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We present the calculations of the production of #; t:1 7" in the minimal supersymmetric standard model
at the Large Hadron Collider at center-of-mass energies of 7 and 14 TeV. We discuss the impact of the next-
to-leading-order supersymmetric-QCD corrections on the cross sections of 7, #; Z° production and on the
transverse-momentum distributions of the final stop quark. The uncertainties of the leading-order and
supersymmetric-QCD corrected cross sections due to the renormalization/factorization scale are studied.
Calculations demonstrate that the next-to-leading-order supersymmetric-QCD corrections improve the
scale dependence of the leading-order cross sections and enhance significantly the transverse-momentum

distributions.
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I. INTRODUCTION

Supersymmetry (SUSY) provides a particularly interest-
ing subject for studies of the detailed analysis of physics
beyond the standard model (SM) [1]. If SUSY does give a
correct model of nature, the proton-proton collider LHC
will be expected to determine the SUSY parameters. The
simplest supersymmetric model [the minimal supersym-
metric extension of the standard model (MSSM)] [2,3] is a
generalization of the SM theory with a minimal number
of introduced SUSY partners. Supersymmetry predicts the
existence of scalar partners fL,fR to each SM chiral
fermion, which mix to produce two mass eigenstates ]”]
and j‘z and spin-1/2 partners to the gauge bosons and to the
scalar Higgs bosons. Unfortunately, MSSM has many
parameters, undetermined by the moment, and different
choices for these parameters yield qualitatively different
realizations of possible new physics. Thus, the phenom-
enology of SUSY is quite complex. As a result, most of
the analyses of the direct search results are carried out by
invoking additional theoretical assumptions, which restricts
the number of parameters. In particular, the minimal
supersymmetric gravity model (mSUGRA) [4] has been
used most extensively. In mSUGRA, it is assumed that the
left- and right-handed squarks (q; and gy), the left- and
right-handed sleptons (l~L and l;), and the Higgs bosons
have a common soft-breaking mass (m,) at the grand
unified theory scale (Ms). Moreover, the gaugino masses
and the trilinear soft-breaking terms are also assigned
common values m;;, and Ay, respectively, at M. The
number of free parameters is further reduced by requiring
radiative SU(2) x U(1) breaking at the electroweak scale
[5]. This fixes the magnitude of the Higgsino mass
parameter (¢). Thus, mg, m/,, and A, along with the sign
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of y and tan f (the ratio of the vacuum expectation values of
the two neutral Higgs bosons) define the model completely.

SUSY must be broken in the practical world, and the
sparticle mass spectrum depends on the SUSY-breaking
mechanism. The fundamental MSSM parameters need to
be determined from the precise measurement of the masses,
production cross sections, and decay widths of these
superpartners. With these parameters, we can reconstruct
the SUSY-breaking mechanism and probe the MSSM.

At hadron colliders, QCD effects are particularly impor-
tant and must be taken into account to obtain precise
theoretical predictions. Since at high energies QCD is a
perturbative quantum field theory, QCD effects at collider
energies can be calculated order by order in the strong
coupling constant. The lowest order at which a process can
be calculated, the leading order (LO), typically has a large
theoretical uncertainty associated with it. This is mainly
due to the opening of new production channels at higher
orders of the perturbative series and to the large dependence
of LO calculations on renormalization and factorization
scales, in certain renormalization prescriptions. Adding the
first-order QCD corrections, that is, next-to-leading-order
(NLO) corrections, usually improves the stability of theo-
retical predictions considerably and tests the behavior of
the perturbative expansion.

The associated production of a weak gauge boson with
two light stops constitutes not only an important back-
ground process to Higgs boson searches for light Higgs
bosons (M), < 135 GeV) and many searches for signals of
new physics but also represents a unique opportunity to test
and improve the theoretical prediction for stop at hadron
colliders. This last task becomes essential when the signal
to background ratio is small and the background cannot be
easily extracted from data. Typically, this is the case for
processes that involve a large number of kinematic vari-
ables and that have broad kinematic distributions, as often
arises when final states consist of several particles.
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In Ref. [6], we presented detailed calculations of the
NLO SUSY-QCD cross section corrections to the produc-
tion of a lightest stop pair in association with the MSSM
Higgs boson at the 14 TeV LHC. It was found that
the renormalization/factorization scale dependence of the
lowest-order total cross section is strong. Including the
NLO SUSY-QCD corrections significantly reduces and
stabilizes the dependence of the lowest-order total cross
section on the renormalization/factorization scale.

