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We present the calculations of the production of ~t1 ~̄t1 Z0 in the minimal supersymmetric standard model
at the Large Hadron Collider at center-of-mass energies of 7 and 14 TeV. We discuss the impact of the next-
to-leading-order supersymmetric-QCD corrections on the cross sections of ~t1 ~̄t1 Z0 production and on the
transverse-momentum distributions of the final stop quark. The uncertainties of the leading-order and
supersymmetric-QCD corrected cross sections due to the renormalization/factorization scale are studied.
Calculations demonstrate that the next-to-leading-order supersymmetric-QCD corrections improve the
scale dependence of the leading-order cross sections and enhance significantly the transverse-momentum
distributions.
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I. INTRODUCTION

Supersymmetry (SUSY) provides a particularly interest-
ing subject for studies of the detailed analysis of physics
beyond the standard model (SM) [1]. If SUSY does give a
correct model of nature, the proton-proton collider LHC
will be expected to determine the SUSY parameters. The
simplest supersymmetric model [the minimal supersym-
metric extension of the standard model (MSSM)] [2,3] is a
generalization of the SM theory with a minimal number
of introduced SUSY partners. Supersymmetry predicts the
existence of scalar partners ~fL; ~fR to each SM chiral
fermion, which mix to produce two mass eigenstates ~f1
and ~f2 and spin-1/2 partners to the gauge bosons and to the
scalar Higgs bosons. Unfortunately, MSSM has many
parameters, undetermined by the moment, and different
choices for these parameters yield qualitatively different
realizations of possible new physics. Thus, the phenom-
enology of SUSY is quite complex. As a result, most of
the analyses of the direct search results are carried out by
invoking additional theoretical assumptions, which restricts
the number of parameters. In particular, the minimal
supersymmetric gravity model (mSUGRA) [4] has been
used most extensively. In mSUGRA, it is assumed that the
left- and right-handed squarks ( ~qL and ~qR), the left- and
right-handed sleptons ( ~lL and ~lR), and the Higgs bosons
have a common soft-breaking mass (m0) at the grand
unified theory scale (MG). Moreover, the gaugino masses
and the trilinear soft-breaking terms are also assigned
common values m1=2 and A0, respectively, at MG. The
number of free parameters is further reduced by requiring
radiative SUð2Þ ×Uð1Þ breaking at the electroweak scale
[5]. This fixes the magnitude of the Higgsino mass
parameter (μ). Thus, m0, m1=2, and A0 along with the sign

of μ and tan β (the ratio of the vacuum expectation values of
the two neutral Higgs bosons) define the model completely.
SUSY must be broken in the practical world, and the

sparticle mass spectrum depends on the SUSY-breaking
mechanism. The fundamental MSSM parameters need to
be determined from the precise measurement of the masses,
production cross sections, and decay widths of these
superpartners. With these parameters, we can reconstruct
the SUSY-breaking mechanism and probe the MSSM.
At hadron colliders, QCD effects are particularly impor-

tant and must be taken into account to obtain precise
theoretical predictions. Since at high energies QCD is a
perturbative quantum field theory, QCD effects at collider
energies can be calculated order by order in the strong
coupling constant. The lowest order at which a process can
be calculated, the leading order (LO), typically has a large
theoretical uncertainty associated with it. This is mainly
due to the opening of new production channels at higher
orders of the perturbative series and to the large dependence
of LO calculations on renormalization and factorization
scales, in certain renormalization prescriptions. Adding the
first-order QCD corrections, that is, next-to-leading-order
(NLO) corrections, usually improves the stability of theo-
retical predictions considerably and tests the behavior of
the perturbative expansion.
The associated production of a weak gauge boson with

two light stops constitutes not only an important back-
ground process to Higgs boson searches for light Higgs
bosons ðMh < 135 GeVÞ and many searches for signals of
new physics but also represents a unique opportunity to test
and improve the theoretical prediction for stop at hadron
colliders. This last task becomes essential when the signal
to background ratio is small and the background cannot be
easily extracted from data. Typically, this is the case for
processes that involve a large number of kinematic vari-
ables and that have broad kinematic distributions, as often
arises when final states consist of several particles.*kolaly@sci.cu.edu.eg
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In Ref. [6], we presented detailed calculations of the
NLO SUSY-QCD cross section corrections to the produc-
tion of a lightest stop pair in association with the MSSM
Higgs boson at the 14 TeV LHC. It was found that
the renormalization/factorization scale dependence of the
lowest-order total cross section is strong. Including the
NLO SUSY-QCD corrections significantly reduces and
stabilizes the dependence of the lowest-order total cross
section on the renormalization/factorization scale.
In this paper, we present the calculation of NLO SUSY-

QCD corrections to the production of a Z0 weak gauge
boson in association with a top-antitop squark pair at
hadron colliders ðpp → ~t1 ~̄t1 Z0Þ at the 7 and 14 TeV LHC
and studied their uncertainties induced by the factorization/
renormalization scale. In Sec. II, we present the tree-level
calculations for the cross sections of the process pp →
~t1 ~̄t1 Z0 at the 7 and 14 TeV LHC. In Sec. III, we provide a
description of the calculation of the NLO SUSY-QCD
corrections. Numerical results for the total cross sections
and transverse-momentum distributions at the LHC are
presented in Sec. IV. Finally, the conclusion is given
in Sec. V.

