

1
2
= ylyay) + ylyayd), (33)

1
Yyt =S (' ) + 5(7/”7 v =rrrt)

One then remains with

(rrr’ ® Yﬂ/yaw)ll’f’u”/(q)
= (v r?) @ rierarn) Iy (0)
+ (! @ ym/yayu/])lb,y]](Q)- (34)

The symmetric-symmetric contribution in Eq. (34) will be
dealt with by making use of the D-dimensional identity
yEyeyt) = (geg + gl g — g g )vs and the corre-
sponding identity for y, /yay,,)

The contraction (y*“y%y") ® Y( /yay,,))lg ))(q) leads to a

number of second-rank two-loop tensor integrals which can
be reduced to scalar integrals using standard techniques. In
order to minimize calculational mistakes, all necessary
manipulations have been done by computer algebra pro-
grams.” The required set of scalar two-loop integrals
needed in this application are defined by [33]

(—g?)Pm=mmm=m=1sG(ny, ny, ny, ny, ns)

1

B / d°k Pl
) Q)P (2m)P (=) (=) (= (g = k)P (=(g = D) (= (k = 1))

(35)

The reduction to scalar integrals is performed by integration-by-parts techniques [31]. The integration-by-parts method under the
name RECURSOR is originally written in REDUCE and is translated by us for use under MATHEMATICA (for an overview see e.g. Ref. [32]).
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Their solution has been given in Ref. [33].
The symmetric-symmetric contribution to the dipropa-
gator correction can be represented in the form

$$1(q) = (T, @ T)Us)/ (@) ® 7). (36)
where

() (@) = AP apd” + Bi(@D)d’dy.  (37)
and where

i) ~BECLE (123)

Bi(¢*) = i§§( 4;(4 2: )2 . (7 Zi3€>. (38)

Next we turn to the antisymmetric-antisymmetric con-
tribution in Eq. (34) whose structure can be further

specified by noting that the integral / & ]]( ) is separately

antisymmetric under the exchange u <> v and y' <> /. The
integral I%/](q) can thus be expanded into two corre-

sponding tensors built from the metric tensor and the outer
momentum ¢ that possess this antisymmetry. One therefore
has*

1a) = (a0 ¢ = & ¢) + a.(dia” — ¢ a"))Ry

+ (& — ¢/ d )R, (39)

Using again standard techniques one obtains the contribu-
tions of the antisymmetric-antisymmetric part in terms of a
set of fourth-order tensor integrals which can again be
reduced to the two-loop scalar integrals in Eq. (35).

Similar to Eq. (36) the antisymmetric-antisymmetric
contribution to the dipropagator correction can be written
in the form

$81(q) = (To @ To)(La) /() Y V*1r" @ vyvpry)

(40)
with

“We mention in passing that in D = 4 dimensions the anti-
symmetric Dirac string can be simplified by using the D =4
identity yWyoy) = Lyse*™Py; Using the same identity for
YWYa¥v) one would end up with the contraction 6”“”136”/0”/[;/
leading to a sum of products of three metric tensors. In this case
one would again have second-order tensor integrals as in the
symmetric-symmetric case but now multiplying the Dirac struc-
ture y57” ® sy . However, since we are working within dimen-
sional regularization, we cannot make use of the above identity.

PHYSICAL REVIEW D 90, 054028 (2014)
(IA)/}/;/(Q) = A3(512)Qﬂ61ﬁl + B3(¢°)q? g » (41)

and

i sG2 _2\2¢ 1
As(q?) 9(471)(4_‘21&8)2 (ﬁ>,
i7G*(—q*)™% (1 +2¢
p) - EECOZ (L) @)

Adding up the symmetric-symmetric contribution in
Eq. (36) and the antisymmetric-antisymmetric contribution
in Eq. (40) the final result in p space reads

i;G*(—q*)™*
Si(q) = (T, ®T, )()4—28
x {(a1q5¢" + 0180}/’ ® )
+ (asqpq” + bs@®d)) (P ry? ® vravs)
(43)
where
—i(l Se) b 1(7+13)
“T1 &) Y €
1 1
a3—ﬂ, b3x—ﬁ(1+28) (44)

The result is then Fourier transformed to x space using
again the results of Appendix C. Together with the LO
result one finally has S, (x) = $9(x) + Si(x),

x x,%, (YY" @ y[am”])}- (45)

It is important to realize that the dipropagator module
contains terms which do not have the spatial structure of the
LO term in Eq. (43).

III. RENORMALIZATION

In as much as the divergence of the propagator can be
removed by renormalizing the wave function, one can
remove the divergences of the correlator IT by renormaliz-
ing the currents J. There is an important difference,
though, in as much as the corrected correlator may contain
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higher-order spinor field products that differ from the
LO currents. Therefore, we must take into account both
multiplicative renormalization and additive counterterms.
If J©)(x) is the LO current and AJ()(x) is the first-order
correction, the first-order correction of the correlator in
Eq. (7) is given by

M (x) = O/ T{7O(x) ATV (0) + AT (x)T©(0)}]0).

(40)

A. Renormalization factor

The wave-function renormalization is calculated by
using the propagator correction. The wave-function
renormalization is always multiplicative since the propa-
gator correction does not change the structure of the
current. The renormalization factor is a perturbation series
in the corresponding subtraction scheme which consists of
pure poles to every order. The renormalization factor for the
propagator correction (25) reads

zz_1+z< )Zm =1+ Tzl+0( 2)

(47)

with the condition that Z3'S,(x)=:5](x) is finite. As a
result we obtain the renormalization factor

CF g
Z,=1-— =1-—. 48
2 dre 3ne (48)

Therefore, we renormalize the singularity of the propagator
corrections by multiplying the correlator with Z5", where n
is the number of lines (n = 4 for the tetraquark).