In this paper, we present the calculation of NLO SUSY-
QCD corrections to the production of a Z° weak gauge
boson in association with a top-antitop squark pair at
hadron colliders (pp — 1, ; Z°) at the 7 and 14 TeV LHC
and studied their uncertainties induced by the factorization/
renormalization scale. In Sec. II, we present the tree-level
calculations for the cross sections of the process pp —
t, 1; Z° at the 7 and 14 TeV LHC. In Sec. III, we provide a
description of the calculation of the NLO SUSY-QCD
corrections. Numerical results for the total cross sections
and transverse-momentum distributions at the LHC are
presented in Sec. IV. Finally, the conclusion is given
in Sec. V.

II. LO PROCESSES AND CONVENTIONS

In the MSSM Lagrangian, mixing of the left- and right-
panded top-squark eigenstates 7, /R Into mass eigenstates
f1/2 1s induced by the trilinear Higgs-stop-stop coupling
term A, and the Higgs-mixing parameter u. The top-squark
mass matrix squared is given by [7]

M2 — (mtz +Ar mBpg ) (1)
mBrrg  m?+Crp/’

with m, denoting the top-quark mass and

1 2
A = <2 - 3s1n26'W) m% cos2f3 + m2Q2
Brr = A, —pcotf,
2.
Crr = 3 sin?@ym? cos 23 + m%h (2)

Here, m o, My, are the soft-breaking mass terms for left-

and right-handed top squarks, respectively.
The top-squark mass eigenvalues are obtained by diag-
onalizing the mass matrix

2

UMEDT — <m;l 0 > _ ( cos 0; sin&;)
0 m%z ’ —sinf; cos#; )’
3)
m = md (A +C
s r T\ AL RR
:F\/(ALL — Crg)* + 4mtzB%R>? (4)
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and the mixing angle 6; is determined by

2m,B
tan 260; = IR (5)
Apr — Cgr
The production of the Z° boson in association with a pair
of top squarks proceeds at LO through the partonic
processes

a(p1) +a(pa) = f1(p3) + 11(pa) + Z°(ps) (g =u,d)

and
9(p1) + 9(p2) = f1(p3) + 11(pa) + Z°(ps), (6)

where we denote the external four-momenta by p;
(i=1,...,5). The corresponding generic Feynman dia-
grams that contribute to the LO processes (6) are displayed
in Fig. 1.

The lowest-order cross sections for the subprocesses
qq.99 — f,t, Z are obtained by using the following
formula:

o _i(2ﬂ)4 color

%4 = 2 MG,

U 36 2§ sp%

. 1 (2”)4c010r

85 = 356" 23 > IMG a0, (7)

spin
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FIG. 1. _The LO Feynman diagrams for the g — t:1 70 and
gg — f; f; Z° subprocesses.
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where the factors 36 and factors ﬁ in Egs. (7), result from

the average over the initial-state spins and colors of the
initial partons, § is the partonic center-of-mass energy
squared, and Mq and M, are the amplitudes of all the
tree- level diagrams for the partonic processes gg —

f tl 7% and gg = £, tl 70, respectively. The phase-space
elements dQ; in Eqgs. (7) are expressed as

&’p

5
dQ; = 84 <P1+P2—ZP>H 27:)32E (8)

The LO total cross section of pp — fltle can be

expressed as
/ dxl/ d)CZ )Cl, ).7:5)()(:2,//!)
ij=43.99

+ (1 « 2)]87;(3), )

where F¥ (x|, u) are the parton distribution functions (PDFs)
with parton i in a proton, The partonic colliding energy
squared § = x;x,s, where s is defined as the center-of-mass
energy squared of the proton-(anti)proton collision. y is the
factorization energy scale.