II. LO PROCESSES AND CONVENTIONS

In the MSSM Lagrangian, mixing of the left- and right-
handed top-squark eigenstates ~tL=R into mass eigenstates
~t1=2 is induced by the trilinear Higgs-stop-stop coupling
term At and the Higgs-mixing parameter μ. The top-squark
mass matrix squared is given by [7]

M2 ¼
�
m2

t þ ALL mtBLR

mtBLR m2
t þ CRR

�
; ð1Þ

with mt denoting the top-quark mass and

ALL ¼
�
1

2
−
2

3
sin2θW

�
m2

Z cos 2β þm2
~Q3

;

BLR ¼ At − μ cot β;

CRR ¼ 2

3
sin2θWm2

Z cos 2β þm2
~U3

: ð2Þ

Here, m ~Q3
; m ~U3

are the soft-breaking mass terms for left-
and right-handed top squarks, respectively.
The top-squark mass eigenvalues are obtained by diag-

onalizing the mass matrix

UM2U† ¼
�m2

~t1
0

0 m2
~t2

�
; U ¼

�
cos θ~t sin θ~t
− sin θ~t cos θ~t

�
;

ð3Þ
m2

~t1;2
¼ m2

t þ
1

2

�
ALL þ CRR

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðALL − CRRÞ2 þ 4m2

t B2
LR

q �
; ð4Þ

and the mixing angle θ~t is determined by

tan 2θ~t ¼
2mtBLR

ALL − CRR
: ð5Þ

The production of the Z0 boson in association with a pair
of top squarks proceeds at LO through the partonic
processes

qðp1Þ þ q̄ðp2Þ→ ~t1ðp3Þ þ ~̄t1ðp4Þ þ Z0ðp5Þ ðq ¼ u; dÞ
and

gðp1Þ þ gðp2Þ→ ~t1ðp3Þ þ ~̄t1ðp4Þ þ Z0ðp5Þ; ð6Þ

where we denote the external four-momenta by pi
ði ¼ 1;…; 5Þ. The corresponding generic Feynman dia-
grams that contribute to the LO processes (6) are displayed
in Fig. 1.
The lowest-order cross sections for the subprocesses

qq̄; gg → ~t1 ~̄t1 Z are obtained by using the following
formula:

dσ̂LOqq̄ ¼ 1

36

ð2πÞ4
2ŝ

Xcolor
spin

jMqq̄
LOj2dΩ3;

dσ̂LOgg ¼ 1

256

ð2πÞ4
2ŝ

Xcolor
spin

jMgg
LOj2dΩ3; ð7Þ

FIG. 1. The LO Feynman diagrams for the qq̄ → ~t1 ~̄t1 Z0 and
gg → ~t1 ~̄t1 Z0 subprocesses.
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where the factors 1
36
, and factors 1

256
in Eqs. (7), result from

the average over the initial-state spins and colors of the
initial partons, ŝ is the partonic center-of-mass energy
squared, and Mqq̄

LO and Mgg
LO are the amplitudes of all the

tree-level diagrams for the partonic processes qq̄ →
~t1 ~̄t1 Z0 and gg → ~t1 ~̄t1 Z0, respectively. The phase-space
elements dΩ3 in Eqs. (7) are expressed as

dΩ3 ¼ δð4Þ
�
p1 þ p2 −

X5
i¼3

pi

�Y5
j¼3

d3pj
ð2πÞ32Ej

: ð8Þ

The LO total cross section of pp → ~t1 ~̄t1 Z can be
expressed as

σLO ¼
X

ij¼qq̄;gg

Z
1

0

dx1

Z
1

0

dx2½FP
i ðx1; μÞFP

j ðx2; μÞ

þ ð1 ↔ 2Þ�σ̂0ijðŝÞ; ð9Þ

whereFP
i ðx1; μÞ are the parton distribution functions (PDFs)

with parton i in a proton, The partonic colliding energy
squared ŝ ¼ x1x2s, where s is defined as the center-of-mass
energy squared of the proton-(anti)proton collision. μ is the
factorization energy scale.