B. Counterterms

The first-order QCD dipropagator correction changes the
quark spinor fields ¢(x). In x space the change due to gluon
exchange is given by

Aq(x) = —ig, / PX'S(x = X )P Toq(¥)AS(F),  (49)

where Af(x') is the gluon field. In the case of the tetraquark
current one has four different species of spinor fields: g(x),
g(x), q'(x)C, and Cg"(x). The corresponding changes
under gluon exchange for the current at x = O (the current
at x # 0 is dealt with accordingly) are given by

PHYSICAL REVIEW D 90, 054028 (2014)
Ags = =11y [ xS, (=0AL)7 050,
Ag, = —ig, / 3 ()77 S (AL () (T
AqTC = —ig (T, / gt (1) CrP S, (1) AS (x),
CAq] = =ig, [ dAg0S, (=2 CaL() (T,
(50)

In the dipropagator correction the gluon fields of two spinor
corrections have to be linked to build a gluon propagator.
Therefore, one has to calculate

—g?/de’de”Sa(slx’)Dﬂ,,(x’—x”)Sﬂ(szx”)

L [Pk kky
= 1815295 (27[)1)(](2— G)3g/w

— _igtgs YapGuv -+ finite terms, (51)

where s, and s, are the signs of the two propagator
arguments. Note that we can perform the integration over
x' and x” because we are looking for the UV-singular part.
In x space, the UV regime means locality, i.e. one can
replace w(x') and y/(x”) under the integrations by y(x). In
addition, we have used a (small) gluon mass m in order to
regularize IR singularities. We have kept only the
UV-singular terms because in order to calculate the
counterterm we stay in the same renormalization scheme,
i.e. we do not subtract finite terms. Taking these consid-
erations into account, the changes for the different formal
products of two spinors read

a . i ol o
Alq'®4)) =1 (Ta)i(Ta) (F"7"q" @rarud’).
+(l i Joa e -
Ald'®7q;)= 6 8( )i (Ta); (rr"a" ®qyvuYa):
a . : . -1
Alq"C®G) =1 (Ta)i(Ta)j (4" Cr'v* @Yatud”):
P +a5 70T a0 o
A(q7C®q;)= Tme (To)u(T); (@ " Cr'y* ®qvuYa)s
+a " _ "
(QI ®q]) 167 8( a)i’ (Ta);’(Qi’yﬂy(X@yaY;tq] )’
t+a i i (i _T
A(q'®CGj) =16 (Ta)y(Ta); (F'7"q" ®7a7,CTy).
_a _
A@®Cq)) =15 =(Ta); (Ta); (77" ®1aruCh).
. _ +ax i i’ i a -
A(q"C®CT;) =10 (Ta)y(Ta)j (4" Cr'v" @741y Cly).

(52)
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(@)

FIG. 1.

When applied to the current under question, these changes
will constitute the counterterms. Take for instance the
simplified scalar current in Eq. (6) and use

. . 1 L 1 . .
(Ta)i(Ta)j =3 (6;,5j., - N—&;,aj.,). (53)

AJ(]Q) - g; |:

PHYSICAL REVIEW D 90, 054028 (2014)
u

0 X

d
(©)

Leading-order tetraquark correlator (a) and two first-order corrections (b), (c).

One obtains six counterterm contributions to the
currents corresponding to the six possibilities in which
the quark/antiquark lines in Fig. 1 can be connected.
Starting from the top we enumerate the quark/antiquark
lines by 1 to 4.

. i\ /= 7 1 [ N (i d
(" Crsd!) (jysCa) = - (' Crsd!) (firsCd] )] |

a,Cp , . N - Cr i o -
AJ(13) = —— (T Cysd) (iiys Cd} ) — === (u" Co™ysd’) (;6,575CdY ),

167e
aS

32re

AJ gy = {(“iTCJ’de)(ﬁji/sCf_iiT) -

167e
L
N (”lTC}’sdj)(”#st,T)]

a; : e y L T oty oai (i d
" 3ore [(u’Tc(;“ﬂysdf)(uﬂsaaﬁcd?) — (W7 Coysd))(@irs0u C] )} ’

a, . o - L, o -
AJ 3y = {(“’Tc}’sd/)(”ﬂ’stiT) N (u TCVsdJ)(”iYSCdJT)]

32re

o, . o - 1 . o -
+ % [(uchySU{lﬁdj)(ujaa/i}’SCdiT) N (ulTCYSGa/}dJ)(uiaa/ﬂ/SCd]T):| ,

a,Crp . o - a,C
AJ g = £<M'TC75d’)(ui75Cd]T) o

T6me (' Cyso™ ) (i;y5045CdY),

—a . o - | R o -
AJ gy = 2—”8 |:(MITC75d])(uj75CdzT) N (“'TC}’sdj)(”iYSCdJT)] . (54)

(a) (b)

FIG. 2. Propagator correction (a) with loop momentum k and
dipropagator correction (b) with loop momenta [ and k.

I
The notation is such that (mn) stands for the diagram
where the gluon is exchanged between line m and line n
(m,n=1,...,4). Obviously, new current structures have
appeared which are not present at LO. Counterterms for the
currents lead to counterterms for the correlators. The whole
procedure has been automated using MATHEMATICA.