III. NLO SUSY-QCD CORRECTIONS

The NLO SUSY-QCD corrections consist of both virtual
corrections to the tree-level processes and one-parton real
radiation from both the initial and final states. The NLO
SUSY-QCD partonic cross section reads

&E\jl O _ LO +5ANLO, (10)

where 67° denotes the LO partonic cross section and 50'1‘}0
describes the corrections to aleO The NLO corrections
~ANLO . . . - -
66,; receive contributions from ¢g, gg, gg, and gg
initiated processes and can be decomposed in the following

way:

56-2'1‘0 = /d(PS3>§|MVirt|2 +/d<PS4>§|Mreal|2

=6 "Vlr[ +5'1;7al, (11)
where the term integrated over the phase-space measure
d(PS3) corresponds to the virtual one-loop corrections with
three particles in the final state, while the one integrated
over the phase-space measure d(PS,) corresponds to the
real tree-level corrections with one additional emitted
parton. The sum ) indicates that the corresponding
amplitudes squared \Avm(ml)|2 have been averaged over
the initial-state degrees of freedom and summed over the
final-state ones.
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A. Virtual corrections

The virtual corrections consist of the one-loop correc-
tions to the LO reactions. One can classify the corrections
into self-energy corrections, vertex corrections, box-type
corrections, and pentagon-type corrections where all the
external legs are connected to one loop, thus forming a
pentagon. Feynman diagrams and amplitudes have been
generated with the FeynArts package [8]. For demonstra-
tion, some pentagon diagrams are illustrated in Figs. 2
and 3 to gg — 1, t; Z° and gg — 1, 1, Z° processes, respec-
tively. The calculation of the virtual diagrams has been
performed using dimensional regularization, always in
d = 4 — 2¢ dimensions, and adopts the modified minimal
subtraction (MS) scheme to renormalize the strong cou-
pling constant and the relevant masses and fields, except
for top squark and gluon, where their masses and wave
functions are renormalized by applying the on-shell
scheme. The diagrams have been evaluated using FORM
[9] and Mathematica, and all tensor integrals have been
reduced to linear combinations of a fundamental set of
scalar one-loop integrals using standard techniques [10].
The scalar integrals which give rise to either ultraviolet
(UV) or infrared (IR) singularities have been computed
analytically, while finite scalar integrals have been evalu-
ated using standard packages [11].

FIG. 2. A generic set of SUSY-QCD pentagon diagrams in the
subprocesses qg — f; t; Z°.
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FIG. 3. A generic set of SUSY-QCD pentagon diagrams in the
subprocesses gg — 1, f; Z°.

Box and pentagon diagrams are ultraviolet finite but
have infrared singularities. The calculations of many of
the box scalar integrals and, in particular, of the
pentagon scalar integrals are the most complicated ones,
due to the large number of massive particles present in
the final state and in the loop. The five-point scalar
integrals are reduced to a sum of five scalar four-point
functions, plus terms of O(e) which can be neglected
[12-14].

Self-energy and vertex diagrams contain both IR and
UV divergences. The UV divergences are renormalized
by introducing a suitable set of counterterms. Since the
cross section is a renormalization group invariant, the total
NLO SUSY-QCD amplitudes of partonic processes gg —
f, £, Z° and gg — £, f; Z° are UV finite after we renorm-
alize the wave function of the external fields, the top-squark
mass, and the coupling constants. We perform the renorm-
alization program in the on-shell scheme where the quark
and squark masses are defined as the poles of their
respective propagators. The renormalization of the strong
gauge coupling constant g, is carried out in the MS
renormalization scheme.

The Feynman rules for the counterterms can be
expressed in terms of the field renormalization constants
of quarks, squarks, and gluons. We express the bare
quantities by the renormalized ones

PHYSICAL REVIEW D 90, 054027 (2014)

T ren 1
yhare — e <1 +§5zz>,

1
bare __ _ -
phire — @gn<1 + 252,}_),

1
G = Gy (1 + E&Z(;), (12)
together with the renormalization constants for the strong
coupling, for the strong Yukawa coupling, and for the
squark masses, which are defined according to

g = g (1+6Z,).
e = g1+ 6Z,),

bare _ 2 2
mz>" = mz" + omy . (13)

The renormalized quark self-energies 29(p?) are ob-
tained from the unrenormalized quark self-energies 29(p?)
according to