III. NLO SUSY-QCD CORRECTIONS

The NLO SUSY-QCD corrections consist of both virtual
corrections to the tree-level processes and one-parton real
radiation from both the initial and final states. The NLO
SUSY-QCD partonic cross section reads

σ̂NLOij ¼ σ̂LOij þ δσ̂NLOij ; ð10Þ

where σ̂LOij denotes the LO partonic cross section and δσ̂NLOij
describes the corrections to σ̂LOij . The NLO corrections
δσ̂NLOij receive contributions from qq̄, gg, qg, and q̄g
initiated processes and can be decomposed in the following
way:

δσ̂NLOij ¼
Z

dðPS3Þ
X

jMvirtj2 þ
Z

dðPS4Þ
X

jMrealj2

≡ σ̂virtij þ σ̂realij ; ð11Þ

where the term integrated over the phase-space measure
dðPS3Þ corresponds to the virtual one-loop corrections with
three particles in the final state, while the one integrated
over the phase-space measure dðPS4Þ corresponds to the
real tree-level corrections with one additional emitted
parton. The sum

P
indicates that the corresponding

amplitudes squared jAvirtðrealÞj2 have been averaged over
the initial-state degrees of freedom and summed over the
final-state ones.

A. Virtual corrections

The virtual corrections consist of the one-loop correc-
tions to the LO reactions. One can classify the corrections
into self-energy corrections, vertex corrections, box-type
corrections, and pentagon-type corrections where all the
external legs are connected to one loop, thus forming a
pentagon. Feynman diagrams and amplitudes have been
generated with the FeynArts package [8]. For demonstra-
tion, some pentagon diagrams are illustrated in Figs. 2
and 3 to qq̄ → ~t1 ~̄t1 Z0 and gg → ~t1 ~̄t1 Z0 processes, respec-
tively. The calculation of the virtual diagrams has been
performed using dimensional regularization, always in
d ¼ 4 − 2ϵ dimensions, and adopts the modified minimal
subtraction (MS) scheme to renormalize the strong cou-
pling constant and the relevant masses and fields, except
for top squark and gluon, where their masses and wave
functions are renormalized by applying the on-shell
scheme. The diagrams have been evaluated using FORM

[9] and Mathematica, and all tensor integrals have been
reduced to linear combinations of a fundamental set of
scalar one-loop integrals using standard techniques [10].
The scalar integrals which give rise to either ultraviolet
(UV) or infrared (IR) singularities have been computed
analytically, while finite scalar integrals have been evalu-
ated using standard packages [11].

FIG. 2. A generic set of SUSY-QCD pentagon diagrams in the
subprocesses qq̄ → ~t1 ~̄t1 Z0.
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Box and pentagon diagrams are ultraviolet finite but
have infrared singularities. The calculations of many of
the box scalar integrals and, in particular, of the
pentagon scalar integrals are the most complicated ones,
due to the large number of massive particles present in
the final state and in the loop. The five-point scalar
integrals are reduced to a sum of five scalar four-point
functions, plus terms of OðϵÞ which can be neglected
[12–14].
Self-energy and vertex diagrams contain both IR and

UV divergences. The UV divergences are renormalized
by introducing a suitable set of counterterms. Since the
cross section is a renormalization group invariant, the total
NLO SUSY-QCD amplitudes of partonic processes qq̄ →
~t1 ~̄t1 Z0 and gg → ~t1 ~̄t1 Z0 are UV finite after we renorm-
alize the wave function of the external fields, the top-squark
mass, and the coupling constants. We perform the renorm-
alization program in the on-shell scheme where the quark
and squark masses are defined as the poles of their
respective propagators. The renormalization of the strong
gauge coupling constant gs is carried out in the MS
renormalization scheme.
The Feynman rules for the counterterms can be

expressed in terms of the field renormalization constants
of quarks, squarks, and gluons. We express the bare
quantities by the renormalized ones

Ψbare
qa ¼ Ψren

qa

�
1þ 1

2
δZq

a

�
;

Φbare
~qi

¼ Φren
~qi

�
1þ 1

2
δZ ~ti

�
;

Gbare
μ ¼ Gren

μ

�
1þ 1

2
δZG

�
; ð12Þ

together with the renormalization constants for the strong
coupling, for the strong Yukawa coupling, and for the
squark masses, which are defined according to

gbares ¼ grens ð1þ δZgÞ;
ĝbares ¼ ĝrens ð1þ δZĝÞ;

m2bare
~qi

¼ m2ren
~qi

þ δm2
~qi
: ð13Þ

The renormalized quark self-energies Σ̂qðp2Þ are ob-
tained from the unrenormalized quark self-energies Σqðp2Þ
according to

Σ̂qðp2Þ ¼ Σqðp2Þ þ pω−δZ
q
L þ pωþδZ

q
R −

mq

2
δZq

L

þ δZq
R þ δmq: ð14Þ

The renormalization constants of the quarks are obtained
via on-shell conditions [15] as follows:

δZq
a ¼ −RefΣq

aðm2
qÞg −m2

qRe

� ∂
∂p2

ðΣq
Lðp2Þ

þ Σq
Rðp2Þ þ 2Σq

Sðp2ÞÞ
�

p2¼m2
q

ða ¼ L;RÞ: ð15Þ

The renormalized self-energies of squarks Σ̂ ~qi (for
i ¼ 1; 2) are obtained from the unrenormalized self-
energies according to [16,17]