IV. RESULTS

The procedure to obtain the final results for the spectral
density will be explained in detail for the color- and
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flavor-antisymmetric scalar tetraquark current Jg in
Eq. (3). The current consists of two parts,

Js, (x) = JTga(x) = Jsp(x) (55)

where

Jsa(x) = (uiT(x)CySdf(x))(ﬁ,»(x)ySCc_le(x)), (56)

Tsp(x) = (u'T (x)Cysd’ (x)) (@ (x)ysCd] (x)).  (57)

Accordingly, for the correlator one obtains four

contributions.

A. Diagonal contributions

The two LO diagonal contributions I, (x) and g, (x)
are given by a product of two factors 4x?(Sy(—x?))?
from the two Dirac traces and two factors N, from the
two (distinct) color traces, resulting in I (x) =
16x*N2(So(—x2))* =113, (x). The NLO diagonal contri-
bution consists of two parts. Each of the four propagator
corrections is given by the product of the same two Dirac
trace factors 4x?(Sy(—x?))? and two color factors N..
Including the general factor in Eq. (25),

As CF

ok ey (1) (58)

the propagator correction reads

e ey (1)}

= Mg, (x). (59)

M, (1) = 64N%x4<so<—x2>>4{—

For the dipropagator corrections to the diagonal contribu-
tion one has to keep in mind that gluon insertions are
allowed only within the same color trace. In these two cases
[in the case of Ilg,,(x) for the insertions (13) and (24),
cf. Appendix D] the color factor is given by 1 N.(N2 — 1).
In calculating the Dirac traces one has to distinguish
between the three parts in Eq. (45), i.e. the parts x ® x,
r" ® v, and xﬂxvy[“yﬂy"] ® y[ayﬂy"]. Because the gluon
insertions connect different Dirac traces, one obtains the
result 16x*(Sy(—x?))* for the first two parts and 0 for the
third one. The dipropagator correction, therefore, reads
(N2 =1 =2N.Cy)

PHYSICAL REVIEW D 90, 054028 (2014)

I13,,,(x) = 16N (N2 = 1)x*(S(=+%))*
fmer|Gra) = ()l
— oo { e (o (1 +3)
— 1%, 0). (60)

Altogether one obtains

Hea (1) = 16N%x4<so<—x2>>4{1 ol

+ 20 ey (1 3);
= 16N’g‘x4(so(—x2))4{1 - 3%—? (—ﬂ?cxz)g}
= Tg,(x). (61)

The diagonal contributions are finite and the counterterms

are zero, 11§, (x) = II5, , (x) = 0. Therefore, the correlator
is given by
2.4 2\\4 4a
My (x) = TONex* (So(=27))"q 1+ —= 0 = Ty (x)

(62)

and the spectral density reads

pSua(s)

st 4o,
:720(471)6{1 +7} = psii(9)- (63)

B. Nondiagonal contributions

For the nondiagonal contributions Ig,;, (x) and ITg,,(x),
there are still the same two distinct Dirac traces but only
one single-color trace running through all lines. Because of
this, the LO nondiagonal contributions consist of a color
factor —N,. and again two Dirac factors 4x%(Sy(—x?)),
resulting in  TI9,, (x) = 16N x*(Sp(—x?))* = 13, (x).
Again, the same factors occur also for the four propagator
corrections. Including the general factor from Eq. (25) one
obtains

MM, (x) = 64N x*(So(—x2))* { - ai—ip (wie)’ <l> }

= Héba (X) (64)

For the dipropagator corrections, each of the six gluon
insertions leads to a color factor (N2 —1) = N.Cp. The
Dirac traces, however, depend on whether the gluon
insertions are within the same Dirac trace or not. For the
insertions (12) and (34) the contributions to the three
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parts of Eq. (45) are given by —16x*(Sy(—x?))*,
—16Dx*(Sy(=x?))*, and —16(D—1)(D —2)x*(So(=x?))*%,
respectively. For the other four insertions we obtain again
16x*(So(—=x2))*, 16x*(Sy(=x?))*, and 0. Including the
general factor from Eq. (45) the dipropagator corrections
read

I8, (x) = 64N (So(~2%))"
(o))
— a2 -5 ey (25 |

= H%ba (X) .

Altogether one obtains

M ()= 16N (5o~ { 142y (-3 |

The nondiagonal contributions are singular. Following the
considerations in Sec. III the corresponding x-space coun-
terterms can be obtained in the same way as the first-order
propagator and dipropagator corrections in Egs. (64)—(65).
One keeps only the singular contribution which contributes
with the opposite sign to those in Egs. (64)—(65). The
counterterms, therefore, are given by

(67)

15,0 = 64N () 2 (1) = iy ),

The renormalized nondiagonal correlator contributions
read

' 5
IT5,, (x) = 16ch4(50(—xz))4{1 —4% <ln(u§x2) - §> }
z
=I5, (%) (68)
When summing up all four contributions one obtains
Iy, 5, (%) =Mguq —Mgap = Hpa +gpp = 2150, — 2054
1 4
— 192045y 14220 (45}
n e 3
4 2\\4 Ay 1 4 2.2
=192x*(Sp(—x%))*q 14+2—( —+5+In(uzx?) | .
7 \e 3
(69)

The resulting counterterm is thus given by

PHYSICAL REVIEW D 90, 054028 (2014)

a, (1

H§353 ()C) = —384x* (SO(_XZ))4 ; <g> ' (70)

leading to a renormalized correlator of the form

Mg (x) = 384x4(SO(—x2))4{1 + 2% (g + 1n(uzx2)> }
(71)

The corresponding spectral density (cf. Appendix E) reads

ps.s.() :155;)6{1 +% (557+21n(”§4_5>>}. (72)