A m
249(p?) = 29(p?) + pw_6Z] + pw. 2% — 7"52,‘{

+ 678 + 6m,. (14)

The renormalization constants of the quarks are obtained
via on-shell conditions [15] as follows:

0
678 — —Re{Z4(m?)} - méRe{a—ﬁ = ()

+2%(p2)+22§(p2)>} (a=L.R). (15

202
pr=my

The renormalized self-energies of squarks )Alél_ (for

i =1,2) are obtained from the unrenormalized self-
energies according to [16,17]

0, (P?) = 24, (p?) + p*62Z4, = m} 625, — m . (16)
where renormalization constants of the top squark are
determined by the on-shell conditions

7 (p2)}
57Z: = —R 4 , 17
! { 8p2 \pzzm% ( )
om = Re{X; (m7)}. (18)

The full set of virtual contributions is UV finite after
including the proper counterterms for self-energies, squark
triple and quartic vertices, and quark vertices, as listed in
the following set of Feynman rules [6,18]:
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t.
ket (K267 = m? 07y, — om),
t;
Mw*rmr%m i(kuky — gk?)6 Zg,
g
b i),
\M_LéJJULx:\\ (SZG
N x (67; + 25 4 52,),
fl h 2
Ei‘/// ig? (9§,
T s [ Zab c -
8 L 2 ( g+ daneT )g”u ",
g
o 8Zc .
g g —igsT (UJ_( 2 +(§Zg +6ZL)’
§Z¢
g + w+(T 407, + 6Z}§)> Yo,

where k, k' denote the momenta of top squarks (in the
direction of arrows), a, b, and ¢ are the gluonic color indices,
T¢ and d,,. are the color factors (we skip the fermionic
and sfermionic color indices), and wy = (1 +y5)/2 are the
projection operators.

The renormalized amplitudes of all the NLO SUSY-QCD
virtual corrections to the partonic processes gg — f, t; Z°

and gg — £ t:1 70 in the MSSM are expressed as

SMY = SMET + MU + SME + SME™
+ MM (ij = uit, dd, gg), (19)

where 5M self 5er1 6Mbox 5Mpem and 5Mcount
represent the amphtudes for self- energy, triangle, box
pentagon, and counterterm diagrams, respectively. Then,
we can get the UV-finite virtual NLO QCD correction
component o-‘”rt as

1 — .
g1 / dr;y Re(MEO x sMY). (20)
! 2|P1|\/E Z ' '

B. Real corrections

The NLO real cross section corrections 50‘6“1 and 5”"'31
due to the emission of a real gluon, i.e., to the processes
qq(gg) — 1, £; Z°g, contain IR singularities. These singu-
larities can be either soft, when the energy of the emitted
gluon becomes very small, or collinear, when the final-state
gluon is emitted collinear to one of the initial partons. There
is no collinear radiation from the final 7; and 7, quarks
because they are massive. At the same order in «,, the 68“*‘1
cross section corresponds to the tree-level processes
(q.4)g — £, 1, Z°(q., @) and develops IR singularities due

PHYSICAL REVIEW D 90, 054027 (2014)

to the collinear emission of a final-state quark or antiquark
from one of the initial-state massless partons.

The IR singularities can be conveniently isolated by
slicing the (¢q)gg — 1, Z°g and (q,§)g — 1,1, Z°(q, )
phase spaces into different regions defined by suitable
cutoffs. We use the two-cutoff phase-space slicing method
to perform the integration over the phase space of these
real emission processes [19-21]. In our calculations, the
real gluon emission correction to each of the processes
(9g)gg — 1, £, Z° contains both soft and collinear IR
singularities, which are involved in the soft gluon region
(E¢ < 8,0/5/2) and the hard gluon region (Eq > 6,/3/2),
respectively. The hard gluon region is also divided into the
hard-collinear region (HC) and the hard-noncollinear
region (HC) with 2;—\%“ <, and % > 5. (p; are the

momenta for ¢ and g):

si(ij — tiyg) = &0 + 60 (i = 4. 99),
sy (ij = ttyg) = 64 + 6 AngC] (21)