Σ̂ ~qiðp2Þ ¼ Σ ~qiðp2Þ þ p2δZ ~qi −m2
~qi
δZ ~qi − δm2

~qi
; ð16Þ

where renormalization constants of the top squark are
determined by the on-shell conditions

δZ ~qi ¼ −Re
�∂Σ ~qiðp2Þ

∂p2

�
jp2¼m2

~qi

; ð17Þ

δm2
~qi
¼ RefΣ ~qiðm2

~qi
Þg: ð18Þ

The full set of virtual contributions is UV finite after
including the proper counterterms for self-energies, squark
triple and quartic vertices, and quark vertices, as listed in
the following set of Feynman rules [6,18]:

(P1)

g

g

t̃1

t̃1

Zo

g̃

g̃

g̃

t

t

(P2)

g

g

t̃1

t̃1

Zo

g

g

g

t̃1

t̃1

(P3)

g

g

t̃1

t̃1

Zo

t

t

t

g̃

t

(P4)

g

g

t̃1

t̃1

Zo

t̃1

t̃1

t̃1
g

t̃1

(P5)

g

g

t̃1

t̃1

Zo

g̃ g̃
t

t
t

(P6)

g

g

t̃1

t̃1

Zo

g
g

t̃1

t̃1

t̃1

(P7)

g

g

t̃1

t̃1

Zo

t̃1

t̃1 t̃1t̃1

g

(P8)

g
g

t̃1

t̃1

Zo

t

t

t

t

g̃

FIG. 3. A generic set of SUSY-QCD pentagon diagrams in the
subprocesses gg → ~t1 ~̄t1 Z0.
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where k, k0 denote the momenta of top squarks (in the
direction of arrows), a, b, and c are the gluonic color indices,
Tc and dabc are the color factors (we skip the fermionic
and sfermionic color indices), and ω� ¼ ð1� γ5Þ=2 are the
projection operators.
The renormalized amplitudes of all the NLO SUSY-QCD

virtual corrections to the partonic processes qq̄ → ~t1 ~̄t1 Z0

and gg → ~t1 ~̄t1 Z0 in the MSSM are expressed as

δMvirt
ij ¼ δMself

ij þ δMtri
ij þ δMbox

ij þ δMpent
ij

þ δMcount
ij ðij ¼ uū; dd̄; ggÞ; ð19Þ

where δMself
ij , δMtri

ij , δMbox
ij , δMpent

ij , and δMcount
ij

represent the amplitudes for self-energy, triangle, box,
pentagon, and counterterm diagrams, respectively. Then,
we can get the UV-finite virtual NLO QCD correction
component σ̂virtij as

σ̂virtij ¼ 1

2j~p1j
ffiffiffî
s

p
Z

dΓ3

X
ReðMLO

ij × δMvirt
ij Þ: ð20Þ

B. Real corrections

The NLO real cross section corrections δσ̂realgg and δσ̂realqq̄
due to the emission of a real gluon, i.e., to the processes
qq̄ðggÞ → ~t1 ~̄t1 Z0g, contain IR singularities. These singu-
larities can be either soft, when the energy of the emitted
gluon becomes very small, or collinear, when the final-state
gluon is emitted collinear to one of the initial partons. There
is no collinear radiation from the final ~t1 and ~̄t1 quarks
because they are massive. At the same order in αs, the δσ̂realqg
cross section corresponds to the tree-level processes
ðq; q̄Þg → ~t1 ~̄t1 Z0ðq; q̄Þ and develops IR singularities due

to the collinear emission of a final-state quark or antiquark
from one of the initial-state massless partons.
The IR singularities can be conveniently isolated by

slicing the ðqq̄Þgg → ~t1 ~̄t1 Z0g and ðq; q̄Þg → ~t1 ~̄t1 Z0ðq; q̄Þ
phase spaces into different regions defined by suitable
cutoffs. We use the two-cutoff phase-space slicing method
to perform the integration over the phase space of these
real emission processes [19–21]. In our calculations, the
real gluon emission correction to each of the processes
ðqq̄Þgg → ~t1 ~̄t1 Z0 contains both soft and collinear IR
singularities, which are involved in the soft gluon region
(E6 ≤ δs

ffiffiffî
s

p
=2) and the hard gluon region (E6 > δs

ffiffiffî
s

p
=2),

respectively. The hard gluon region is also divided into the
hard-collinear region (HC) and the hard-noncollinear
region (HC) with 2pi·p6

E6

ffiffî
s

p < δc and 2pi·p6

E6

ffiffî
s

p ≥ δc (pi are the

momenta for q and q̄):

σ̂realg;ijðij → tt̄γgÞ ¼ σ̂softg;ij þ σ̂hardg;ij ðij ¼ qq̄; ggÞ;
σ̂hardg;ij ðij → tt̄γgÞ ¼ σ̂HCg;ij þ σ̂HCg;ij: ð21Þ