C. Results for diagonal and nondiagonal
spectral functions

The same procedure works for all currents. Let us first
list all ten diagonal spectral functions corresponding to
the five flavor-antisymmetric and five flavor-symmetric
currents. One obtains

p§3S3 :pgsps o {
. . 4S4 s 67 ﬂi/l_s
Pvivy = Pasa, = 15(4x7)° {1 +; <1_0+ ln(T)> }

8s* a, (82 2 [Mio
o —_" 143 [Z LD M ,
o= st 5 (e 50 (F)) )

ngSﬁ :ptly’ﬁl’ﬁ - 15(47[>6

i i 8s* ay (55 5. (Mg
=i~ e (2305}

16s* a, (211 11, (M
o = S (2l (s L 3
PTeTs 5(4;;)6{ +7z<15+3“<s>>} (73)

The LO contributions for the flavor-antisymmetric spectral
densities are in agreement with the results of Ref. [11]. The
LO contributions for the flavor-symmetric spectral den-
sities amount to twice the corresponding antisymmetric
contributions as can be understood from the color manip-
ulations described in Appendix D. For example, one has
P55, (LO) = 2p% ¢ (LO), ete.

When considering spectral functions corresponding to
mixed currents as e.g. in Eq. (4) of Sec. I A one also needs
nondiagonal spectral functions. For the example (4) one
needs the nondiagonal spectral functions

,_.
W
—
o~
S
NP
[=))

(o2 — o J— (o2 J— (o2
PAsvs = Pviag = Pave = Pvea,

N
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Finally, we list all nonvanishing nondiagonal spectral
functions,

PVa, = —PS,1, = A (a
Vids 515 5(47) \67)°

g e = M (5
Vede STs — 5(4x)° \ 61 )"

o __ 0 __ _ 0 __ _ 0
Ps,Ts = PseTs = “Pvias — TPVeA,s

45* a 16 /42—
=— (Z)(=+1In| M) ),
5(ax)0 (zz)(s " < s ))
i i —4s* [(a,\ (37 s
Phipe = Piors = S(az)0 (;) <E +1n (T) ) (75)

V. SUMMARY AND CONCLUSION

We have obtained analytical results for the NLO per-
turbative contributions to the light tetraquark correlation
and spectral functions. The results have been obtained by
prudently hopping back and forth between p space and x
space making use of the modular approach introduced in
Refs. [29,30] in terms of propagator and dipropagator
insertions into the correlation functions. We have checked
on the gauge invariance of our results. At the same time we
have also checked on the gauge invariance of previous
results on the textbook case of zero-mass meson correlators
[34-36], on baryon correlators [37,38] and on pentaquark
correlators [21,22].

We have found that the NLO perturbative corrections
to the correlators are large. However, since the current
correlators are dominated by the nonperturbative contribu-
tions, the NLO corrections have little impact on the analysis
of the corresponding sum rules. In particular, referring to
Appendix F, we find that the NLO corrections to the
perturbative term affect the results of the sum rule analysis
for the ground-state energy by +0.065% which is within
the error of the Borel sum rule analysis by Chen et al. [11].
However, as pointed out in Sec. I, the error on the
condensate contributions used in Ref. [11] may have been
vastly underestimated. A different possibility to harness the
large condensate contributions of Ref. [11] would be to
analyze the spectral functions in terms of finite-energy sum
rules [39-41] in which the large higher-twist condensate
contributions are reduced or even removed.

In calculating the NLO contributions to the pentaquark
correlators we have set the light-quark masses to zero. We
do not expect quark-mass effects such as e.g. the strange-
current-quark mass to be important for the NLO corrections
at the scale of the light scalar mesons. This may be different
in the sum rule analysis of heavy tetraquark states where
the nonperturbative contributions can be expected to be
smaller. We hope to return to the problem of calculating the
perturbative corrections to heavy tetraquark current corre-
lators in the future, using again a modular approach.

PHYSICAL REVIEW D 90, 054028 (2014)

A possible further project would be to calculate the
radiative corrections to the LO dibaryon (“exiquark™)
correlator discussed in Ref. [42].
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APPENDIX A: THE SCALARITY OF THE
DIQUARK CURRENT

In Table I we list the five bilinear quark-quark currents
that are being used to construct the tetraquark currents. C is
the charge conjugation matrix given by C = iy?y°, and the
index T stands for transposition. Because we are dealing
with diquarks (or antidiquarks), the labeling of the currents
in terms of their parity properties differs from the familiar
labeling of bilinear quark-antiquark fields. In the following
we show that the diquark current

Js(x) = CIT(X)C7561<X)

is a scalar current. This can be demonstrated similarly to
the textbook example of proving the scalarity of the
quark-antiquark current g(x)g(x).

Using the Lorentz transformation property x* — x'* =
A x¥ = (Ax)* one can write

q(x) = ¢'(¥) = ¢ (Ax) = U(N)g(x).

We then use the fact that the metric tensor and the Dirac
equation are invariant under Lorentz transformations,

(A1)

(A2)

AMgh=g, — U (NyrUN) =AY (A3)
Next we expand U(A) = 1+ Le,3h™ + O(h*) where €,
is the two-dimensional Levi-Civita symbol and where h*
is an antisymmetric infinitesimal quantity.

Let us briefly return to the textbook example of the
quark-antiquark current. Using the properties %y = 1,
Yoy =y# and y%*7y% = 6" one can show that
yY’UTy? = U~! and, therefore,

TABLE I. Bilinear diquark Dirac fields.

Scalar N q"Cysq

Vector 1% q" Cytysq
Tensor T q'Co"q
Axial vector A q"Cytq

Pseudoscalar P q"Cq
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74 =q'UYUqg=qU"'Uqg=qq.  (A4)
showing that g(x)g(x) transforms as a scalar.

