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We calculate the next-to-leading-order QCD corrections to the perturbative term in the operator product
expansion of the spectral functions of light tetraquark currents. By using also configuration-space methods
we keep the momentum-space four-loop calculation to a manageable level. We find that the next-to-
leading-order corrections to the perturbative term are large and can amount toOð100%Þ. The corrections to
the corresponding Borel sum rules, however, are small since the nonperturbative condensate contributions
dominate the Borel sum rules.
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I. INTRODUCTION

The nonet of light scalar mesons σð600Þ, κð800Þ,
a0ð980Þ and f0ð980Þ are prime candidates for the long-
sought-after light tetraquark states. Their mass ordering
mσ < mκ < ma0;f0 precludes a simple ðq̄qÞ interpretation
[1,2]. Also, in a ðq̄qÞ picture, their masses are expected to
lie above 1 GeV contrary to experiment [3]. The spectrum
of these four light scalar meson states fits perfectly into a
picture where they are viewed as L ¼ 0 bound states of
color-, flavor- and spin-antisymmetric light diquarks
and antidiquarks [1,2]. In this picture one obtains a
nonet of light scalar mesons composed of the states
a00ðI ¼ 1; I3 ¼ 0Þ=f0ðI ¼ 0Þ ¼ ð½su�½s̄ ū�∓½sd�½s̄ d̄�Þ= ffiffiffi

2
p

,
σðI ¼ 0Þ ¼ ½ud�½ū d̄�, κ0 ¼ ½ud�½ū s̄�, κ̄0 ¼ ½us�½ū d̄� and the
corresponding charged states a�0 and κ� in which the
degeneracy of the two states a00 and f0 is natural and in
which one obtains the above mass hierarchy mσ < mκ <
ma0;f0 (see e.g. Refs. [4,5]). Recently Weinberg has inves-
tigated tetraquarks in the large-Nc limit of QCD [6] and
found the existence of light tetraquark states to be con-
sistent with large-Nc QCD contrary to previous statements
in the literature. An interesting development was described
in Ref. [7]. Instantons produce an effective six-quark vertex
which, among others, provides a mechanism for the
decay f0ð980Þ → ππ.
A central theoretical issue is the need to theoretically

understand the mass pattern of the light scalar states and
whether a tetraquark interpretation of these states is able to
accommodate or even predict the mass pattern of the light
scalar states. This issue has been addressed in a number of
recent theoretical investigations using the framework of
QCD (Borel) sum rules to study the properties of light
tetraquark states [8–19]. Perhaps the most complete of
these is the analysis by Chen, Hosaka and Zhu [11]. They
studied the most general form of interpolating currents

including possible mixing effects between them. In the
operator product expansion they included up to dimension-
eight operators. However, in their analysis and in previous
analyses next-to-leading-order (NLO) QCD corrections to
the leading-order (LO) perturbative term were not included.
As has been emphasized by Zhang et al. one needs to
calculate the αs corrections to the current correlators in
order to make the sum rule analysis reliable and predictable
[20]. In momentum space (p space) the NLO corrections to
the light tetraquark current correlators or spectral functions
require the calculation of massless four-loop diagrams
which is not simple. However, if one also uses configu-
ration space (x-space) techniques the task becomes simpler.
This has been demonstrated in two previous papers where
we have calculated the five-loop NLO corrections to
pentaquark current correlators using also x-space tech-
niques [21,22]. The main idea of the x-space calculation is
to first calculate two x-space modules corresponding to
NLO propagator and dipropagator corrections and then to
insert the modules into the full correlator diagram. In this
way the calculation of radiative corrections to multiquark
correlators amounts to purely algebraic manipulations.
The purpose of this paper is twofold. First we expound

on the calculation of the twoOðαsÞmodules that go into the
modular approach to the calculation of radiative corrections
to the current-current correlators of multiquark currents. As
a new feature compared to Refs. [21,22] we show, by using
a general Rξ gauge, that the sum of the two modules is
gauge invariant when sandwiched between color-neutral
states (mesons, baryons, tetraquarks and pentaquarks).
Second, we present explicit results on the radiative cor-
rections of light tetraquark current correlators for the two
sets of five tetraquark currents (scalar, vector, tensor,
axial vector and pseudoscalar, each for flavor-symmetric
and -antisymmetric diquark configurations) that have been
investigated in Refs. [9–12]. We also present NLO results
on all possible nondiagonal correlators.
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Depending on the choice of tetraquark currents the
radiative corrections to the LO perturbative term can
amount to up to 132% at q2 ¼ 1 GeV2 for the tensor
current to be discussed later on. As a further exemplary case
we consider the spectral density corresponding to the
current correlator of a particular linear combination of
the axial and vector tetraquark current ησ1 considered in
Ref. [11]. The mixed current was found to be an optimal
interpolating current with a good Borel window for the
σ-meson tetraquark current [11]. For the corresponding
spectral function we list the LO perturbative result and the
NLO correction which is calculated in this paper. One has

ρσ1ðsÞ ¼
s4

11520π6

×

�
1þαs

π

�
7þ 6

ffiffiffi
2

p

4
ln

�
μ2
MS

s

�
þ 1381þ 15

ffiffiffi
2

p

180

��
:

ð1Þ

Using μ2
MS

¼ 1 GeV2 the NLO corrections can be seen to
amount to a 55% upward correction to the LO term at
q2 ¼ 1 GeV2. Including also the nonperturbative contri-
butions and using the central values for the masses and
condensates from Ref. [11] one finds

ρσ1ðs ¼ 1 GeV2Þ
¼ ð9.03ðLOÞ þ 4.94ðNLOÞ − 0.042½d�2
þ ð83.89 − 5.80Þ½d�4 − 0.045½d�6 − 0.486½d�8Þ
× 10−8 GeV8: ð2Þ

The spectral function is dominated by the dimension-four
gluon condensate contribution hg2GGi listed as the first
dimension-four term in Eq. (2). Such a large contribution
does not appear to be very natural. We mention that the
value of the gluon condensate has not yet been calculated
from first principles but is obtained from fits to QCD sum
rules. For example, the authors of Refs. [23–25] found
hg2GGi ¼ ð0.47� 0.47Þ GeV4 compared to hg2GGi ¼
ð0.48� 0.14Þ GeV4 given in Ref. [26] and used by
Chen et al. in Ref. [11]. This shows that a small or even
vanishing contribution of the sum of the dimension-four
condensates to the spectral function lies within a one-
standard-deviation window of the central value if the results
of Refs. [23–25] are used.

A. Interpolating currents

For the construction of interpolating currents we refer to
the detailed presentation in Ref. [11]. Following these
authors we obtain two sets of five currents each for the
flavor-symmetric and -antisymmetric diquark-antidiquark
states. For conciseness we specify our currents to the
ðudū d̄Þ sector with hypercharge Y ¼ 0 which make up

the ðudū d̄Þ components of the σ; f0; a0 currents. In
Ref. [11] one can find a detailed discussion about the
flavor composition of the various tetraquark currents.
For the flavor-antisymmetric case one has the five

currents

JσS3 ¼ ðuiTCγ5djÞðūiγ5Cd̄Tj − ūjγ5Cd̄Ti Þ;
JσV3

¼ ðuiTCγμγ5djÞðūiγμγ5Cd̄Tj − ūjγμγ5Cd̄Ti Þ;
JσT6

¼ ðuiTCσμνdjÞðūiσμνCd̄Tj þ ūjσμνCd̄Ti Þ;
JσA6

¼ ðuiTCγμdjÞðūiγμCd̄Tj þ ūjγμCd̄Ti Þ;
JσP3

¼ ðuiTCdjÞðūiCd̄Tj − ūjCd̄Ti Þ; ð3Þ

where σμν ¼ i
2
½γμ; γν� (see also Appendix A). The lower

index on the currents marks the color multiplicity of the
diquark state which is given by the antisymmetric
(symmetric) color representations in the decomposition
3⊗ 3⇒ 3̄a (3 ⊗ 3 ⇒ 6̄s) and 3̄ ⊗ 3̄ ⇒ 3a (3̄ ⊗ 3̄ ⇒ 6̄s).
We mention that the mixed current correlator discussed
above corresponds to the mixed current

Jσ1 ¼ cos θJσA6
þ sin θJσV3

ð4Þ

with tan θ ¼ ffiffiffi
2

p
.

For the flavor-symmetric case one has the five currents

JσS6 ¼ ðuiTCγ5djÞðūiγ5Cd̄Tj þ ūjγ5Cd̄Ti Þ;
JσV6

¼ ðuiTCγμγ5djÞðūiγμγ5Cd̄Tj þ ūjγμγ5Cd̄Ti Þ;
JσT3

¼ ðuiTCσμνdjÞðūiσμνCd̄Tj − ūjσμνCd̄Ti Þ;
JσA3

¼ ðuiTCγμdjÞðūiγμCd̄Tj − ūjγμCd̄Ti Þ;
JσP6

¼ ðuiTCdjÞðūiCd̄Tj þ ūjCd̄Ti Þ: ð5Þ

Except for the LO term the OðαsÞ perturbative contribu-
tions to the flavor-symmetric and -antisymmetric correla-
tors are not always simply related. The currents in Eqs. (3)
and (5) are built from diquark-antidiquark components.
One can also construct the tetraquark currents from meson-
meson components. However, the meson-meson currents
do not lead to new tetraquark configurations since the two
representations are related by a Fierz transformation (see
Ref. [11] and Appendix B).
For an understanding and illustration of the modular

approach it is sufficient to discuss a simplified form of the
scalar current given by

JSðxÞ ¼ ðuiTðxÞCγ5djðxÞÞðūiðxÞγ5Cd̄Tj ðxÞÞ
¼ δki δ

l
jðuiTðxÞCγ5djðxÞÞðūkðxÞγ5Cd̄Tl ðxÞÞ; ð6Þ

involving only the first part of the scalar current in
Eq. (3). It is not difficult to reinstate the color-symmetrized/
-antisymmetrized form of the current at the final stages of
the calculations.
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B. The correlator

The correlation function1 is defined as the vacuum
expectation value of the time-ordered product of two
currents, i.e.