Each of the real light-(anti)quark emission processes
contains only collinear IR singularity and can be dealt with
in the HC region too. In the HC region, the real emission

corrections 6HC¢ e
can be calculated numerically with the general Monte Carlo
method. After summing the virtual and real gluon/(anti)
quark radiation corrections, the remained collinear diver-

gence can be canceled by that in the NLO PDFs. Then, the
finite total NLO QCD correction to the pp — £, t; Z°
process can be obtained. More details on the calculation
of real gluon emission and real light-(anti)quark emission
are given in Sec. III B 1 and Sec. III B 2, respectively.

where ij = qq, 99, q9, gg, are finite and

1. Real gluon emission corrections

We denote the partonic processes with real gluon
emissions as

+
+ ( )+ZO(P5)+9(P6)- (22)

The differential cross section for the partonic processes
qq — 1, t; Z°g over the soft gluon region can be expressed
as

4

A A aS

Osoft = 010 @ o Z(Ti ‘T))gi(pi-p;).  (23)
=1

where 7 are the color operators [22-24], and g;;(i = I,
2,3,j=2,3,4) are the soft integrals defined as [12,22]
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(27p,)% dP~'pg
9ij(Pipj) =—"— —
2 E(,S(ss\/@/_z E6
X[ 2picpy) P2 D ]
(Pi-pe)(Pj-ps) (Pi-p;)* (Pj-p6)?

(24)

By using the definitions of color operators, we get the
expression of ¢%° as [22]

A as 1 7
UZ?qﬁq =~ {6 (912 + 934) — 6 (913 + 924)
1 ~0
=3 (914 + 923) | 845 (25)
where
o a, ==[[256
o3t = e 3| (5700 160, ez

256 32
+<7D2 + 16D4> | M2 + <—?D1 + 16D3>

x2Re(M" . M%")} Q. (26)

where the summation is taken over the spins and colors of
initial and final states, and the bar over the summation
represents taking the average over the spins and colors of
initial partons, and

MY = M+ %M?g,
1
M = M=, @7)

MP, MP, and M7 are the amplitudes for s-, 7-, and
u-channel diagrams of the partonic process gg — t; t; Z°
separately, and

Dy =912 + 9913 + 9924 — 34,
Dy =9912 + 9923 + 9914 — 934,
D3 = 6(g12 — 914 — 923 + 934,
Dy =6(g12 = 913 — o4 + G34)- (28)

In the collinear region, the initial-state parton i
(i=gq.q.g) is considered to split into a hard parton i’
and a collinear gluon ¢, i — i'g, with p; = zp; and
ps = (1 — z) p;. The matrix element squared for ¢gg(gg) —
1,1, hg factorizes into the Born matrix element squared and
the Altarelli-Parisi splitting function [25] for i — i'g; i.e.,

PHYSICAL REVIEW D 90, 054027 (2014)
> Muc(ij = iy 1, 2%
= (4”%)2 Z Muoli'j — 116, Z0)?
i

2P,
X 124 (Z,G) , (29)
2(2p; - pe)
where
Pii(z,€) = Piy(2) +€Piy(2) (i=gq.9),
1+272
qu(z):CF 1—z° Pi]q(z>:_cF(1_Z)’
z 11—z
ng(Z) =2N 17—Z+T+Z(1 —Z) s
Pyy(z) =0, (30)

where N = 3 is the color number Cr = 4/3.

Using the approximation p; — ps = zp; (i =1,2), the
element in the four body collinear phase-space region can
be written as [22]

(47)¢
167°T(1 —€)

x9<@s’%—si6> (i=1.2), 31)

where s =2p; *Pjs Sie = 2q; - k, and Ti5 = (pi— P6)2-
The cross section in the hard-collinear region dag-c can be
written as [26]

- B ()
AL e

X 610(i'j = 1 t:1 Z0-)+ (i < ])} (32)

Ayl oy = dP; zdzdii[—(1 = 2)1;6) ¢

2. Real light-(anti)quark emission corrections

The partonic processes with real light-quark emissions
are denoted by

(4.2)(P)+9(P) = f1(p3) + 11(pa) + Z°(ps) + (4.3) (ps)-
(33)