In the case of the diquark current in Eq. (A1) we define
A = Cys = iy’y'. Contrary to the charge conjugation
matrix C = iy?y® where CC = -1, Cy*TC =y* and
Co*'TC = o, one obtains AA =1, Ay*TA =y* and
Ac"TA = —o**. Therefore, for the matrix U one obtains
AUTA = U™, and one can conclude that

q/TC},Sq/ — qITAq/ _ qTUTAUq — qTAU_qu

=q"Crsq. (AS)
showing that ¢” Cysq transforms as a scalar. One could
have anticipated this result by intuitive reasoning from the
fact that two quark fields have a relative positive parity
while a quark and antiquark field have a relative negative
quality.

APPENDIX B: FIERZ TRANSFORMATIONS

We shall present the generalized Fierz transformation
[43] in terms of the Takahashi bracket notation [44] which
reads

1
(CH[rP] = Yol Tr(TAT TP (TP][T€). (B1)
The summation runs over the indices C and D. The bracket

notation is best explained by writing out the corresponding
Dirac indices,

(FA)[FB] = Fﬁp’rﬁs’ (FAHFB) = Féﬁrfﬁ' (B2)
Let us introduce a set of five Dirac strings
e {1.7", 0" 'ys. s}, (B3)

where ¢ = [y, y*]. The dual base to this set has the
elements 'y where Tr(I',[") = 465 We obtain (note
the different order in the axial term and the factor 1/2 for
the tensor part)

1
FA € {H’viiaﬂy9y5yM7YS}' (B4)

Next we define a set of five contracted outer products of the
Dirac strings in Eq. (B3),

(S,V,T,A,P)
= (WAL )l (@)low]. (Fvs)lyurs] (rs)lrs)) - (BS)

°In the case of multi-indices A and B as for instance for
Iy =o0,, I'® =6 one has to use the convention
Sy = 8,87 — 5;5{,’.
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and their Fierz-reordered counterparts

(S,V.T,A, P)
= (), (*1lra). (@*Vlow). (rsllrurs). (rs]lrs)). (B6)

The two sets are related by the Fierz transformation
matrix. The elements of the matrix can be calculated with
the help of Eq. (B1). This will be illustrated for the last
row of the Fierz transformation matrix whose coefficients
can be calculated from the trace 16(ys)[ys] =
Tr(ysTaysDg)(TA][T2). Only the diagonal terms contribute
to the trace. One obtains

M=1, I=1: Tr(ysys) =4,
D=yt T8 =y Te(ysyursry) = =49
1 1
FA :6”1/, FB e Tr<y5§6m,y5§opg>
= 94p9v6 — GucYvp>
DY =yspt, TP =ysy"s Tr(ysysrarsrsrs) = 49
M=ys, TBP=ys: Tr(ysysysys) = 4. (B7)
which implies
16(ys)[rs] = 4(1][1) = 4(r*1lr,) + 2(c* o)
+4(r'yslrurs) +4(rsllrs)- (B8)

The other elements of the Fierz crossing matrix can be
calculated accordingly.

The transformation between these two sets is given by
the Fierz matrix which reads

S 1 1 12 -1 1 S
1% 4 -2 0 -2 —4||v
T :% 2 0 -2 0 12 T (B9)
A -4 -2 0 -2 4 A
P 1 -1 12 1 1 P

Using the Fierz matrix (B9) we can determine the
relation between the diquark-antidiquark interpolating
currents

(S’ V7 T7 -’4’ P)
= (" Cysd) (wysCd}). (u Cytysd) (y,ysCdy).
(u'T Cod’)(w;0,,CdY), (u' Cytdl)(wy,CdY),

(' Cd)(@,cdr)) (B10)

and the meson-meson-type interpolating currents

054028-12



PERTURBATIVE O(a,) CORRECTIONS TO THE ...

SV, T.A,P)
= ((dju')(;d"), (djy*u') @y, d’), (d;jo"u') (;0,,d7),
(diy*ysu') iy, ysd’). (dysu) (itysd’)). (B11)

Note the relabeling in going from the sets of Dirac strings
(S,V,T,A,P) and (S‘, v, T,A,IB) to the sets of current
products (S,V,7, A, P) and (:9 V. 7. A, 73)

By making use of the properties CC = -1, CT = —C,
CrsC=—ys=—ri, CrC=p", CrspC=~(rsr")"
and Co"C = T one obtains e.g. for the first row of
the transformation matrix

(u' Cysd’)(@;ysCdY)

I
= = () (') =2 (djr*u’) (g, d’)
- 1 - o .
+§(dj0lwul)(”16/wd ) — 4(dj7”75ul)(”i7/475d1)
|
_Z(dﬂ/Sul)(uiYSd])' (B12)

A similar exercise allows one to calculate the remaining
coefficients.

The above two sets of interpolating currents are thus
related by

S -1 -1 1/2 -1 -1 S
Y 4 -2 0 2 -4 Y
T :i -12 0 =2 0 -12|]|7T (B13)
A -4 -2 0 2 4 A
P -1 1 1/2 1 -1 P

Note that the Fermion fields are commuted four times in
this transformation such that the overall sign resulting from
the Fermi statistics is positive.