ΠðxÞ ¼ h0jT fJðxÞJ̄ð0Þgj0i: ð7Þ

If the current describes a boson (meson or tetraquark), one
has J̄ð0Þ ¼ J†ð0Þ while in the case of a fermion (baryon or
pentaquark), one has J̄ð0Þ ¼ J†ð0Þγ0.
The correlator in Eq. (7) is defined in x space. It can be

transformed to p space by a Fourier transformation with
the result

ΠðqÞ ¼ i
Z

ΠðxÞeiqxd4x

¼ i
Z

h0jT fJðxÞJ̄ð0Þgj0ieiqxd4x; ð8Þ

where, for the moment, we work inD ¼ 4 dimensions. The
optical theorem relates the p-space correlator to the spectral
density

ρðsÞ ¼ 1

2πi
DiscΠðqÞjq2¼−s; ð9Þ

where the discontinuity DiscfðpÞ is defined by (see e.g.
Ref. [27])

DiscfðpÞ ≔ fðpei0Þ − fðpe−i0Þ;
e�i0 ¼ lim

ε→0
e�iε; ε > 0: ð10Þ

Vice versa, for a given spectral density, the correlator can be
reconstructed by using

ΠðqÞ ¼
Z

∞

0

ρðsÞds
sþ q2

: ð11Þ

For the simplified scalar current in Eq. (6) the tetraquark
correlator in x space reads

ΠðxÞ ¼ TrðSuðxÞii0γ5SdðxÞjj0γ5ÞTrðSuð−xÞi
0
i γ5Sdð−xÞj

0
j γ5Þ

¼ 9

π8x12
ð12Þ

where we have made use of the x-space propagator given by
SðxÞii0 ¼δii0S0ð−x2Þxμγμ with S0ðx2Þ¼ð2π2x4Þ−1 for D ¼ 4

[cf. Eq. (14)]. The first trace in Eq. (12) contains two quark
propagators with a positive x-space argument while the
second trace contains two antiquark propagators corre-
sponding to quark propagators with a negative x-space

argument. The general rule is that an antiquark propagator
carries an extra minus sign. Note that the color trace in
Eq. (12) connects quarks/antiquarks in the two different
Dirac traces.

II. PROPAGATOR AND
DIPROPAGATOR MODULES

The result in Eq. (12) reflects a very general property of
massless correlators represented by sunrise-type diagrams:
in x space they are obtained by a product of single x-space
propagators. The corresponding p-space calculation is far
more difficult since one would have to perform a genuine
three-loop calculation. This observation sets the strategy for
the evaluation of the radiative corrections to the tetraquark
correlator: do most of the calculation in x space. In detail,
we first calculate the radiative corrections to a single
propagator and the dipropagator in p space (see Fig. 2).
We shall refer to these two corrections as the propagator
and dipropagator modules. In the two modules the Dirac
and color indices are left open. We then Fourier transform
the two modules to x space. Next we assemble the x-space
tetraquark correlator from these two modules augmented by
free propagators as shown in Fig. 2. The assembly is simple
in x space since the free propagators are linked to the
modules in product form. One then does the appropriate
Dirac and color contractions according to the specific
current being investigated. Finally, we Fourier transform
the x-space tetraquark correlator back to p space.
In the following section we first calculate the p-space

propagator and the dipropagator corrections using tradi-
tional momentum integration methods. The propagator
and the dipropagator corrections are then transformed to
x space.

A. The propagator correction

For illustrative reasons we begin by considering the LO
massless propagator in p space which takes the familiar
form

S01ðqÞ ¼
i
q
¼ −iqμγμð−q2Þ−1: ð13Þ

In order to obtain the corresponding LO x-space propagator
we have to take the Fourier transform of the propagator in
Eq. (13). Since we are working in dimensional regulariza-
tion one needs to make use of the D-dimensional Fourier
transform (D ¼ 4 − 2ε). The relevantD-dimensional trans-
formation formulas are collected in Appendix C. One
obtains

S01ðxÞ ¼ S0ð−x2Þxμγμ; ð14Þ

where we have factored out a frequently occurring function
S0ð−x2Þ defined by1In the following we use the synonym “correlator.”
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S0ð−x2Þ ¼
Γð2 − εÞ
2ð4πÞ2−ε

�
−
x2

4

�
ε−2

¼ Γð2 − εÞ
2π2−εð−x2Þ2−ε : ð15Þ

In Feynman gauge and in p space the propagator correction
[see Fig. 2(a)] reads2

S11ðqÞ ¼
i
q

Z
dDk
ð2πÞD ð−i~gsγαTaÞ

i
k
ð−i~gsγβTbÞ

i
q

−igαβδab
ðq − kÞ2 :

ð16Þ

In Eqs. (13)–(16) we have suppressed the color index
dependence δji .
Let us briefly comment on the gauge dependence of our

results. In a general Rξ gauge the gluon propagator reads

DαβðkÞ ¼
i
k2

�
−gαβ þ ð1 − ξÞ kαkβ

k2

�
: ð17Þ

The Feynman gauge used in Eq. (16) corresponds to the
choice ξ ¼ 1. As shown in Appendix D, the gauge
dependence drops out in the sum of the propagator and
dipropagator corrections when sandwiched between color-
neutral states.
Returning to Eq. (16) we proceed with the Feynman

gauge calculation and obtain

S11ðqÞ ¼ ðD − 2Þ~g2sTaTa
i
q

Z
dDk
ð2πÞD

k
k2ðq − kÞ2

i
q
: ð18Þ

It is convenient to define the dimensionless one-loop
two-point integrals Gðn1; n2Þ through

i

ð4πÞD=2 ð−q2ÞD=2−n1−n2Gðn1; n2Þ

≔
Z

dDk
ð2πÞD

1

ð−k2Þn1ð−ðq − kÞ2Þn2 : ð19Þ

After setting the tadpole contributions to zero, the integral
in Eq. (18) can be expressed in terms of the standard
integral Gð1; 1Þ given by

Gð1; 1Þ ¼ ΓðεÞΓ2ð1 − εÞ
Γð2 − 2εÞ ¼ Γð1þ εÞΓ2ð1 − εÞ

εΓð2 − 2εÞ ≕
G
ε
:

ð20Þ

The one-loop integral Gð1; 1Þ is divergent. In Eq. (20) we
have introduced the factorG¼Γð1þεÞΓ2ð1−εÞ=εΓð2−2εÞ
because we want to absorb the Γ factors in Eq. (20) into the
definition of the renormalization scale. We shall refer to this

scheme as the G scheme. The relation to the (modified)
minimal substraction scheme is given by

μ2εG ¼ Gð4πμ2MSÞε; μ2G ≈ e2μ2
MS

¼ 4πe2−γEμ2MS: ð21Þ

The corrected NLO p-space propagator finally reads

S11ðqÞ ¼ −
αsCF

4π

�
1

ε
− 1

��
−
q2

μ2G

�−ε i
q
: ð22Þ

With the help of Eq. (C7) in Appendix C (with α ¼ 1þ ε)
one obtains the corresponding x-space result

S11ðxÞ¼−S0ð−x2Þ
αsCF

4π

�
1

ε
þOðεÞ

�
ð−μ2xx2Þεxμγμ: ð23Þ

We have introduced an x-space scale μx as a new
renormalization scale, defined by

μ2εx ¼ Γð1 − εÞ
ð4πÞ−ε

�
1

4

�
ε

μ2εMS;

4μ2x ¼ 4πeγEμ2MS þOðεÞ ¼ e2γEμ2
MS

þOðεÞ: ð24Þ

Altogether the OðαsÞ x-space propagator reads

S1ðxÞ¼S0ð−x2Þ
�
1−

αsCF

4π

�
1

ε
þOðεÞ

�
ð−μ2xx2ÞεþOðα2sÞ

�

×xμγμ: ð25Þ

As expected, the propagator correction has the spatial
structure of the LO term in Eq. (14).

B. The dipropagator correction

In order to familiarize the reader with the calculational
procedure and the notation, we start our discussion with the
calculation of the uncorrected dipropagator. In p space the
uncorrected dipropagator consists of a single loop integral
where the two pairs of Dirac and color indices are left open
and uncontracted. The one-loop integral reads (color
indices are suppressed)

S02ðqÞ ¼
Z

dDk
ð2πÞD

�
i
k
⊗

i
q − k

�

¼
Z

dDk
ð2πÞD

kμðq − kÞν
k2ðq − kÞ2 ðγ

μ ⊗ γνÞ

¼ I0μνðqÞðγμ ⊗ γνÞ: ð26Þ

Expanding the tensor integral I0μν into the two covariants
q2gμν and qμqν, one has

2In dimensional regularization the strong charge ~gs has a mass
dimension which will be absorbed into the renormalization scale
such that one remains with a dimensionless renormalized charge
gs ¼ gsðμÞ.
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I0μνðqÞ ¼
Z

dDk
ð2πÞD

kμðq − kÞν
k2ðq − kÞ2 ¼ A0qμqν þ B0q2gμν:

ð27Þ
By contracting Eq. (27) with gμν and qμqν, calculating the
resulting scalar integrals, dropping tadpole contributions
and solving for A0 and B0 one obtains

A0 ¼ −iGð1; 1ÞðD − 2Þ
4ð4πÞD=2ðD − 1Þ ð−q

2ÞD=2−2;

B0 ¼ −iGð1; 1Þ
4ð4πÞD=2ðD − 1Þ ð−q

2ÞD=2−2; ð28Þ

where the scalar integral Gð1; 1Þ is listed in Eq. (20).
Altogether one has

S02ðqÞ ¼
−iGð1; 1Þ

4ð4πÞD=2ðD − 1Þ ð−q
2ÞD=2−2

× ððD − 2Þqμqν þ q2gμνÞðγμ ⊗ γνÞ: ð29Þ

We then Fourier transform S02ðqÞ to x space using the
results in Appendix C [Eq. (C9) with α ¼ 2 −D=2 ¼ ε,
A ¼ D − 2 ¼ 2ð1 − εÞ and B ¼ 1]. One obtains

S02ðxÞ ¼
Gð1; 1ÞΓðD − 1Þ

32ð4πÞDðD − 1ÞΓð2 −D=2Þ
�
−
x2

4

�−D

× ð−2ðD − 1ÞðD − 2ÞxμxνÞðγμ ⊗ γνÞ
¼ ðS0ð−x2ÞÞ2xμxνðγμ ⊗ γνÞ
¼ S01ðxÞ ⊗ S01ðxÞ; ð30Þ

where S01ðxÞ is defined in Eq. (14). The factorized result in
the second line of Eq. (30) is a special case of the general
x-space result for a massless n-loop sunrise diagram written
down in Refs. [27–30].
In order to calculate the NLO dipropagator correction we

start again in p space. A symbolic representation of the
corresponding two-loop Feynman diagram is shown in
Fig. 2(b). The endpoints of the momentum lines in the
initial and final states have not been joined together in order
to symbolize the fact that the color and Dirac indices in the
diagram are left open. The two-loop correction to the
dipropagator is given by the twofold integral