Each of the real light-(anti)quark emission processes
contains only collinear IR singularity and can be dealt with
in the HC region, too. In the HC region, the real emission

corrections σ̂HCij , where ij ¼ qq̄; gg; qg; q̄g, are finite and
can be calculated numerically with the general Monte Carlo
method. After summing the virtual and real gluon/(anti)
quark radiation corrections, the remained collinear diver-
gence can be canceled by that in the NLO PDFs. Then, the
finite total NLO QCD correction to the pp → ~t1 ~̄t1 Z0

process can be obtained. More details on the calculation
of real gluon emission and real light-(anti)quark emission
are given in Sec. III B 1 and Sec. III B 2, respectively.

1. Real gluon emission corrections

We denote the partonic processes with real gluon
emissions as

qðPÞ þ q̄ðPÞ → ~t1ðp3Þ þ ~̄t1ðp4Þ þ Z0ðp5Þ þ gðp6Þ;
gðPÞ þ gðPÞ → ~t1ðp3Þ þ ~̄t1ðp4Þ þ Z0ðp5Þ þ gðp6Þ: ð22Þ

The differential cross section for the partonic processes
qq̄ → ~t1 ~̄t1 Z0g over the soft gluon region can be expressed
as

σ̂soft ¼ σ̂LO ⊗
αs
2π

X4
i;j¼1

ðTi · TjÞgijðpi; pjÞ; ð23Þ

where Ti are the color operators [22–24], and gijði ¼ 1;
2; 3; j ¼ 2; 3; 4Þ are the soft integrals defined as [12,22]
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gijðpi;pjÞ¼
ð2πμrÞ2ϵ

2π

Z
E6≤δs

ffiffiffiffiffi
ŝ=2

p dD−1p6

E6

×

	
2ðpi ·pjÞ

ðpi ·p6Þðpj ·p6Þ
−

p2
i

ðpi ·pjÞ2
−

p2
j

ðpj ·p6Þ2


:

ð24Þ

By using the definitions of color operators, we get the
expression of σsoft as [22]

σ̂softg;qq̄ ¼ −
αs
2π

	
1

6
ðg12 þ g34Þ −

7

6
ðg13 þ g24Þ

−
1

3
ðg14 þ g23Þ



σ̂0qq̄; ð25Þ

where

σ̂softg;gg ¼
αs
12π

X	�
256

3
D1 þ 16D3

�
jMgg

1 j2

þ
�
256

3
D2 þ 16D4

�
jMgg

2 j2 þ
�
−
32

3
D1 þ 16D3

�

×2ReðMgg†
1 ·Mgg

2 Þ


dΩ3; ð26Þ

where the summation is taken over the spins and colors of
initial and final states, and the bar over the summation
represents taking the average over the spins and colors of
initial partons, and

Mgg
1 ¼ Mgg

t þ 1

2
Mgg

s ;

Mgg
2 ¼ Mgg

u −
1

2
Mgg

s ; ð27Þ

Mgg
s , M

gg
t , and Mgg

u are the amplitudes for s-, t-, and
u-channel diagrams of the partonic process gg → ~t1 ~̄t1 Z0

separately, and

D1 ¼ 9g12 þ 9g13 þ 9g24 − g34;

D2 ¼ 9g12 þ 9g23 þ 9g14 − g34;

D3 ¼ 6ðg12 − g14 − g23 þ g34Þ;
D4 ¼ 6ðg12 − g13 − g24 þ g34Þ: ð28Þ

In the collinear region, the initial-state parton i
(i ¼ q; q̄; g) is considered to split into a hard parton i0
and a collinear gluon g, i → i0g, with pi0 ¼ zpi and
p6 ¼ ð1 − zÞpi. The matrix element squared for qq̄ðggÞ →
~t1~̄t1hg factorizes into the Born matrix element squared and
the Altarelli-Parisi splitting function [25] for i → i0g; i.e.,

X
jMHCðij → ~t1 ~̄t1 Z0gj2

≃ ð4παsÞ
X
i

X
jMLOði0j → ~t1 ~̄t1 Z0gÞj2

×
2Pii0 ðz; ϵÞ
zð2pi · p6Þ

; ð29Þ

where

Pii0 ðz; ϵÞ ¼ Pii0 ðzÞ þ ϵP0
ii0 ðzÞ ði ¼ q; gÞ;

PqqðzÞ ¼ CF
1þ z2

1 − z
; P0

qqðzÞ ¼ −CFð1 − zÞ;

PggðzÞ ¼ 2N

	
z

1 − z
þ 1 − z

z
þ zð1 − zÞ



;