APPENDIX C: FOURIER TRANSFORM IN
DIMENSIONAL REGULARIZATION

In order to calculate the D-dimensional integral of a
Lorentz scalar, we need to know, among others, the
(D — 1)-dimensional angular integral of a Lorentz scalar.
In the Euclidean domain one has (k = (k*)!/2)

/ F(#)dPk = / dQ / " F(2)P di

2ﬂ.D/2
= D/Z/ fEKP-dk,  (C1)
where
(D-1)/ D/2
/ dQ = / £a sinP-20d0 =
r(o-1/2)" [(D/2)
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and I'(x) is Euler’s gamma function. Using Euler’s beta
function

[ gy ety @)
B(x,y)._/ozx (1-ptar =22 ()
and the definite integrals
/_?1 (1 — 2Y12gp = <)2—C)l\/;r'1,1(x),
© (A +2+4)/2)
J i = e

[/,(x) is Bessel’s function], one can show that

d°k . oo T(D/2—a) (¥\*P1
[ e =S (5)

With ko =
Minkowskian domain where k% =
The result is

/ <§:>kD (=

By applying the partial derivatives 0, = J/0x*,
0, = 0/0x* on both sides of Eq. (C6) one obtains

dPk .
/ (27[)D (—kz)_"e_’kxkﬂ

_ I(D/2—a+1) [ x*\eP/
_m<‘z> %,

ix, one gets back to the
—k* and x* = -7

iko and Xy =

2)—ae—ikx

_i0(D/2—a) [ x*\*PP
~ (4m)"PT(e) ( 4) '
(Co6)

(C7)

and

dPk .

/ (2E)D (—kz)“’e"k"kﬂky
L iD(D/2—a+1) [ P\*P/22
~ 8(4n)P’I(a) ( I)

x[2(a=D/2—=1)x,x, + ng;w] (C8)

and, finally,

de 2\—a ,—ikx 2
(27)P (—k*)"%e (Akﬂk,ﬂ—Bk g/w)

_iT(D/2—a+1) [ x*\eP/22
~ 8(47)P/2I(a) ( Z)
x[2A(a—D/2 -

1)x,x,+ (A+2B(a—1))x*g,,].
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APPENDIX D: GAUGE INDEPENDENCE

In this appendix we present results on the propagator and
dipropagator corrections calculated in the R; gauge where
the gluon propagator reads

: Kk
D(l/}(k) = é <_ga/} + (1 - 5) k2ﬁ> . (Dl)

The momentum-dependent piece proportional to
(1 = &)kyks/k* will be referred to as the scalar part of
the gluon propagator. We shall show that the scalar
contribution vanishes in the sum of the propagator and
dipropagator insertions into the correlators of color-neutral
currents (mesons, baryons and tetraquarks). We believe that
the gauge independence of the radiative corrections to the
correlators have never been demonstrated before. The
gauge independence can be shown without specifying
the Dirac structure of the currents. Our results on the
tetraquark correlators are thus gauge independent for any of
|

$5(0) = =) {1 = 5F ({1 = (1-9) (1 + 00)) + 0

while the dipropagator correction is given by

S5(x) = (So(=x))? [x,,w ® 1) (1. ®T,)

« {<<i+121—(1—5)§+ 0(e)

11
+ (% +t 0(8))@%(7”‘7“?”] ® ﬁ”yam)} + 0(063)] :

We have written the results in a form where the contribution
of the scalar piece of the gluon propagator proportional to
(1 = &) can be clearly identified. In the Landau (or unitary)
gauge £ = 1 one has the familiar result that the propagator
correction vanishes.

Note the essential fact that both gauge dependencies
occur as pure singularities in the contributions x,y*
(propagator) and x,7* ® x,y* (dipropagator) and that
the gauge dependence of the dipropagator correction
amounts to twice the gauge dependence of the propagator
correction. Note also that both gauge-dependent correc-
tions to the propagator and the dipropagator are UV
singular.

In the following we concentrate on the gauge-dependent
scalar contribution proportional to (1 —¢). Using the
notation x = x,y* one has
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the currents discussed in the main text. The gauge inde-
pendence of the NLO correlators also serves as a strong
check on our calculation.

The calculation of the scalar contribution to the one-loop
propagator correction does not provide any new difficulties
compared to the metric contribution. For the dipropagator
correction the scalar part of the gluon propagator super-
ficially increases the rank of the tensor two-loop integrals to
six. However, by a prudent cancellation of numerator and
denominator factors one can reduce the rank to two as in the
contribution of the metric piece. As a check on our two-
loop calculation we did an alternative calculation involving
sixth-rank tensor integrals which we solved using the
Passarino-Veltman method. We found agreement. We
mention that all necessary calculations have been checked
by computer.

We shall demonstrate the gauge invariance of the NLO
radiative corrections for meson, baryon and tetraquark
correlators. In the general R gauge, the propagator

correction reads [Cp = (N2 —1)/(2N,)]

(D2)
ey
)xﬂx,, + C: + % + 0(8)>ngﬂb> r®7r)
(D3)
[
830 = Su(-) % (1 - )4 )
ASZ(X) = (SO(_XZ))Z(Ta ® Ta)
<=9 )rex (D4)

It is important to realize that both gauge-dependent
corrections have the spatial structure of the respective
LO term. Note also that both corrections are UV
singular.

We start our discussion with the meson case. The
demonstration of gauge invariance is made simple in x
space. The gauge-dependent part of the NLO propagator
correction to a meson correlator augmented by the
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free propagator reads Aijw(x) = ASf (x) ® SY(—x)+
S9(x) ® AS5(—x), or

AS5, (x) = 2N, (So(=x%))?

S DL YL PANLY

&€

Note that there is an extra minus sign from the antiquark
propagator. Also one needs the color factor 5{ 5} = N,. The
factor of two results from the fact that the propagator
correction can be inserted into the quark or antiquark line.