S12ðqÞ¼
Z

dDk
ð2πÞD

dDl
ð2πÞD

×

�
i
k
ð−i~gsγαTaÞ

i
l
⊗

i
q−k

ð−i~gsγβTbÞ
i

q−l

�
−igαβδab
ðk−lÞ2

¼ðTa⊗TaÞ~g2sðγμγαγν⊗γμ0γαγν0 ÞIμ
0ν0

μν ðqÞ; ð31Þ

where

Iμ
0ν0

μν ðqÞ ¼ i
Z

dDk
ð2πÞD

dDl
ð2πÞD

kμlνðq − kÞμ0 ðq − lÞν0
k2l2ðq − kÞ2ðq − lÞ2ðk − lÞ2 :

ð32Þ

The integral Iμ
0ν0

μν ðqÞ can be seen to be symmetric under
the simultaneous interchange of μ ↔ ν and μ0 ↔ ν0. It is
therefore expedient to split the gamma matrix string
γμγαγν (and, accordingly, γμ0γαγν0 ) into its μ ↔ ν and
μ0 ↔ ν0 symmetric and antisymmetric parts,

γμγαγν ¼ 1

2
ðγμγαγν þ γνγαγμÞ þ 1

2
ðγμγαγν − γνγαγμÞ

¼ γðμγαγνÞ þ γ½μγαγν�: ð33Þ

One then remains with

ðγμγαγν ⊗ γμ0γαγν0 ÞIμ
0ν0

μν ðqÞ
¼ ðγðμγαγνÞ ⊗ γðμ0γαγν0ÞÞIðμ

0ν0Þ
ðμνÞ ðqÞ

þ ðγ½μγαγν� ⊗ γ½μ0γαγν0�ÞI½μ
0ν0�

½μν� ðqÞ: ð34Þ

The symmetric-symmetric contribution in Eq. (34) will be
dealt with by making use of the D-dimensional identity
γðμγαγνÞ ¼ ðgμαgνβ þ gμβgνα − gμνgαβÞγβ and the corre-
sponding identity for γðμ0γαγν0Þ.

The contraction ðγðμγαγνÞ ⊗ γðμ0γαγν0ÞÞIðμ
0ν0Þ

ðμνÞ ðqÞ leads to a
number of second-rank two-loop tensor integrals which can
be reduced to scalar integrals using standard techniques. In
order to minimize calculational mistakes, all necessary
manipulations have been done by computer algebra pro-
grams.3 The required set of scalar two-loop integrals
needed in this application are defined by [33]

−1
ð4πÞD ð−q2ÞD−n1−n2−n3−n4−n5Gðn1; n2; n3; n4; n5Þ

≔
Z

dDk
ð2πÞD

dDl
ð2πÞD

1

ð−k2Þn1ð−l2Þn2ð−ðq − kÞ2Þn3ð−ðq − lÞ2Þn4ð−ðk − lÞ2Þn5 : ð35Þ

3The reduction to scalar integrals is performed by integration-by-parts techniques [31]. The integration-by-parts method under the
name RECURSOR is originally written in REDUCE and is translated by us for use under MATHEMATICA (for an overview see e.g. Ref. [32]).
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Their solution has been given in Ref. [33].
The symmetric-symmetric contribution to the dipropa-

gator correction can be represented in the form

SS12 ðqÞ ¼ ðTa ⊗ TaÞðISÞββ0 ðqÞðγβ ⊗ γβ0 Þ; ð36Þ

where

ðISÞββ0 ðqÞ ¼ A1ðq2Þqβqβ0 þ B1ðq2Þq2gβ
0

β ; ð37Þ

and where

A1ðq2Þ ¼
i~g2sG2ð−q2Þ−2ε
ð4πÞ4−2εε2

�
1 − 5ε

12

�
;

B1ðq2Þ ¼
i~g2sG2ð−q2Þ−2ε
ð4πÞ4−2εε2

�
7þ 13ε

24

�
: ð38Þ

Next we turn to the antisymmetric-antisymmetric con-
tribution in Eq. (34) whose structure can be further

specified by noting that the integral I½μ
0ν0�

½μν� ðqÞ is separately
antisymmetric under the exchange μ ↔ ν and μ0 ↔ ν0. The
integral I½μ

0ν0�
½μν� ðqÞ can thus be expanded into two corre-

sponding tensors built from the metric tensor and the outer
momentum q that possess this antisymmetry. One therefore
has4

I½μ
0ν0�

½μν� ðqÞ ¼ ðqμðgν0ν qμ0 − gμ
0

ν qν
0 Þ þ qνðgμ

0
μ qν

0 − gν
0
μ qμ

0 ÞÞR1

þ ðgμ0μ gν0ν − gν
0
μ g

μ0
ν ÞR2: ð39Þ

Using again standard techniques one obtains the contribu-
tions of the antisymmetric-antisymmetric part in terms of a
set of fourth-order tensor integrals which can again be
reduced to the two-loop scalar integrals in Eq. (35).
Similar to Eq. (36) the antisymmetric-antisymmetric

contribution to the dipropagator correction can be written
in the form

SA12 ðqÞ ¼ ðTa ⊗ TaÞðIAÞββ0 ðqÞðγ½μγβγν� ⊗ γ½μ0γβ0γν0�Þ
ð40Þ

with

ðIAÞββ0 ðqÞ ¼ A3ðq2Þqβqβ0 þ B3ðq2Þq2gβ
0

β ; ð41Þ

and

A3ðq2Þ ¼
i~g2sG2ð−q2Þ−2ε
ð4πÞ4−2εε2

�
1

24

�
;

B3ðq2Þ ¼
i~g2sG2ð−q2Þ−2ε
ð4πÞ4−2εε2

�
1þ 2ε

48

�
: ð42Þ

Adding up the symmetric-symmetric contribution in
Eq. (36) and the antisymmetric-antisymmetric contribution
in Eq. (40) the final result in p space reads

S12ðqÞ ¼ ðTa ⊗ TaÞ
i~g2sG2ð−q2Þ−2ε
ð4πÞ4−2εε2

× fða1qβqβ0 þ b1q2g
β0
β Þðγβ ⊗ γβ0 Þ

þ ða3qβqβ0 þ b3q2g
β0
β Þðγ½μγαγβ� ⊗ γ½μγαγβ0�Þg;

ð43Þ

where

a1 ¼
1

12
ð1 − 5εÞ; b1 ¼

1

24
ð7þ 13εÞ;

a3 ¼
1

24
; b3x ¼

1

48
ð1þ 2εÞ: ð44Þ

The result is then Fourier transformed to x space using
again the results of Appendix C. Together with the LO
result one finally has S2ðxÞ ¼ S02ðxÞ þ S12ðxÞ,

S2ðxÞ ¼ ðS0ð−x2ÞÞ2

×

��
ð1− ðTa ⊗ TaÞ

αs
4π

ð−μ2xx2Þε
�
1

ε
þ 11

2

�
xμxν

− ðTa ⊗ TaÞ
αs
4π

ð−μ2xx2Þε
�
1

ε
þ 1

2

�
x2gμν

�
ðγμ ⊗ γνÞ

− ðTa ⊗ TaÞ
αs
4π

ð−μ2xx2Þε
�
1

2ε
þ 1

4

�

× xμxνðγ½αγβγμ� ⊗ γ½αγβγν�Þ
�
: ð45Þ

It is important to realize that the dipropagator module
contains terms which do not have the spatial structure of the
LO term in Eq. (43).

III. RENORMALIZATION

In as much as the divergence of the propagator can be
removed by renormalizing the wave function, one can
remove the divergences of the correlator Π by renormaliz-
ing the currents J. There is an important difference,
though, in as much as the corrected correlator may contain

4We mention in passing that in D ¼ 4 dimensions the anti-
symmetric Dirac string can be simplified by using the D ¼ 4

identity γ½μγαγν� ¼ i
2
γ5ϵ

μανβγβ. Using the same identity for
γ½μ0γαγν0 � one would end up with the contraction ϵμανβϵμ0αν0β0
leading to a sum of products of three metric tensors. In this case
one would again have second-order tensor integrals as in the
symmetric-symmetric case but now multiplying the Dirac struc-
ture γ5γβ ⊗ γ5γβ0 . However, since we are working within dimen-
sional regularization, we cannot make use of the above identity.
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higher-order spinor field products that differ from the
LO currents. Therefore, we must take into account both
multiplicative renormalization and additive counterterms.
If Jð0ÞðxÞ is the LO current and ΔJð1ÞðxÞ is the first-order
correction, the first-order correction of the correlator in
Eq. (7) is given by

ΔΠð1ÞðxÞ ¼ h0jT fJð0ÞðxÞΔJ̄ð1Þð0Þ þ ΔJð1ÞðxÞJ̄ð0Þð0Þgj0i:
ð46Þ

A. Renormalization factor

The wave-function renormalization is calculated by
using the propagator correction. The wave-function
renormalization is always multiplicative since the propa-
gator correction does not change the structure of the
current. The renormalization factor is a perturbation series
in the corresponding subtraction scheme which consists of
pure poles to every order. The renormalization factor for the
propagator correction (25) reads

Z2 ¼ 1þ
X∞
n¼1

�
αs
4π

�
n Xn
m¼1

1

εm
Zm
n ¼ 1þ αs

4πε
Z1
1 þOðα2sÞ

ð47Þ

with the condition that Z−1
2 S1ðxÞ≕Sr1ðxÞ is finite. As a

result we obtain the renormalization factor

Z2 ¼ 1 −
αsCF

4πε
¼ 1 −

αs
3πε

: ð48Þ

Therefore, we renormalize the singularity of the propagator
corrections by multiplying the correlator with Z−n

2 , where n
is the number of lines (n ¼ 4 for the tetraquark).