P0
ggðzÞ ¼ 0; ð30Þ

where N ¼ 3 is the color number CF ¼ 4=3.
Using the approximation pi − p6 ≃ zpi ði ¼ 1; 2Þ, the

element in the four body collinear phase-space region can
be written as [22]

dΦ4jcoll ¼ dΦ3

ð4πÞϵ
16π2Γð1 − ϵÞ zdzdt̂i6½−ð1 − zÞt̂i6�−ϵ

× θ

�ð1 − zÞ
z

s0
δc
2
− si6

�
ði ¼ 1; 2Þ; ð31Þ

where s0 ¼ 2pi0 · pj, si6 ¼ 2qi · k, and t̂i6 ¼ ðpi − p6Þ2.
The cross section in the hard-collinear region dσHCij can be
written as [26]

σ̂HCij ¼
	
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2

s0

�
ϵ

�

−
1

ϵ

�
δ−ϵc

×

�Z
1−δs

0

dz

	ð1 − zÞ2
2z


−ϵ
Pii0 ðz; ϵÞ

× σ̂LOði0j → ~t1 ~̄t1 Z0−Þ þ ði ↔ jÞ
�
: ð32Þ

2. Real light-(anti)quark emission corrections

The partonic processes with real light-quark emissions
are denoted by

ðq; q̄ÞðPÞþgðPÞ→ ~t1ðp3Þþ ~̄t1ðp4ÞþZ0ðp5Þþðq; q̄Þðp6Þ:
ð33Þ

These partonic processes contain only the initial-state
collinear singularities induced by strong interaction. The
extraction of the collinear singularities of δσ̂realqðq̄Þg is done in
the same way as described in Sec. III B 1. Splitting the
phase space into HC and HC regions by introducing a
cutoff δc, we can express the cross sections for the partonic
processes qðq̄Þg → ~t1 ~̄t1 Z0qðq̄Þ as
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δσ̂realqðq̄Þg ¼ σ̂HCqðq̄Þg þ σ̂HCqðq̄Þg: ð34Þ

The cross sections in the noncollinear region σ̂HCqðq̄Þg are

finite and can be evaluated in four dimensions by using the
Monte Carlo method. The cross sections in the collinear
region for the pp → qðq̄Þg → ~t1 ~̄t1 Z0qðq̄Þ processes can be
written as

σ̂HCqg ¼
	
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2

s0

�
ϵ



×

�
−
1

ϵ

�
δ−ϵc

�Z
1−δs

0

dz

	ð1 − zÞ2
2z


−ϵ

× Pqgðz; ϵÞσ̂LOgg þ Pgqðz; ϵÞσ̂LOqq
�
; ð35Þ

where the splitting functions PqgðgqÞðz; ϵÞ can be written
explicitly as [27]

Pqg;gqðz; ϵÞ ¼ Pqg;gqðzÞ þ ϵP0
qg;gqðzÞ;

PqgðzÞ ¼
1

2
½z2 þ ð1 − zÞ2�;

P0
qgðzÞ ¼ −zð1 − zÞ;

PgqðzÞ ¼ CF
1þ ð1 − zÞ2

z
;

P0
gqðzÞ ¼ −CFz: ð36Þ

C. The total cross section for pp → ~t1 ~̄t1 Z0 at NLO
SUSY-QCD correction

The total hadronic cross section for pp → ~t1 ~̄t1 Z0 is
given by

σNLO ¼
X

ij¼qq̄;gg

1

1þ δij

Z
dx1dx2

× ½FP
i ðx1; μÞFP

j ðx2; μÞσ̂NLOij ðx1; x2; μÞ þ ð1 ↔ 2Þ�;
ð37Þ

where FP
i are the NLO PDFs for parton i in a proton,

defined at a generic factorization scale μf ¼ μ, and σ̂NLOij is
the Oðα3sÞ parton-level total cross section for incoming
partons i and j and renormalized at μr ¼ μ. The NLO
parton-level total cross section σ̂NLOij ðx1; x2; μÞ can be
written as

σ̂NLOij ðx1; x2; μÞ ¼ σ̂LOij ðx1; x2; μÞ þ δσ̂NLOij ðx1; x2; μÞ;
ð38Þ

where σ̂LOij ðx1; x2; μÞ is the Oðα2sÞ Born cross section, and
δσ̂NLOij ðx1; x2; μÞ consists of the OðαsÞ corrections to the

Born cross sections for gg → ~t1 ~̄t1 Z0, qq̄ → ~t1 ~̄t1 Z0, and

ðq; q̄Þg → ~t1 ~̄t1 Z0ðq; q̄Þ processes, including the effects of
mass factorization.
The remaining initial-state IR singularities of δσ̂NLOij can

be canceled by decomposing the collinear counterterms
of the PDF Fp

i ðx; μÞ into two parts: the collinear gluon
emission part FP

g ðx; μÞ and the collinear light-quark emis-
sion part FP

q ðx; μÞ as follows:

Fp
i ðx; μÞ ¼ FP

g ðx; μÞ þ FP
q ðx; μÞ: ð39Þ

Using the MS scheme, the scale-dependent NLO quark
distribution functions are given in terms of FP

q ðxÞ and the
QCD NLO parton distribution function counterterms [26]
as follows:

FP
q ðx; μÞ ¼ FP

q ðxÞ
	
1 −

αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ ð4πÞ

ϵ

�
1

ϵ

�

× CF

�
2 lnðδsÞ þ

3

2

�

þ
	
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ ð4πÞ

ϵ




×
Z

1−δs

x

dz
z

�
−
1

ϵ

�
PqqðzÞFP

q

�
x
z

�
; ð40Þ

FP
g ðx; μÞ ¼ FP

g ðxÞ
	
1 −

αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ ð4πÞ

ϵ

�
1

ϵ

�

× N

�
2 lnðδsÞ þ

11

6
−
1

3

nlf
N

�


þ
	
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ ð4πÞ

ϵ




×
Z

1−δs

x

dz
z

�
−
1

ϵ

�
PggðzÞFP

g

�
x
z

�
: ð41Þ

By combining the contributions of the PDF counterterms
with the hard-collinear contributions of the qq̄ → ~t1 ~̄t1 Z0g,
gg → ~t1 ~̄t1 Z0g, and qðq̄Þg → ~t1 ~̄t1 Z0qðq̄Þ subprocesses, we
get the expression for the remaining collinear contributions
σC to the process pp → ~t1 ~̄t1 Z0 in OðαsÞ order as

σC ¼
	
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2

ŝ

�
ϵ

 Xgg
ij¼uū;dd̄

1

1þ δij

×
Z

1

0

dx1

Z
1

0

dx2 ×

�	
~FP
i ðx1; μÞFP

j ðx2; μÞ

þ FP
i ðx1; μÞ ~FP

j ðx2; μÞ

þ
X
α¼i;j

�
Asc
1 ðα → αgÞ

ϵ
þ Asc

0 ðα → αgÞ
�


σ̂LOij

þ ði ↔ jÞ
�
; ð42Þ

where
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Asc
1 ðq → qgÞ ¼ CFð2 ln δs þ 3=2Þ;
Asc
1 ðg → ggÞ ¼ 2N ln δs þ ð11N − 2nlfÞ=6;

Asc
0 ¼ Asc

1 ln

�
ŝ
μ2f

�
;

~FP
α ðx; μÞ ¼

X
α0

Z
1−δsδαα0

x

dy
y
FP

α0 ðx=y; μÞ ~Pαα0 ðyÞ;

~Pαα0 ðyÞ ¼ Pαα0 ðyÞ ln
�
δc

1 − y
y

ŝ
μ2f

�
− P0

αα0 ðyÞ; ð43Þ

where Pαα0 and P0
αα0 can be found in Ref. [26].

The normalized distribution function counterterms exactly cancel the remaining IR singularities σ̂virtij þ σ̂softij and σ̂C. The

complete cross section for pp → ~t1 ~̄t1 Z0 in the MS factorization scheme can be written as follows:

σNLO ¼
Z

σC þ
Xgg

ij¼uū;dd̄

1

1þ δij

Z
1

0

dx1

Z
1

0

dx2

Z
½ðσ̂virtij þ σ̂softg;ijÞFP

i ðx1; μÞFP
j ðx2; μÞ þ ði ↔ jÞ�

þ
Xgg

ij¼uū;dd̄

1

1þ δij

Z
1

0

dx1

Z
1

0

dx2½FP
i ðx1; μÞFP

j ðx2; μÞσ̂HCg;ij þ ði ↔ jÞ�

þ
X̄u;d̄
q¼u;d

Z
1

0

dx1

Z
1

0

dx2½FP1
q ðx1; μÞFP

g ðx2; μÞσ̂HCqg þ ðq ↔ gÞ�; ð44Þ

with the hard-noncollinear partonic cross section given by

σ̂HCij ¼
Z
HC

X
jMðij → ~t1 ~̄t1 Z0 þ gðq; q̄ÞÞj2dΦ4: ð45Þ

IV. RESULTS AND DISCUSSIONS

In this section, we present numerical results of the NLO
SUSY-QCD corrections to the process pp → ~t1 ~̄t1 Z0 in the
MSSM. We consider the benchmark point SPS1a scenario,
which is proposed in the SPA Convention and Project
[28–30], as a numerical demonstration. The relevant
masses of SUSY particles and parameters at the SPS1a
point required in our numerical calculations are listed in
Table I. We have generated the spectrum of masses,
couplings, and mixings relative to squarks by running

the mSUGRA program contained in the package ISAJET

[31], version 7.69. The values of the Z0 and top masses we
used are 91.1876 and 175 GeV, respectively.
The numerical analyses of the hadronic cross sections have

beenperformed for theCERNLHCwithppcenters ofmass offfiffiffi
s

p ¼ 7 and 14TeV. The hadronic cross sections are obtained

TABLE I. Relevant SUSY parameters obtained by using ISAJET

7.82 with the input parameters at the reference point SPS1a.