For the dipropagator correction one requires the color
factor

’ y T Y 1 .\ .
1
(N2 -1
2( c )

There is no extra minus sign since there are two antiquark
lines, one each on either side of the quark-gluon vertex.
One obtains

A0 =N CrlSo( - (s (1-6) (2 )@
(o7

Obviously, the two contributions cancel in the sum,
A3y (%) + ASjpp(x) = 0.

For the baryon correlator the gauge-dependent part of the
propagator correction reads

AS5; (x) = 3N, (So(=x?))?

< aey(-9 (L )rexer (DY
s £

The factor ;¢ = N..! results from the color contraction
while the factor 3 has to be included because of the three
quark lines into which the propagator correction can be
inserted. For the dipropagator insertion one needs the color
factor

. g 1 o 1 3
erp(Ta)i (To)j €7 = €T <5; 5 =0 5§)€uk

- _NC !CB, (Dg)
where Cp = (N.+1)/(2N.) = Cp/2. Again there are
three possible dipropagator insertions resulting in a further
factor of 3. One obtains
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ASS,(x) = =3N,!Cx(So(—x2))?

x Z—; (—2x2)<(1 — &) <§>x ®x®x. (DI0)

The two contributions can be seen to cancel, i.e.
AS5, (x) + AS5, (x) = 0.

Finally, we demonstrate the gauge parameter cancella-
tion for the tetraquark correlator. We label the two quark
and antiquark lines of the in-state by the color indices (i, j)
and (k,l). We associate the indices (i, j,k,1) with the
(first, second, third, fourth) line of the tetraquark state [see
Fig. 1(a)] starting at the top. The corresponding labeling in
the out-state is (i, j/) and (K, I') with the same sequence in
the numerical labeling. In the meson-type construction the
color-singlet tetraquark states are given by 6] for the in-
state and 5{5/65, for the out-state. However, as discussed in

Sec. I A we need to separate out the antisymmetric 3 @ 3
and symmetric 6 @ 6 color components of the currents.
This is achieved by writing

P T R o
5] = 5 (34] —3l8}) + 5 (019] + oo (D)
3@3 606
for the in-state and, correspondingly,
5K 6", :1( Kot — 846Y) +1(5’<’51’ +846%)  (D12)
i j/ 2 i jr i jr 2 i j/ i j/

for the out-state.

The propagator correction can be inserted into the
correlator in four ways leading to a factor of 4. We thus
obtain

AS% (x) = 4Cr; (So(=+%))*

B iey(-9)() e xorox
T &
(D13)
where
1
CT1(3 - 3) = ENc‘(NC - 1)’
1
CT1<6 - 6) = ENC<NL‘ + 1)*

Since we are considering also nondiagonal (3 — 6) and
(6 — 3) transitions in the main text, we list the correspond-
ing color factors also for the nondiagonal cases even if they
are trivially zero for the propagator correction. This is no
longer the case for the dipropagator corrections to be
discussed next.
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The dipropagator correction can be inserted into the
correlator in six different ways. We shall label these six
different possibilities by the lines that are being connected
by the gluon propagator as described in Sec. III. For
example, the labeling (13) refers to gluon exchange
between the top and third line (from the top) as depicted
in Fig. 1(c). In general one has

ASG (x) = Cra(So(=))*
x & () (1-8) (D) rer@x @
4g > e ’
(D15)
where the factor Cy, specifies the color factor of a given

gluon connection including the factor (—1)" resulting from

the presence of n; antiquark lines in that particular
transition. For example, the color factor in the (3 — 3)
(12) contribution including the factor (—1)"s is given by

[Trc(TaTa) = NL‘CF]

Cr2(12;3 = 3)
1
2

P . o i’ 1 ! gl v

= (8181 = Sl (~12((T.)] (T,)] 85:80) 5 (856!, — 5165
1

= =5 NGy (D16)

Similarly, the color kernel for the (13) contribution is given

by (=1)'((T4){ 8} (T)}8))-

The color factors for the different line connections and
transitions are listed in Table II. Of relevance for the present
discussion is the respective sum of the six rows in Table II
which are listed in the seventh row of Table II. From the last
row of Table II one can read off that the gauge-dependent
nondiagonal (3 — 6) and (6 — 3) transitions are zero as
expected. The gauge-dependent diagonal parts given by the

TABLE II. Color factor Cy, for the different dipropagator
insertions (12),...,(34) and the diagonal 3 -3 and 6 — 6
and the nondiagonal 3 — 6 and 6 — 3 transitions. All entries
have to be multiplied by a general factor N.Cy/4. The entries
contain also the sign factor (—1)"7 due to the number of antiquark
lines. The last column contains the sum of the four first columns
corresponding to the color contraction given by Egs. (D11) and
(D12). In the last row we list the sum of the six first rows.

Cr 353 36 6-3 6—6 Sum
(12) -2 0 0 2 0
(13) -N,.+2 -N, —N,. -N,-2 —4N,
(14) —N.+2 N, N, -N,-2 0
(23) -N.+2 N. N. -N, -2 0
(24) —-N,.+2 -N, —N,. -N, -2 —4N,
(34) -2 0 0 2 0
Sum —4(N,-1) 0 0 —4(N.+1) =8N,
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propagator correction Eq. (D13) and the dipropagator
correction in the last row of Table II can be seen to cancel.
We mention that we have checked on the gauge cancella-
tion also for pentaquark current correlators investigated in
Refs. [21,22].

It is important to realize that, in the Feynman gauge
calculation discussed in Sec. IV, one requires the color
factors in Table II for each row separately since their
contributions carry different weights due to the new spatial
non-Born structures in the dipropagator correction (43).