B. Counterterms

The first-order QCD dipropagator correction changes the
quark spinor fields qðxÞ. In x space the change due to gluon
exchange is given by

ΔqðxÞ ¼ −igs
Z

dDx0Sðx − x0ÞγμTaqðx0ÞAa
μðx0Þ; ð49Þ

where Aa
μðx0Þ is the gluon field. In the case of the tetraquark

current one has four different species of spinor fields: qðxÞ,
q̄ðxÞ, qTðxÞC, and Cq̄TðxÞ. The corresponding changes
under gluon exchange for the current at x ¼ 0 (the current
at x ≠ 0 is dealt with accordingly) are given by

Δqi ¼ −igsðTaÞii0
Z

d4xSαð−xÞAa
βðxÞγαγβqi0 ðxÞ;

Δq̄i ¼ −igs
Z

d4xq̄i0 ðxÞγβγαSαðxÞAa
βðxÞðTaÞi0i;

ΔqTi C ¼ −igsðTaÞii0
Z

d4xqTi0 ðxÞCγβγαSαðxÞAa
βðxÞ;

CΔq̄Ti ¼ −igs
Z

d4xAa
βðxÞSαð−xÞγαγβCq̄Ti0 ðxÞðTaÞi0i:

ð50Þ

In the dipropagator correction the gluon fields of two spinor
corrections have to be linked to build a gluon propagator.
Therefore, one has to calculate

− g2s

Z
dDx0dDx00Sαðs1x0ÞDμνðx0 − x00ÞSβðs2x00Þ

¼ is1s2g2s

Z
dDk
ð2πÞD

kαkβ
ðk2 −m2

GÞ3
gμν

¼ −s1s2αs
16πε

gαβgμν þ finite terms; ð51Þ

where s1 and s2 are the signs of the two propagator
arguments. Note that we can perform the integration over
x0 and x00 because we are looking for the UV-singular part.
In x space, the UV regime means locality, i.e. one can
replace ψðx0Þ and ψðx00Þ under the integrations by ψðxÞ. In
addition, we have used a (small) gluon massmG in order to
regularize IR singularities. We have kept only the
UV-singular terms because in order to calculate the
counterterm we stay in the same renormalization scheme,
i.e. we do not subtract finite terms. Taking these consid-
erations into account, the changes for the different formal
products of two spinors read

Δðqi⊗qjÞ¼ −αs
16πε

ðTaÞii0 ðTaÞjj0 ðγαγμqi
0 ⊗γαγμqj

0 Þ;

Δðqi⊗ q̄jÞ¼
þαs
16πε

ðTaÞii0 ðTaÞj
0
j ðγαγμqi0 ⊗ q̄j0γμγαÞ;

ΔðqiTC⊗qjÞ¼ −αs
16πε

ðTaÞii0 ðTaÞjj0 ðqi
0TCγμγα⊗γαγμqj

0 Þ;

ΔðqiTC⊗ q̄jÞ¼
þαs
16πε

ðTaÞii0 ðTaÞj
0
j ðqi0TCγμγα⊗ q̄j0γμγαÞ;

Δðq̄i⊗qjÞ¼ þαs
16πε

ðTaÞi0i ðTaÞjj0 ðq̄i0γμγα⊗γαγμqj
0 Þ;

Δðqi⊗Cq̄Tj Þ¼
þαs
16πε

ðTaÞii0 ðTaÞj
0
j ðγαγμqi0 ⊗γαγμCq̄Tj0 Þ;

Δðq̄i⊗Cq̄Tj Þ¼
−αs
16πε

ðTaÞi0i ðTaÞj
0
j ðq̄i0γμγα⊗γαγμCq̄Tj0 Þ;

ΔðqiTC⊗Cq̄Tj Þ¼
þαs
16πε

ðTaÞii0 ðTaÞj
0
j ðqi0TCγμγα⊗γαγμCq̄Tj0 Þ:

ð52Þ
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When applied to the current under question, these changes
will constitute the counterterms. Take for instance the
simplified scalar current in Eq. (6) and use

ðTaÞii0 ðTaÞjj0 ¼
1

2

�
δij0δ

j
j0 −

1

Nc
δii0δ

j
j0

�
: ð53Þ

One obtains six counterterm contributions to the
currents corresponding to the six possibilities in which
the quark/antiquark lines in Fig. 1 can be connected.
Starting from the top we enumerate the quark/antiquark
lines by 1 to 4.

ΔJð12Þ ¼
−αs
2πε

�
ðuiTCγ5djÞðūjγ5Cd̄Ti Þ −

1

Nc
ðuiTCγ5djÞðūiγ5Cd̄Tj Þ

�
;

ΔJð13Þ ¼
αsCF

16πε
ðuiTCγ5djÞðūiγ5Cd̄Tj Þ −

αsCF

16πε
ðuiTCσαβγ5djÞðūiσαβγ5Cd̄Tj Þ;

ΔJð14Þ ¼
αs

32πε

�
ðuiTCγ5djÞðūjγ5Cd̄Ti Þ −

1

Nc
ðuiTCγ5djÞðūiγ5Cd̄Tj Þ

�

þ αs
32πε

�
ðuiTCσαβγ5djÞðūjγ5σαβCd̄Ti Þ −

1

Nc
ðuiTCσαβγ5djÞðūiγ5σαβCd̄Tj Þ

�
;

ΔJð23Þ ¼
αs

32πε

�
ðuiTCγ5djÞðūjγ5Cd̄Ti Þ −

1

Nc
ðuiTCγ5djÞðūiγ5Cd̄Tj Þ

�

þ αs
32πε

�
ðuiTCγ5σαβdjÞðūjσαβγ5Cd̄Ti Þ −

1

Nc
ðuiTCγ5σαβdjÞðūiσαβγ5Cd̄Tj Þ

�
;

ΔJð24Þ ¼
αsCF

16πε
ðuiTCγ5djÞðūiγ5Cd̄Tj Þ −

αsCF

16πε
ðuiTCγ5σαβdjÞðūiγ5σαβCd̄Tj Þ;

ΔJð34Þ ¼
−αs
2πε

�
ðuiTCγ5djÞðūjγ5Cd̄Ti Þ −

1

Nc
ðuiTCγ5djÞðūiγ5Cd̄Tj Þ

�
: ð54Þ

The notation is such that (mn) stands for the diagram
where the gluon is exchanged between line m and line n
(m; n ¼ 1;…; 4). Obviously, new current structures have
appeared which are not present at LO. Counterterms for the
currents lead to counterterms for the correlators. The whole
procedure has been automated using MATHEMATICA.

IV. RESULTS

The procedure to obtain the final results for the spectral
density will be explained in detail for the color- and

0 x

u

i’i
d

j’j

u

i’i

d

j’j

0 x

u

d

u

d

0 x

u

d

u

d

(c)(b)(a)

FIG. 1. Leading-order tetraquark correlator (a) and two first-order corrections (b), (c).

q q − k q

k
l k

q − l q − k

l k

(b)(a)

FIG. 2. Propagator correction (a) with loop momentum k and
dipropagator correction (b) with loop momenta l and k.
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flavor-antisymmetric scalar tetraquark current JS3 in
Eq. (3). The current consists of two parts,

JS3ðxÞ ¼ JSaðxÞ − JSbðxÞ ð55Þ

where

JSaðxÞ ¼ ðuiTðxÞCγ5djðxÞÞðūiðxÞγ5Cd̄Tj ðxÞÞ; ð56Þ

JSbðxÞ ¼ ðuiTðxÞCγ5djðxÞÞðūjðxÞγ5Cd̄Ti ðxÞÞ: ð57Þ

Accordingly, for the correlator one obtains four
contributions.

A. Diagonal contributions

The two LO diagonal contributions ΠSaaðxÞ and ΠSbbðxÞ
are given by a product of two factors 4x2ðS0ð−x2ÞÞ2
from the two Dirac traces and two factors Nc from the
two (distinct) color traces, resulting in Π0

SaaðxÞ ¼
16x4N2

cðS0ð−x2ÞÞ4 ¼ Π0
SbbðxÞ. The NLO diagonal contri-

bution consists of two parts. Each of the four propagator
corrections is given by the product of the same two Dirac
trace factors 4x2ðS0ð−x2ÞÞ2 and two color factors Nc.
Including the general factor in Eq. (25),

−
αsCF

4π
ð−μ2xx2Þε

�
1

ε

�
; ð58Þ

the propagator correction reads

Π1
SaaðxÞ ¼ 64N2

cx4ðS0ð−x2ÞÞ4
�
−
αsCF

4π
ð−μ2xx2Þε

�
1

ε

��

¼ Π1
SbbðxÞ: ð59Þ

For the dipropagator corrections to the diagonal contribu-
tion one has to keep in mind that gluon insertions are
allowed only within the same color trace. In these two cases
[in the case of ΠSaaðxÞ for the insertions (13) and (24),
cf. Appendix D] the color factor is given by 1

2
NcðN2

c − 1Þ.
In calculating the Dirac traces one has to distinguish
between the three parts in Eq. (45), i.e. the parts x ⊗ x,
γμ ⊗ γμ, and xμxνγ½αγβγμ� ⊗ γ½αγβγν�. Because the gluon
insertions connect different Dirac traces, one obtains the
result 16x4ðS0ð−x2ÞÞ4 for the first two parts and 0 for the
third one. The dipropagator correction, therefore, reads
(N2

c − 1 ¼ 2NcCF)

Π2
SaaðxÞ ¼ 16NcðN2

c − 1Þx4ðS0ð−x2ÞÞ4

×

�
αs
4π

ð−μ2xx2Þε
��

1

ε
þ 11

2

�
þ
�
1

ε
þ 1

2

���

¼ 64N2
cCFx4ðS0ð−x2ÞÞ4

�
αs
4π

ð−μ2xx2Þε
�
1

ε
þ 3

��

¼ Π2
SbbðxÞ: ð60Þ

Altogether one obtains

ΠSaaðxÞ ¼ 16N2
cx4ðS0ð−x2ÞÞ4

�
1 −

αsCF

π
εð−μ2xx2Þε

�
1

ε

�

þ αsCF

π
ð−μ2xx2Þε

�
1

ε
þ 3

��

¼ 16N2
cx4ðS0ð−x2ÞÞ4

�
1þ 3

αsCF

π
ð−μ2xx2Þε

�

¼ ΠSbbðxÞ: ð61Þ

The diagonal contributions are finite and the counterterms
are zero, Πc

SaaðxÞ ¼ Πc
SbbðxÞ ¼ 0. Therefore, the correlator

is given by

ΠSaaðxÞ ¼ 16N2
cx4ðS0ð−x2ÞÞ4

�
1þ 4αs

π

�
¼ ΠSbbðxÞ

ð62Þ

and the spectral density reads

ρSaaðsÞ ¼
s4

20ð4πÞ6
�
1þ 4αs

π

�
¼ ρSbbðsÞ: ð63Þ

B. Nondiagonal contributions

For the nondiagonal contributions ΠSabðxÞ and ΠSbaðxÞ,
there are still the same two distinct Dirac traces but only
one single-color trace running through all lines. Because of
this, the LO nondiagonal contributions consist of a color
factor −Nc and again two Dirac factors 4x2ðS0ð−x2ÞÞ2,
resulting in Π0

SabðxÞ ¼ 16Ncx4ðS0ð−x2ÞÞ4 ¼ Π0
SbaðxÞ.