Particle Mass (GeV) Particle Mass (GeV)

~t1 377.39 ~uR 545.95
~t2 571.62 ~uL 562.33
~g2 604.00 ~dR 545.67

~dL 567.83
SUSY parameter SUSY parameter
M0 ¼ −A0 100.00 GeV signðμÞ þ
tan β 10.0 M1=2 250.00

FIG. 4. Dependence of σNLO (pp → ~t1 ~̄t1 Z0) on the soft cutoff

δs of the two-cutoff method, at 7 TeV, for μ ¼ m ~t1 þ
MZ0

2
and

δc ¼ 10−4.
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by convoluting the partonic cross sections with the parton
distribution functions of the initial-state hadrons. Our numeri-
cal results are obtained using CTEQ6L1 PDFs [32] with a
one-looprunningαs in theLOcalculationandCTEQ6MPDFs
[33,34]with a two-loopαs in theNLOcalculation.Bydefault,
we set the renormalization and factorization scales to the
common scale μ and we define μ0 ¼ m ~t1 þm0

Z=2. The
number of active flavors isNf ¼ 2, and the QCD parameters

are ΛLO
5 ¼ 166 MeV and ΛMS

5 ¼ 227 MeV for the LO and
NLO calculations, respectively [33].
In Figs. 4 and 5, we consider the two-cutoff phase-space

slicing method at the 7 TeV LHC and study the independ-
ence of σNLO on δs and δc separately, by varying only one of
the two cutoffs while the other is kept fixed. In these plots,

we show the overall cutoff dependence cancellation
between σsoft þ σhard=coll and σnoncollinear. Both Figs. 4 and
5 show a clear plateau over a wide range of δs and δc, and
the NLO cross section is proven to be cutoff independent.
Similar plots are presented in Figs. 6 and 7 at the
14 TeV LHC.
The LO and NLO cross sections for ~t1 ~̄t1 Z0 production at

the LHC as the functions of the renormalization and
factorization scale μ are plotted in Figs. 8 and 9 corre-
sponding to

ffiffiffi
s

p ¼ 7 and 14 TeV, respectively. As shown in
Figs. 8 and 9, the curve for the NLO cross section is much
less sensitive to μ than the one for the LO cross section,
which indicates that the NLO SUSY-QCD correction has
obviously reduced the uncertainty of the cross section on
the introduced parameter μ in the plotted range of μ=μ0.
Indeed, as can be seen in Figs. 8 and 9, the scale

FIG. 7. Dependence of σNLO (pp → ~t1 ~̄t1 Z0) on the collinear

cutoff δc of the two-cutoff method, at 14 TeV, for μ ¼ m ~t1 þ
MZ0

2

and δs ¼ 5 × 10−4.

FIG. 5. Dependence of σNLO (pp → ~t1 ~̄t1 Z0) on the collinear

cutoff δc of the two-cutoff method, at 7 TeV, for μ ¼ m ~t1 þ
MZ0

2

and δs ¼ 5 × 10−4.

FIG. 6. Dependence of σNLO (pp → ~t1 ~̄t1 Z0) on the soft cutoff

δs of the two-cutoff method, at 14 TeV, for μ ¼ m ~t1 þ
MZ0

2
and

δc ¼ 10−4.
FIG. 8. Scale dependence of the LO and NLO cross section at
the 7 TeV LHC.
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dependence of the LO and NLO curves is similar for both 7
and 14 TeV. The LO cross section has 65% and 54%
uncertainties, due to scale dependence, for both 7 and
14 TeV, respectively. These uncertainties are reduced at
NLO to about 27% for the 7 TeV and to about 14% for the
14 TeV cross sections. The uncertainties have been

estimated as the positive/negative deviation with respect
to the midpoint of the bands. The bands are obtained by
varying μ between μ0 and 4μ0.
The LO and NLO distributions of the transverse

momenta of the final stop quark are depicted in Figs. 10
and 11 at 7 and 14 TeV, respectively. Figures 10 and 11
demonstrate that the NLO QCD corrections enhance
significantly the distributions of pð ~t1Þ

T .

V. CONCLUSIONS

In this paper, we calculate the NLO SUSY-QCD cor-
rections to the process pp → ~t1 ~̄t1 Z0 in the MSSM at the 7
and 14 TeV LHC. As a numerical demonstration, we
present and discuss the NLO SUSY-QCD corrections
around the SPS1a benchmark point. We investigate the
dependence of the LO and NLO SUSY-QCD corrected
cross sections on the factorization/renormalization energy
scale. We demonstrate that the uncertainty of the LO cross
section caused by the introduced energy scale is signifi-
cantly improved by including the NLO SUSY-QCD
corrections. We present the transverse-momentum distri-
butions of the stop quark, at the 7 and 14 TeV LHC, and
provide the NLO SUSY-QCD corrected distributions. We
find that the NLO SUSY-QCD contributions remarkably
affect the distributions.
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