APPENDIX E: THE SPECTRAL DENSITY

In this appendix we derive relations which allow us to
calculate the spectral density directly from the correlator in
x space. For the scalar correlator the transition to p space is
given by

(p) = 277! /O ” <%)_AJ,1(PX)H(x)xz“ldx, (E1)

where A =1 —¢ and J,(x) is the first-order Bessel func-
tion. The arguments x and p are not four-vectors, but rather
(in the Euclidean domain) the lengths of the vectors, i.e.
x = (x,x)"/> and p = (p,p*)"/>.

If the correlator is a given by a simple power,
I1(x) = (=x?)7%, the integral can be calculated to be

2)“‘*‘1 FrA-—a+ 1)‘ (E2)

_p2) = At _pr
,(=p*) ( 7 a)

The spectral density is the discontinuity divided by 2zi,
where the cut of the correlator lies on the positive real axis.
One obtains

|
pa(s) = i Discll,(s)

= G) o F(a)l“ia yh (E3)

For tetraquarks the x-space correlator has the generic form
a ,
700 = (o= P 4+ % (i) B (B4

where A includes both the LO term and the counterterm
while B includes only the NLO term. Keeping in mind that
So(—x?) = iT'(2 — &) /2(—zx?)*>7¢, one can apply Eq. (E3)
to obtain
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L (iT2=¢) (s/4)
pf(x) = 72 < I p2E ) 1"(6 - 4g>r(5 - 38)

fas s () gnep L0000,
2

(E5)
where we have used 4u2 ~ e

27t The ratio of gamma

functions can be expanded by using ['(a+¢) =
[(a)(1+ey(a) + O(e?)), where w(z) =T"(z)/T(z) is
the digamma function. One obtains

F(6-46)(5-3¢) _ 131
(6 — 5¢)0(5 — 4¢) l=3pet o)

eZyEe

(E6)

and, therefore,

F(2 _ 8)45,4—38
475730 (6 — 4e)[(5 — 4e)

{A—l— (ﬂfs) B(l—%e)}. (E7)

By separating the finite and singular parts of A and B one
has

C
A=A+ ( 0+C1>

psls) =

B
B=""4+B,. (E3)
£

With By + C, = 0 one obtains

[(2—g)ts*3
4753 (6 — 4e)T'(5 — 4e)

2
130 Hiis

A0+ B,+C;———By+ Byln
30 s

s4

~ (4n)5514!

130 Iz
{AO+ (Bl+cl—§30+301 <1;45>>}

(E9)

pr(s)=

Because the spectral function p(s) is nonsingular, we have
set e =0 (i.e. D =4) in the second line of Eq. (E9).

APPENDIX F: QCD SUM RULE ANALYSIS

In this appendix we provide a brief review of the sum
rule method using the Borel transformation. The starting
expression for the analysis is the sum rule

PHYSICAL REVIEW D 90, 054028 (2014)

Fy  [Ep(s)ds 1
2 2 27 ( )
Ex-p 0o S—p

where Ey is the ground-state energy and F% is the residue
of the pole at p*> = E%. The beginning of the continuous
spectrum is denoted by E,.. The convergence of the sum
rule can be improved by performing a Borel transformation
on both sides of Eq. (F1), leading to

) EZ
Fhe 5/ = / p(s)e/Euds, (F2)
0

where Ej is the Borel energy. For the sum rule analysis one
has to search for an energy window in which the depend-
ence on the artificial Borel parameter Ep is small. One
expands the spectral density as a power series in s and
replaces the powers (s/E%)*/k! by (xc = E%/E3)

ch/k k x’g
fk(xc):/o G dx=1-¢ C,;)ﬁ' (F3)

If there are logarithmic contributions, one has to replace
In(s/E%)(s/ER)*/k! by

N k
filxe) = / “Inxe~dx
0

k!

k=1
— Inxelfie) 1) i+ Ei(oxe) + Y1),

m=0
(F4)

where
YE=— /oo In xe *dx (F5)
0

is Euler’s constant and where Ei(xc) is an exponential
integral given by

Bi(xc) /_ R (F6)

xc X

Writing the operator product expansion of the spectral
density in the form

2
p(s) = A4s4{1 —I—% <a+ﬁln<ﬂi’[—)>} + Ays3

+Ays? +Aps + A, (F7)

one obtains
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% (arstze) +5(n (55) te0) 210 ) )

+ 21AE} f>(xc) + 1A ERf1(xc) + 01A0ER fo(xc). (F8)
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EZ
F2e Ex/Es —/ “p(s)e™/Eids
0

= 4!A4E}90{f4(xc)
+ 31AES f3(xc)

The ground-state energy Ey can be determined by calculating the derivative of Eq. (F8) with respect to —1/E% and then
dividing the derivative by Eq. (F8),

E%,' —s/E2
sp(s)e™/Fsds
E} = fOEZ —. (F9)
[ pls)eErds

For the derivative one obtains
2 2 Eé 2
F}E} e Ex/Es = / sp(s)e™*/Fsds
0

= 4!A4E1]90 <5E% {f4 (xc) + % (af4 (xe) +4 <ln (lj; >f4 el - ff (XC)) ) }

- it 2 (oritee (Gt < () e - s7000) )}

+ 31EFAS(4ES f5(xc) — ELf5(xc)) + 2 E§AL (BER f(xc) — E&f5(xc))

+ 11ERA | (2Ef1(xc) — E¢f}(xc)) + 0!ERZA(E fo(xc) — E¢fo(xc)). (F10)

The analysis is performed with the same parameters for the Borel window as in Ref. [11]. The addition of radiative
corrections changes the result of the sum rule analysis for the ground-state energy by +0.065% which is within the error of

the sum rule analysis.
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