Again, the same factors occur also for the four propagator
corrections. Including the general factor from Eq. (25) one
obtains

Π1
SabðxÞ ¼ 64Ncx4ðS0ð−x2ÞÞ4

�
−
αsCF

4π
ð−μ2xx2Þε

�
1

ε

��

¼ Π1
SbaðxÞ: ð64Þ

For the dipropagator corrections, each of the six gluon
insertions leads to a color factor 1

2
ðN2

c − 1Þ ¼ NcCF. The
Dirac traces, however, depend on whether the gluon
insertions are within the same Dirac trace or not. For the
insertions (12) and (34) the contributions to the three
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parts of Eq. (45) are given by −16x4ðS0ð−x2ÞÞ4,
−16Dx4ðS0ð−x2ÞÞ4, and −16ðD−1ÞðD−2Þx4ðS0ð−x2ÞÞ4,
respectively. For the other four insertions we obtain again
16x4ðS0ð−x2ÞÞ4, 16x4ðS0ð−x2ÞÞ4, and 0. Including the
general factor from Eq. (45) the dipropagator corrections
read

Π2
SabðxÞ ¼ 64Ncx4ðS0ð−x2ÞÞ4

×

�
−
αsCF

4π
ð−μ2xx2Þε

��
4

ε
þ 1

�
− 2

�
1

ε
þ 3

���

¼ 64Ncx4ðS0ð−x2ÞÞ4
�
−
αsCF

4π
ð−μ2xx2Þε

�
2

ε
− 5

��

¼ Π2
SbaðxÞ: ð65Þ

Altogether one obtains

ΠSabðxÞ¼16Ncx4ðS0ð−x2ÞÞ4
�
1−4

αs
π
ðμ2xx2Þε

�
1

ε
−
5

3

��

¼16Ncx4ðS0ð−x2ÞÞ4
�
1−4

αs
π

�
1

ε
−
5

3
þ lnðμ2xx2Þ

��

¼ΠSbaðxÞ: ð66Þ

The nondiagonal contributions are singular. Following the
considerations in Sec. III the corresponding x-space coun-
terterms can be obtained in the same way as the first-order
propagator and dipropagator corrections in Eqs. (64)–(65).
One keeps only the singular contribution which contributes
with the opposite sign to those in Eqs. (64)–(65). The
counterterms, therefore, are given by

Πc
SabðxÞ ¼ 64Ncx4ðS0ð−x2ÞÞ4

αs
π

�
1

ε

�
¼ Πc

SbaðxÞ: ð67Þ

The renormalized nondiagonal correlator contributions
read

Πr
SabðxÞ ¼ 16Ncx4ðS0ð−x2ÞÞ4

�
1 − 4

αs
π

�
lnðμ2xx2Þ −

5

3

��

¼ Πr
SbaðxÞ: ð68Þ

When summing up all four contributions one obtains

ΠS3S3ðxÞ¼ΠSaa−ΠSab−ΠSbaþΠSbb¼2ΠSaa−2ΠSab

¼192x4ðS0ð−x2ÞÞ4
�
1þ2

αs
π
ðμ2xx2Þε

�
1

ε
þ4

3

��

¼192x4ðS0ð−x2ÞÞ4
�
1þ2

αs
π

�
1

ε
þ4

3
þ lnðμ2xx2Þ

��
:

ð69Þ

The resulting counterterm is thus given by

Πc
S3S3

ðxÞ ¼ −384x4ðS0ð−x2ÞÞ4
αs
π

�
1

ε

�
; ð70Þ

leading to a renormalized correlator of the form

Πr
S3S3

ðxÞ ¼ 384x4ðS0ð−x2ÞÞ4
�
1þ 2

αs
π

�
4

3
þ lnðμ2xx2Þ

��
:

ð71Þ
The corresponding spectral density (cf. Appendix E) reads

ρS3S3ðsÞ ¼
s4

15ð4πÞ6
�
1þ αs

π

�
57

5
þ 2 ln

�
μ2
MS

s

���
: ð72Þ

C. Results for diagonal and nondiagonal
spectral functions

The same procedure works for all currents. Let us first
list all ten diagonal spectral functions corresponding to
the five flavor-antisymmetric and five flavor-symmetric
currents. One obtains

ρσS3S3 ¼ ρσP3P3
¼ s4

15ð4πÞ6
�
1þ αs

π

�
57

5
þ 2 ln

�
μ2
MS

s

���
;

ρσV3V3
¼ ρσA3A3

¼ 4s4

15ð4πÞ6
�
1þ αs

π

�
67

10
þ ln

�
μ2
MS

s

���
;

ρσT3T3
¼ 8s4

5ð4πÞ6
�
1þ αs

π

�
82

15
þ 2

3
ln

�
μ2
MS

s

���
;

ρσS6S6 ¼ ρσP6P6
¼ 2s4

15ð4πÞ6
�
1þ αs

π

�
3

10
− ln

�
μ2
MS

s

���
;

ρσV6V6
¼ ρσA6A6

¼ 8s4

15ð4πÞ6
�
1þ αs

π

�
55

4
þ 5

2
ln

�
μ2
MS

s

���
;

ρσT6T6
¼ 16s4

5ð4πÞ6
�
1þ αs

π

�
211

15
þ 11

3
ln

�
μ2
MS

s

���
: ð73Þ

The LO contributions for the flavor-antisymmetric spectral
densities are in agreement with the results of Ref. [11]. The
LO contributions for the flavor-symmetric spectral den-
sities amount to twice the corresponding antisymmetric
contributions as can be understood from the color manip-
ulations described in Appendix D. For example, one has
ρσS6S6ðLOÞ ¼ 2ρσS3S3ðLOÞ, etc.
When considering spectral functions corresponding to

mixed currents as e.g. in Eq. (4) of Sec. I A one also needs
nondiagonal spectral functions. For the example (4) one
needs the nondiagonal spectral functions

ρσA6V3
¼ ρσV3A6

¼ ρσA3V6
¼ ρσV6A3

¼ 8s4

15ð4πÞ6
�
−
αs
π

�
48

5
þ 3 ln

�
μ2
MS

s

���
: ð74Þ
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Finally, we list all nonvanishing nondiagonal spectral
functions,

ρσV3A3
¼ −ρσS3T3

¼ 4s4

5ð4πÞ6
�
αs
6π

�
;

ρσV6A6
¼ −ρσS6T6

¼ 4s4

5ð4πÞ6
�
5αs
6π

�
;

ρσS3T6
¼ ρσS6T3

¼ −ρσV3A6
¼ −ρσV6A3

¼ 4s4

5ð4πÞ6
�
αs
π

��
16

5
þ ln

�
μ2
MS

s

��
;

ρσT3P6
¼ ρσT6P3

¼ −4s4

5ð4πÞ6
�
αs
π

��
37

10
þ ln

�
μ2
MS

s

��
: ð75Þ

V. SUMMARY AND CONCLUSION

We have obtained analytical results for the NLO per-
turbative contributions to the light tetraquark correlation
and spectral functions. The results have been obtained by
prudently hopping back and forth between p space and x
space making use of the modular approach introduced in
Refs. [29,30] in terms of propagator and dipropagator
insertions into the correlation functions. We have checked
on the gauge invariance of our results. At the same time we
have also checked on the gauge invariance of previous
results on the textbook case of zero-mass meson correlators
[34–36], on baryon correlators [37,38] and on pentaquark
correlators [21,22].
We have found that the NLO perturbative corrections

to the correlators are large. However, since the current
correlators are dominated by the nonperturbative contribu-
tions, the NLO corrections have little impact on the analysis
of the corresponding sum rules. In particular, referring to
Appendix F, we find that the NLO corrections to the
perturbative term affect the results of the sum rule analysis
for the ground-state energy by þ0.065% which is within
the error of the Borel sum rule analysis by Chen et al. [11].
However, as pointed out in Sec. I, the error on the
condensate contributions used in Ref. [11] may have been
vastly underestimated. A different possibility to harness the
large condensate contributions of Ref. [11] would be to
analyze the spectral functions in terms of finite-energy sum
rules [39–41] in which the large higher-twist condensate
contributions are reduced or even removed.
In calculating the NLO contributions to the pentaquark

correlators we have set the light-quark masses to zero. We
do not expect quark-mass effects such as e.g. the strange-
current-quark mass to be important for the NLO corrections
at the scale of the light scalar mesons. This may be different
in the sum rule analysis of heavy tetraquark states where
the nonperturbative contributions can be expected to be
smaller. We hope to return to the problem of calculating the
perturbative corrections to heavy tetraquark current corre-
lators in the future, using again a modular approach.

A possible further project would be to calculate the
radiative corrections to the LO dibaryon (“exiquark”)
correlator discussed in Ref. [42].

ACKNOWLEDGMENTS

This work was supported by the Estonian Research
Council under Grant No. IUT2-27, and by the Estonian
Science Foundation under Grant No. 8769. We would like
to thank A. Grozin and A. A. Pivovarov for useful
discussions. S. G. acknowledges the support by the
Mainz Institute of Theoretical Physics (MITP).

APPENDIX A: THE SCALARITY OF THE
DIQUARK CURRENT

In Table I we list the five bilinear quark-quark currents
that are being used to construct the tetraquark currents. C is
the charge conjugation matrix given by C ¼ iγ2γ0, and the
index T stands for transposition. Because we are dealing
with diquarks (or antidiquarks), the labeling of the currents
in terms of their parity properties differs from the familiar
labeling of bilinear quark-antiquark fields. In the following
we show that the diquark current

JSðxÞ ¼ qTðxÞCγ5qðxÞ ðA1Þ

is a scalar current. This can be demonstrated similarly to
the textbook example of proving the scalarity of the
quark-antiquark current qðxÞq̄ðxÞ.
Using the Lorentz transformation property xμ → x0μ ¼

Λμ
νxν ¼ ðΛxÞμ one can write

qðxÞ → q0ðx0Þ ¼ q0ðΛxÞ ¼ UðΛÞqðxÞ: ðA2Þ

We then use the fact that the metric tensor and the Dirac
equation are invariant under Lorentz transformations,

ΛTgΛ ¼ g; U−1ðΛÞγμUðΛÞ ¼ Λμ
νγ

ν: ðA3Þ

Next we expand UðΛÞ ¼ 1þ i
4
ϵαβhαβ þOðh2Þ where ϵαβ

is the two-dimensional Levi-Civita symbol and where hαβ

is an antisymmetric infinitesimal quantity.
Let us briefly return to the textbook example of the

quark-antiquark current. Using the properties γ0γ0 ¼ 1,
γ0γμ†γ0 ¼ γμ and γ0σμν†γ0 ¼ σμν one can show that
γ0U†γ0 ¼ U−1 and, therefore,

TABLE I. Bilinear diquark Dirac fields.

Scalar S qTCγ5q
Vector V qTCγμγ5q
Tensor T qTCσμνq
Axial vector A qTCγμq
Pseudoscalar P qTCq
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q̄0q0 ¼ q†U†γ0Uq ¼ q̄U−1Uq ¼ q̄q; ðA4Þ
showing that q̄ðxÞqðxÞ transforms as a scalar.
In the case of the diquark current in Eq. (A1) we define

A ¼ Cγ5 ¼ iγ3γ1. Contrary to the charge conjugation
matrix C ¼ iγ2γ0 where CC ¼ −1, CγμTC ¼ γμ and
CσμνTC ¼ σμν, one obtains AA ¼ 1, AγμTA ¼ γμ and
AσμνTA ¼ −σμν. Therefore, for the matrix U one obtains
AUTA ¼ U−1, and one can conclude that

q0TCγ5q0 ¼ q0TAq0 ¼ qTUTAUq ¼ qTAU−1Uq

¼ qTCγ5q; ðA5Þ

showing that qTCγ5q transforms as a scalar. One could
have anticipated this result by intuitive reasoning from the
fact that two quark fields have a relative positive parity
while a quark and antiquark field have a relative negative
quality.

APPENDIX B: FIERZ TRANSFORMATIONS

We shall present the generalized Fierz transformation
[43] in terms of the Takahashi bracket notation [44] which
reads

ðΓAÞ½ΓB� ¼ 1

42
TrðΓAΓCΓBΓDÞðΓD�½ΓCÞ: ðB1Þ

The summation runs over the indices C and D. The bracket
notation is best explained by writing out the corresponding
Dirac indices,

ðΓAÞ½ΓB� ¼ ΓA
αβΓB

γδ; ðΓA�½ΓBÞ ¼ ΓA
αδΓB

γβ: ðB2Þ

Let us introduce a set of five Dirac strings

ΓA ∈ f1; γμ; σμν; γμγ5; γ5g; ðB3Þ
where σμν ¼ i

2
½γμ; γν�. The dual base to this set has the

elements ΓA where TrðΓAΓBÞ ¼ 4δBA.
5 We obtain (note

the different order in the axial term and the factor 1=2 for
the tensor part)

ΓA ∈
�
1; γμ;

1

2
σμν; γ5γμ; γ5

�
: ðB4Þ

Next we define a set of five contracted outer products of the
Dirac strings in Eq. (B3),

ðS; V; T; A; PÞ
¼ ðð1Þ½1�; ðγμÞ½γμ�; ðσμνÞ½σμν�; ðγμγ5Þ½γμγ5�; ðγ5Þ½γ5�Þ ðB5Þ

and their Fierz-reordered counterparts

ð ~S; ~V; ~T; ~A; ~PÞ
¼ ðð1�½1Þ; ðγμ�½γμÞ; ðσμν�½σμνÞ; ðγμγ5�½γμγ5Þ; ðγ5�½γ5ÞÞ: ðB6Þ

The two sets are related by the Fierz transformation
matrix. The elements of the matrix can be calculated with
the help of Eq. (B1). This will be illustrated for the last
row of the Fierz transformation matrix whose coefficients
can be calculated from the trace 16ðγ5Þ½γ5� ¼
Trðγ5ΓAγ5ΓBÞðΓA�½ΓBÞ. Only the diagonal terms contribute
to the trace. One obtains

ΓA ¼ 1; ΓB ¼ 1∶ Trðγ5γ5Þ ¼ 4;

ΓA ¼ γμ; ΓB ¼ γν∶ Trðγ5γμγ5γνÞ ¼ −4gμν;

ΓA ¼ σμν; ΓB ¼ σρσ∶ Tr

�
γ5

1

2
σμνγ5

1

2
σρσ

�

¼ gμρgνσ − gμσgνρ;

ΓA ¼ γ5γ
μ; ΓB ¼ γ5γ

ν∶ Trðγ5γ5γμγ5γ5γνÞ ¼ 4gμν;

ΓA ¼ γ5; ΓB ¼ γ5∶ Trðγ5γ5γ5γ5Þ ¼ 4; ðB7Þ

which implies

16ðγ5Þ½γ5� ¼ 4ð1�½1Þ − 4ðγμ�½γμÞ þ 2ðσμν�½σμνÞ
þ 4ðγμγ5�½γμγ5Þ þ 4ðγ5�½γ5Þ: ðB8Þ

The other elements of the Fierz crossing matrix can be
calculated accordingly.
The transformation between these two sets is given by

the Fierz matrix which reads

0
BBBBBB@

S

V

T

A

P

1
CCCCCCA

¼ 1

4

0
BBBBBB@

1 1 1=2 −1 1

4 −2 0 −2 −4
12 0 −2 0 12

−4 −2 0 −2 4

1 −1 1=2 1 1

1
CCCCCCA

0
BBBBBB@

~S
~V
~T
~A
~P

1
CCCCCCA
: ðB9Þ

Using the Fierz matrix (B9) we can determine the
relation between the diquark-antidiquark interpolating
currents

ðS;V; T ;A;PÞ
¼ ððuiTCγ5djÞðūiγ5Cd̄Tj Þ; ðuiTCγμγ5djÞðūiγμγ5Cd̄Tj Þ;
ðuiTCσμνdjÞðūiσμνCd̄Tj Þ; ðuiTCγμdjÞðūiγμCd̄Tj Þ;
ðuiTCdjÞðūiCd̄Tj ÞÞ ðB10Þ

and the meson-meson-type interpolating currents

5In the case of multi-indices A and B as for instance for
ΓA ¼ σμν, ΓB ¼ σρσ one has to use the convention
δρσμν ¼ δρμδσν − δσμδ

ρ
ν.
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ð ~S; ~V; ~T ; ~A; ~PÞ
¼ ððd̄juiÞðūidjÞ; ðd̄jγμuiÞðūiγμdjÞ; ðd̄jσμνuiÞðūiσμνdjÞ;
ðd̄jγμγ5uiÞðūiγμγ5djÞ; ðd̄jγ5uiÞðūiγ5djÞÞ: ðB11Þ

Note the relabeling in going from the sets of Dirac strings
ðS; V; T; A; PÞ and ð ~S; ~V; ~T; ~A; ~PÞ to the sets of current
products ðS;V; T ;A;PÞ and ð ~S; ~V; ~T ; ~A; ~PÞ.
By making use of the properties CC ¼ −1, CT ¼ −C,

Cγ5C ¼ −γ5 ¼ −γT5 , CγμC ¼ γμT , Cγ5γμC ¼ −ðγ5γμÞT
and CσμνC ¼ σμνT one obtains e.g. for the first row of
the transformation matrix

ðuiTCγ5djÞðūiγ5Cd̄Tj Þ

¼ −
1

4
ðd̄juiÞðūidjÞ −

1

4
ðd̄jγμuiÞðūiγμdjÞ

þ 1

8
ðd̄jσμνuiÞðūiσμνdjÞ −

1

4
ðd̄jγμγ5uiÞðūiγμγ5djÞ

−
1

4
ðd̄jγ5uiÞðūiγ5djÞ: ðB12Þ

A similar exercise allows one to calculate the remaining
coefficients.
The above two sets of interpolating currents are thus

related by0
BBBBBB@

S

V

T

A

P

1
CCCCCCA

¼ 1

4

0
BBBBBB@

−1 −1 1=2 −1 −1
4 −2 0 2 −4

−12 0 −2 0 −12
−4 −2 0 2 4

−1 1 1=2 1 −1

1
CCCCCCA

0
BBBBBB@

~S
~V
~T
~A
~P

1
CCCCCCA
: ðB13Þ

Note that the Fermion fields are commuted four times in
this transformation such that the overall sign resulting from
the Fermi statistics is positive.

APPENDIX C: FOURIER TRANSFORM IN
DIMENSIONAL REGULARIZATION

In order to calculate the D-dimensional integral of a
Lorentz scalar, we need to know, among others, the
(D − 1)-dimensional angular integral of a Lorentz scalar.
In the Euclidean domain one has (κ ¼ ð~k2Þ1=2)

Z
fð~k2ÞdD ~k ¼

Z
dΩ

Z
∞

0

fðκ2ÞκD−1dκ

¼ 2πD=2

ΓðD=2Þ
Z

∞

0

fðκ2ÞκD−1dκ; ðC1Þ

where

Z
dΩ ¼

Z
π

0

2πðD−1Þ=2

ΓððD − 1Þ=2Þ sin
D−2θdθ ¼ 2πD=2

ΓðD=2Þ ðC2Þ

and ΓðxÞ is Euler’s gamma function. Using Euler’s beta
function

Bðx; yÞ ≔
Z

1

0

tx−1ð1 − tÞy−1dt ¼ ΓðxÞΓðyÞ
Γðxþ yÞ ðC3Þ

and the definite integrals

Z þ1

−1
eixtð1 − t2Þλ−1=2dt ¼

�
2

x

�
λ ffiffiffi

π
p

JλðxÞ;Z
∞

0

xμJλðxÞdx ¼ 2μ
Γðð1þ λþ μÞ=2Þ
Γðð1þ λ − μÞ=2Þ ðC4Þ

[JλðxÞ is Bessel’s function], one can show that

Z
dD ~k
ð2πÞD ð~k2Þ−αei~k ~x ¼ ΓðD=2 − αÞ

4πD=2ΓðαÞ
�
~x2

4

�
α−D=2

: ðC5Þ

With k0 ¼ i~k0 and x0 ¼ i~x0 one gets back to the
Minkowskian domain where k2 ¼ −~k2 and x2 ¼ −~x2.
The result is

Z
dDk
ð2πÞD ð−k2Þ−αe−ikx ¼ iΓðD=2 − αÞ

ð4πÞD=2ΓðαÞ
�
−
x2

4

�
α−D=2

:

ðC6Þ

By applying the partial derivatives ∂μ ¼ ∂=∂xμ,
∂ν ¼ ∂=∂xν on both sides of Eq. (C6) one obtains

Z
dDk
ð2πÞD ð−k2Þ−αe−ikxkμ

¼ −
ΓðD=2 − αþ 1Þ
2ð4πÞD=2ΓðαÞ

�
−
x2

4

�
α−D=2−1

xμ ðC7Þ

and

Z
dDk
ð2πÞD ð−k2Þ−αe−ikxkμkν

¼ iΓðD=2 − αþ 1Þ
8ð4πÞD=2ΓðαÞ

�
−
x2

4

�
α−D=2−2

× ½2ðα −D=2 − 1Þxμxν þ x2gμν� ðC8Þ

and, finally,

Z
dDk
ð2πÞD ð−k

2Þ−αe−ikxðAkμkνþBk2gμνÞ

¼ iΓðD=2−αþ 1Þ
8ð4πÞD=2ΓðαÞ

�
−
x2

4

�
α−D=2−2

× ½2Aðα−D=2− 1ÞxμxνþðAþ 2Bðα− 1ÞÞx2gμν�: ðC9Þ
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APPENDIX D: GAUGE INDEPENDENCE

In this appendix we present results on the propagator and
dipropagator corrections calculated in the Rξ gauge where
the gluon propagator reads

DαβðkÞ ¼
i
k2

�
−gαβ þ ð1 − ξÞ kαkβ

k2

�
: ðD1Þ

The momentum-dependent piece proportional to
ð1 − ξÞkαkβ=k2 will be referred to as the scalar part of
the gluon propagator. We shall show that the scalar
contribution vanishes in the sum of the propagator and
dipropagator insertions into the correlators of color-neutral
currents (mesons, baryons and tetraquarks). We believe that
the gauge independence of the radiative corrections to the
correlators have never been demonstrated before. The
gauge independence can be shown without specifying
the Dirac structure of the currents. Our results on the
tetraquark correlators are thus gauge independent for any of

the currents discussed in the main text. The gauge inde-
pendence of the NLO correlators also serves as a strong
check on our calculation.
The calculation of the scalar contribution to the one-loop

propagator correction does not provide any new difficulties
compared to the metric contribution. For the dipropagator
correction the scalar part of the gluon propagator super-
ficially increases the rank of the tensor two-loop integrals to
six. However, by a prudent cancellation of numerator and
denominator factors one can reduce the rank to two as in the
contribution of the metric piece. As a check on our two-
loop calculation we did an alternative calculation involving
sixth-rank tensor integrals which we solved using the
Passarino-Veltman method. We found agreement. We
mention that all necessary calculations have been checked
by computer.
We shall demonstrate the gauge invariance of the NLO

radiative corrections for meson, baryon and tetraquark
correlators. In the general Rξ gauge, the propagator
correction reads [CF ¼ ðN2

c − 1Þ=ð2NcÞ]

Sξ1ðxÞ ¼ S0ð−x2Þ
�
1 −

αsCF

4π
ð−μ2xx2Þεð1 − ð1 − ξÞÞ

�
1

ε
þOðεÞ

�
þOðα2sÞ

�
xμγμ ðD2Þ

while the dipropagator correction is given by

Sξ2ðxÞ ¼ ðS0ð−x2ÞÞ2
�
xμxνðγμ ⊗ γνÞ − ðTa ⊗ TaÞ

αs
4π

ð−μ2xx2Þε

×

���
1

ε
þ 11

2
− ð1 − ξÞ 2

ε
þOðεÞ

�
xμxν þ

�
1

ε
þ 1

2
þOðεÞ

�
x2gμν

�
ðγμ ⊗ γνÞ

þ
�
1

2ε
þ 1

4
þOðεÞ

�
xμxνðγ½μγαγβ� ⊗ γ½νγαγβ�Þ

�
þOðα2sÞ

�
: ðD3Þ

We have written the results in a form where the contribution
of the scalar piece of the gluon propagator proportional to
(1 − ξ) can be clearly identified. In the Landau (or unitary)
gauge ξ ¼ 1 one has the familiar result that the propagator
correction vanishes.
Note the essential fact that both gauge dependencies

occur as pure singularities in the contributions xμγμ

(propagator) and xμγμ ⊗ xνγν (dipropagator) and that
the gauge dependence of the dipropagator correction
amounts to twice the gauge dependence of the propagator
correction. Note also that both gauge-dependent correc-
tions to the propagator and the dipropagator are UV
singular.
In the following we concentrate on the gauge-dependent

scalar contribution proportional to (1 − ξ). Using the
notation x ¼ xμγμ one has

ΔSξ1ðxÞ ¼ S0ð−x2Þ
αsCF

4π
ð−μ2xx2Þεð1 − ξÞ

�
1

ε

�
x;

ΔSξ2ðxÞ ¼ ðS0ð−x2ÞÞ2ðTa ⊗ TaÞ

×
αs
4π

ð−μ2xx2Þεð1 − ξÞ
�
2

ε

�
x ⊗ x: ðD4Þ

It is important to realize that both gauge-dependent
corrections have the spatial structure of the respective
LO term. Note also that both corrections are UV
singular.
We start our discussion with the meson case. The

demonstration of gauge invariance is made simple in x
space. The gauge-dependent part of the NLO propagator
correction to a meson correlator augmented by the
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free propagator reads ΔSξMðxÞ ¼ ΔSξ1ðxÞ ⊗ S01ð−xÞþ
S01ðxÞ ⊗ ΔSξ1ð−xÞ, or

ΔSξM1ðxÞ ¼ −2NcðS0ð−x2ÞÞ2

×
αsCF

4π
ð−μ2xx2Þεð1 − ξÞ

�
1

ε

�
x ⊗ x: ðD5Þ

Note that there is an extra minus sign from the antiquark
propagator. Also one needs the color factor δjiδ

i
j ¼ Nc. The

factor of two results from the fact that the propagator
correction can be inserted into the quark or antiquark line.
For the dipropagator correction one requires the color

factor

δj
0
i0 ðTaÞi0i ðTaÞjj0δij ¼

1

2
δj

0
i0

�
δi

0
j0δ

j
i −

1

Nc
δi

0
i δ

j
j0

�
δij

¼ 1

2
ðN2

c − 1Þ
¼ NcCF: ðD6Þ

There is no extra minus sign since there are two antiquark
lines, one each on either side of the quark-gluon vertex.
One obtains

ΔSξM2ðxÞ¼NcCFðS0ð−x2ÞÞ2
αs
4π

ð−μ2xx2Þεð1−ξÞ
�
2

ε

�
x⊗ x:

ðD7Þ

Obviously, the two contributions cancel in the sum,
ΔSξM1ðxÞ þ ΔSξM2ðxÞ ¼ 0.
For the baryon correlator the gauge-dependent part of the

propagator correction reads

ΔSξB1ðxÞ ¼ 3Nc!ðS0ð−x2ÞÞ3

×
αsCF

4π
ð−μ2xx2Þεð1 − ξÞ

�
1

ε

�
x ⊗ x ⊗ x: ðD8Þ

The factor ϵijkϵijk ¼ Nc! results from the color contraction
while the factor 3 has to be included because of the three
quark lines into which the propagator correction can be
inserted. For the dipropagator insertion one needs the color
factor

ϵi0j0kðTaÞi0i ðTaÞj
0
j ϵ

ijk ¼ 1

2
ϵi0j0k

�
δi

0
j δ

j0
i −

1

Nc
δi

0
i δ

j0
j

�
ϵijk

¼ −Nc!CB; ðD9Þ

where CB ¼ ðNc þ 1Þ=ð2NcÞ ¼ CF=2. Again there are
three possible dipropagator insertions resulting in a further
factor of 3. One obtains

ΔSξB2ðxÞ ¼ −3Nc!CBðS0ð−x2ÞÞ3

×
αs
4π

ð−μ2xx2Þεð1 − ξÞ
�
2

ε

�
x ⊗ x ⊗ x: ðD10Þ

The two contributions can be seen to cancel, i.e.
ΔSξB1ðxÞ þ ΔSξB2ðxÞ ¼ 0.
Finally, we demonstrate the gauge parameter cancella-

tion for the tetraquark correlator. We label the two quark
and antiquark lines of the in-state by the color indices ði; jÞ
and ðk; lÞ. We associate the indices ði; j; k; lÞ with the
(first, second, third, fourth) line of the tetraquark state [see
Fig. 1(a)] starting at the top. The corresponding labeling in
the out-state is ði0; j0Þ and ðk0; l0Þ with the same sequence in
the numerical labeling. In the meson-type construction the
color-singlet tetraquark states are given by δikδ

j
l for the in-

state and δk
0
i0 δ

l0
j0 for the out-state. However, as discussed in

Sec. I A we need to separate out the antisymmetric 3̄ ⊕ 3

and symmetric 6 ⊕ 6̄ color components of the currents.
This is achieved by writing

δikδ
j
l ¼

1

2
ðδikδjl − δjkδ

i
lÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

3̄⊕3

þ 1

2
ðδikδjl þ δjkδ

i
lÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

6⊕6̄

ðD11Þ

for the in-state and, correspondingly,

δk
0
i0 δ

l0
j0 ¼

1

2
ðδk0i0 δl

0
j0 − δl

0
i0δ

k0
j0 Þ þ

1

2
ðδk0i0 δl

0
j0 þ δl

0
i0δ

k0
j0 Þ ðD12Þ

for the out-state.
The propagator correction can be inserted into the

correlator in four ways leading to a factor of 4. We thus
obtain

ΔSξT1ðxÞ ¼ 4CT1ðS0ð−x2ÞÞ4

×
αsCF

4π
ð−μ2xx2Þεð1 − ξÞ

�
1

ε

�
x ⊗ x ⊗ x ⊗ x;

ðD13Þ

where

CT1ð3 → 3Þ ¼ 1

2
NcðNc − 1Þ;

CT1ð6 → 6Þ ¼ 1

2
NcðNc þ 1Þ;

CT1ð3 → 6Þ ¼ CT1ð6 → 3Þ ¼ 0: ðD14Þ

Since we are considering also nondiagonal (3 → 6) and
(6 → 3) transitions in the main text, we list the correspond-
ing color factors also for the nondiagonal cases even if they
are trivially zero for the propagator correction. This is no
longer the case for the dipropagator corrections to be
discussed next.
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The dipropagator correction can be inserted into the
correlator in six different ways. We shall label these six
different possibilities by the lines that are being connected
by the gluon propagator as described in Sec. III. For
example, the labeling (13) refers to gluon exchange
between the top and third line (from the top) as depicted
in Fig. 1(c). In general one has

ΔSξT2ðxÞ ¼ CT2ðS0ð−x2ÞÞ4

×
αs
4π

ð−μ2xx2Þεð1 − ξÞ
�
2

ε

�
x ⊗ x ⊗ x ⊗ x;

ðD15Þ

where the factor CT2 specifies the color factor of a given
gluon connection including the factor ð−1Þnq̄ resulting from
the presence of nq̄ antiquark lines in that particular
transition. For example, the color factor in the (3 → 3)
(12) contribution including the factor ð−1Þnq̄ is given by
[TrcðTaTaÞ ¼ NcCF]

CT2ð12; 3 → 3Þ

¼ 1

2
ðδikδjl − δjkδ

i
lÞð−1Þ2ððTaÞi0i ðTaÞj

0
j δ

k
k0δ

l
l0 Þ

1

2
ðδk0i0 δl

0
j0 − δl

0
i0δ

k0
j0 Þ

¼ −
1

2
NcCF: ðD16Þ

Similarly, the color kernel for the (13) contribution is given

by ð−1Þ1ððTaÞi0i δj
0
j ðTaÞkk0δll0 Þ.

The color factors for the different line connections and
transitions are listed in Table II. Of relevance for the present
discussion is the respective sum of the six rows in Table II
which are listed in the seventh row of Table II. From the last
row of Table II one can read off that the gauge-dependent
nondiagonal (3 → 6) and (6 → 3) transitions are zero as
expected. The gauge-dependent diagonal parts given by the

propagator correction Eq. (D13) and the dipropagator
correction in the last row of Table II can be seen to cancel.
We mention that we have checked on the gauge cancella-
tion also for pentaquark current correlators investigated in
Refs. [21,22].
It is important to realize that, in the Feynman gauge

calculation discussed in Sec. IV, one requires the color
factors in Table II for each row separately since their
contributions carry different weights due to the new spatial
non-Born structures in the dipropagator correction (43).

APPENDIX E: THE SPECTRAL DENSITY

In this appendix we derive relations which allow us to
calculate the spectral density directly from the correlator in
x space. For the scalar correlator the transition to p space is
given by

ΠðpÞ ¼ 2πλþ1

Z
∞

0

�
px
2

�
−λ
JλðpxÞΠðxÞx2λþ1dx; ðE1Þ

where λ ¼ 1 − ε and JλðxÞ is the first-order Bessel func-
tion. The arguments x and p are not four-vectors, but rather
(in the Euclidean domain) the lengths of the vectors, i.e.
x ¼ ðxμxμÞ1=2 and p ¼ ðpμpμÞ1=2.
If the correlator is a given by a simple power,

ΠðxÞ ¼ ð−x2Þ−α, the integral can be calculated to be

Παð−p2Þ ¼ πλþ1

�
−
p2

4

�
α−λ−1 Γðλ − αþ 1Þ

ΓðαÞ : ðE2Þ

The spectral density is the discontinuity divided by 2πi,
where the cut of the correlator lies on the positive real axis.
One obtains

ραðsÞ ¼
1

2πi
DiscΠαðsÞ

¼ πλþ1

�
s
4

�
α−λ−1 1

ΓðαÞΓðα − λÞ : ðE3Þ

For tetraquarks the x-space correlator has the generic form

fðxÞ ¼ ðS0ð−x2ÞÞ4ðx2Þ2
�
Aþ αs

π
ð−μ2xx2ÞεB

�
; ðE4Þ

where A includes both the LO term and the counterterm
while B includes only the NLO term. Keeping in mind that
S0ð−x2Þ ¼ iΓð2 − εÞ=2ð−πx2Þ2−ε, one can apply Eq. (E3)
to obtain

TABLE II. Color factor CT2 for the different dipropagator
insertions ð12Þ;…; ð34Þ and the diagonal 3 → 3 and 6 → 6
and the nondiagonal 3 → 6 and 6 → 3 transitions. All entries
have to be multiplied by a general factor NcCF=4. The entries
contain also the sign factor ð−1Þnq̄ due to the number of antiquark
lines. The last column contains the sum of the four first columns
corresponding to the color contraction given by Eqs. (D11) and
(D12). In the last row we list the sum of the six first rows.

CT2 3 → 3 3 → 6 6 → 3 6 → 6 Sum

(12) −2 0 0 2 0
(13) −Nc þ 2 −Nc −Nc −Nc − 2 −4Nc
(14) −Nc þ 2 Nc Nc −Nc − 2 0
(23) −Nc þ 2 Nc Nc −Nc − 2 0
(24) −Nc þ 2 −Nc −Nc −Nc − 2 −4Nc
(34) −2 0 0 2 0
Sum −4ðNc − 1Þ 0 0 −4ðNc þ 1Þ −8Nc
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ρfðxÞ ¼ π2−ε
�
iΓð2 − εÞ
2π2−ε

�
4 ðs=4Þ4−3ε
Γð6 − 4εÞΓð5 − 3εÞ

×

�
Aþ αs

π

�
μ2
MS

s

�ε

e2γEεB
Γð6 − 4εÞΓð5 − 3εÞ
Γð6 − 5εÞΓð5 − 4εÞ

�
;

ðE5Þ

where we have used 4μ2x ≈ μ2
MS

e2γE . The ratio of gamma
functions can be expanded by using Γðaþ εÞ ¼
ΓðaÞð1þ εψðaÞ þOðε2ÞÞ, where ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ is
the digamma function. One obtains

e2γEε
Γð6 − 4εÞΓð5 − 3εÞ
Γð6 − 5εÞΓð5 − 4εÞ ¼ 1 −

131

30
εþOðε2Þ ðE6Þ

and, therefore,

ρfðsÞ ¼
Γð2 − εÞ4s4−3ε

4π6−3εΓð6 − 4εÞΓð5 − 4εÞ

×

�
Aþ αs

π

�
μ2
MS

s

�ε

B

�
1 −

131

30
ε

��
: ðE7Þ

By separating the finite and singular parts of A and B one
has

A ¼ A0 þ
αs
π

�
C0

ε
þ C1

�
; B ¼ B0

ε
þ B1: ðE8Þ

With B0 þ C0 ¼ 0 one obtains

ρfðsÞ ¼
Γð2− εÞ4s4−3ε

4π6−3εΓð6− 4εÞΓð5− 4εÞ

×

�
A0þ

αs
π

�
B1þC1 −

130

30
B0þB0 ln

�
μ2
MS

s

���

¼ s4

ð4πÞ65!4!

×

�
A0þ

αs
π

�
B1þC1 −

130

30
B0þB0 ln

�
μ2
MS

s

���
:

ðE9Þ

Because the spectral function ρfðsÞ is nonsingular, we have
set ε ¼ 0 (i.e. D ¼ 4) in the second line of Eq. (E9).

APPENDIX F: QCD SUM RULE ANALYSIS

In this appendix we provide a brief review of the sum
rule method using the Borel transformation. The starting
expression for the analysis is the sum rule

F2
X

E2
X − p2

¼
Z

E2
c

0

ρðsÞds
s − p2

; ðF1Þ

where EX is the ground-state energy and F2
X is the residue

of the pole at p2 ¼ E2
X. The beginning of the continuous

spectrum is denoted by Ec. The convergence of the sum
rule can be improved by performing a Borel transformation
on both sides of Eq. (F1), leading to

F2
Xe

−E2
X=E

2
B ¼

Z
E2
c

0

ρðsÞe−s=E2
Bds; ðF2Þ

where EB is the Borel energy. For the sum rule analysis one
has to search for an energy window in which the depend-
ence on the artificial Borel parameter EB is small. One
expands the spectral density as a power series in s and
replaces the powers ðs=E2

BÞk=k! by (xC ¼ E2
C=E

2
B)

fkðxCÞ ¼
Z

xC

0

x0k

k!
e−xdx ¼ 1 − e−xC

Xk
m¼0

xmC
m!

: ðF3Þ

If there are logarithmic contributions, one has to replace
lnðs=E2

BÞðs=E2
BÞk=k! by

flkðxCÞ ¼
Z

xC

0

lnx
xk

k!
e−xdx

¼ lnxCðfkðxCÞ− 1Þ− γEþEið−xCÞþ
Xk−1
m¼0

fmðxCÞ
m

;

ðF4Þ

where

γE ¼ −
Z

∞

0

ln xe−xdx ðF5Þ

is Euler’s constant and where EiðxCÞ is an exponential
integral given by

EiðxCÞ ¼
Z

∞

−xC

e−x

x
dx: ðF6Þ

Writing the operator product expansion of the spectral
density in the form

ρðsÞ ¼ A4s4
�
1þ αs

π

�
αþ β ln

�
μ2
MS

s

���
þ A3s3

þ A2s2 þ A1sþ A0; ðF7Þ

one obtains
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F2
Xe

−E2
X=E

2
B ¼

Z
E2
C

0

ρðsÞe−s=E2
Bds

¼ 4!A4E10
B

�
f4ðxCÞ þ

αs
π

�
αf4ðxCÞ þ β

�
ln

�
μ2
MS

E2
B

�
f4ðxCÞ − fl4ðxCÞ

���

þ 3!A3E8
Bf3ðxCÞ þ 2!A2E6

Bf2ðxCÞ þ 1!A1E4
Bf1ðxCÞ þ 0!A0E2

Bf0ðxCÞ: ðF8Þ

The ground-state energy EX can be determined by calculating the derivative of Eq. (F8) with respect to −1=E2
B and then

dividing the derivative by Eq. (F8),

E2
X ¼

R E2
C

0 sρðsÞe−s=E2
BdsR E2

C
0 ρðsÞe−s=E2

Bds
: ðF9Þ

For the derivative one obtains

F2
XE

2
Xe

−E2
X=E

2
B ¼

Z
E2
C

0

sρðsÞe−s=E2
Bds

¼ 4!A4E10
B

�
5E2

B

�
f4ðxCÞ þ

αs
π

�
αf4ðxCÞ þ β

�
ln
�
μ2
MS

E2
B

�
f4ðxCÞ − fl4ðxCÞ

���

− E2
C

�
f04ðxCÞ þ

αs
π

�
αf04ðxCÞ þ β

�
1

xC
f4ðxCÞ þ ln

�
μ2
MS

E2
B

�
f04ðxCÞ − fl04 ðxCÞ

����

þ 3!E8
BA3ð4E2

Bf3ðxCÞ − E2
Cf

0
3ðxCÞÞ þ 2!E6

BA2ð3E2
Bf2ðxCÞ − E2

Cf
0
2ðxCÞÞ

þ 1!E4
BA1ð2E2

Bf1ðxCÞ − E2
Cf

0
1ðxCÞÞ þ 0!E2

BA0ðE2
Bf0ðxCÞ − E2

Cf
0
0ðxCÞÞ: ðF10Þ

The analysis is performed with the same parameters for the Borel window as in Ref. [11]. The addition of radiative
corrections changes the result of the sum rule analysis for the ground-state energy by þ0.065% which is within the error of
the sum rule analysis.
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