These partonic processes contain only the initial-state
collinear singularities induced by strong interaction. The

extraction of the collinear singularities of 5&%})9 is done in

the same way as described in Sec. III B 1. Splitting the

phase space into HC and HC regions by introducing a
cutoff ., we can express the cross sections for the partonic

processes q(7)g — 1, f; Z°q(g) as
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~real AHC
864500 = Buias + Oula (34)

The cross sections in the noncollinear region 61;81)9

finite and can be evaluated in four dimensions by using the
Monte Carlo method. The Cross. sections in the collinear

are

region for the pp — q(g)g — 1, f, 20 q(g) processes can be
written as

= [ (7)]
x <_é)5;e{[)1—55 i {(1 QZZ)Q] e

2.€)850 + P, (2. 6)6{7?} (35)

X P

where the splitting functions Py, (z.€) can be written
explicitly as [27]

P g.9q(2:€) = Pyggq(2) + €Pyg4(2),
1

Pyg(2) = 5[ + (1= 2)%),
Pl (z) = —z(1-2z),
B 1+ (1-2z)?
qu<Z) = CFf?
Py, (z) = —Cpz. (36)

C. The total cross section for pp — £, £, Z* at NLO
SUSY-QCD correction

The total hadronic cross section for pp — f; t:I 70 is
given by

oNLO } :

1 /
dx1 dx2
1j=49.99 1 6”

< [P ) F (1, )50

+(1 < 2)],
(37)

(xlyxbﬂ)

where F¥ are the NLO PDFs for parton i in a proton,
defined at a generic factorization scale i = u, and UNLO is
the O(a}) parton-level total cross section for incoming
partons i and j and renormalized at u, = u. The NLO
parton-level total cross section &}-°(x;,x,,4) can be

written as

NLO

SN (xy, X0, 1) = 670 (x1, %0, ) + 8630 (x1, X2, 1),

(38)
where 67 (x1, x,, ) is the O(ag) Born cross section, and
56 NLO(x,,xz,y) consists of the O(ay) corrections to the

Born cross sections for gg — £; 1, Z°, qg — 1, {; Z°, and

PHYSICAL REVIEW D 90, 054027 (2014)

(q.9)g — t, t; Z°(q. ) processes, including the effects of
mass factorization.

The remaining initial-state IR singularities of 567-° can
be canceled by decomposing the collinear counterterms
of the PDF F¥(x,u) into two parts: the collinear gluon
emission part ] (x,u) and the collinear light-quark emis-
sion part F} (x, u) as follows:

Fl(xopu) = Fp(x.p) + FL(x,p). (39)

Using the MS scheme, the scale-dependent NLO quark
distribution functions are given in terms of 77 (x) and the
QCD NLO parton distribution function counterterms [26]
as follows:

Fh(xp) =f{;(x)[ _gsrrf((ll_—%(%y(i)
x Cp <21n(5s) +%)] n [%%(4”)6]

) w
FP(xu) = FP(x) [1 - %% (4n)¢ @

11 li’llf
N(2In(6;) +——5—
n(amio) + G -55)

« / 1‘55% (_é>ng(z)fg @ (41)

By combining the contributions of the PDF counterterms
with the hard-collinear contributions of the gg — 7, 7, Z%,

g9 — 1:1 7%, and q(g)g — 1, tl 7%q(g) subprocesses, we
get the expression for the remaining collinear contributions

o€ to the process pp — f; f; Z° in O(a,) order as

_ 2\ € 99
o€ — ay I'(1-e) 47rA/4 Z 1
27[F(1—2€) S -1"’5”

ij=un.dd
/dxl/ deXH (1. 1) FF (x2. 1)
+ FP (1 ) F (2. 1)
5> (A=) )|
o ,~>}, (42)
where
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Ai’(g = q9) = Cr(2In4, +3/2),
A°(9 = g99) = 2NIné; + (11N —2n,/) /6,

AYL _AS(, ln< )
'”f

1-6,0,y ~
FP(x.u) Z/ FL(x/y, 1)Pog (y).
- 1—-y§
Pml’ (y) = P(m’ (y) In <5c Ty_Z) - Plaa’ (y)’ (43)

where P,, and P/ , can be found in Ref. [26].
The normalized distribution function counterterms exactly cancel the remaining IR singularities &}'}“ + &?;?f‘ and 6€. The

complete cross section for pp — f; t:1Z0 in the MS factorization scheme can be written as follows:

UNLO:/6C+

+

1+6 / dxl/ dxz/ V‘“—Q—G}"S FL (i, ) FF (xg, ) 4 (i < )]
ij=ui,dd i

/ dx,/ dxo[FF (o, ) FF (%0, )6 I;—S+(i<—>j)]

ij=ui, dd U

/ dn, / Aol F (o1 ) FL (e )T 1 (g < )] (44)

qud

with the hard-noncollinear partonic cross section given by

61 = /_ Z|M(ij - 062°+9(q,q))?d®,. (45)  the mSUGRA program contained in the package ISAJET
HC [31], version 7.69. The values of the Z° and top masses we
used are 91.1876 and 175 GeV, respectively.
The numerical analyses of the hadronic cross sections have
IV. RESULTS AND DISCUSSIONS been performed for the CERN LHC with pp centers of mass of

In this section, we present numerical results of the NLO V/s = 7and 14 TeV. The hadronic cross sections are obtained
SUSY-QCD corrections to the process pp — f; t; Z° in the
MSSM. We consider the benchmark point SPS1a scenario, . . . . . . . . .

which is proposed in the SPA Convention and Project 124 T §
[28-30], as a numerical demonstration. The relevant 1 » Shon-collinear ]
masses of SUSY particles and parameters at the SPSla 0'8'_ 8¢ =10 ]

point required in our numerical calculations are listed in

0.4 G T
Table I. We have generated the spectrum of masses, | NLO |
couplings, and mixings relative to squarks by running S 004 i
o) 1
0.4 g
TABLE 1. Relevant SUSY parameters obtained by using ISAJET | e
7.82 with the input parameters at the reference point SPS1a. 084 O oft+collinear i
Particle Mass (GeV) Particle Mass (GeV) 1o P ]
i 377.39 iig 545.95 —
;2 57]62 l:/tL 56233 -4.0 -3.5 -3.0 -2.5 -2.0
0 604.00 dg 545.67 Log &g
dy 567.83 _
SUSY parameter SUSY parameter FIG. 4. Dependence of 6""° (pp — 1, f; Z°) on the soft cutoff
M, = -Ap 100.00 GeV sign(u) + d, of the two-cutoff method, at 7 TeV, for u = m; +@ and
tan 10.0 M, 250.00 5. — 104
.= .
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1.5 T T T T T T T T T
_ Shon-collinear
1.0 H 4 -
63 =5x10
0.5+ _
SNLO
_
< 0.0 i
z
<}
-0.5 g
Ssoft+collinear
1.0 e _
1.5 T T T T T T T T T
-5.0 -4.5 -4.0 -3.5 -3.0

Log ¢

FIG. 5. Dependence of 60 (pp — 1, £, Z°) on the collinear

cutoff §,. of the two-cutoff method, at 7 TeV, for u = m; + @

and 5, = 5 x 107,

by convoluting the partonic cross sections with the parton
distribution functions of the initial-state hadrons. Our numeri-
cal results are obtained using CTEQ6L1 PDFs [32] with a
one-loop running «, in the LO calculation and CTEQ6M PDFs
[33,34] with atwo-loop «, in the NLO calculation. By default,
we set the renormalization and factorization scales to the
common scale p and we define py = m; + m9/2. The
number of active flavors is Nf = 2, and the QCD parameters

are AL = 166 MeV and AMS = 227 MeV for the LO and
NLO calculations, respectively [33].

In Figs. 4 and 5, we consider the two-cutoff phase-space
slicing method at the 7 TeV LHC and study the independ-
ence of 6N0 on §, and 8, separately, by varying only one of
the two cutoffs while the other is kept fixed. In these plots,

T T T T T T T T T
10 1 T
O non-collinear
60 =10
5 _
SNLO
g o :
o)
-5 _
O soft+collinear
-10- 4
T T T T T T T T T
-4.0 -3.5 -3.0 -2.5 -2.0

Log 5

FIG. 6. Dependence of 6™M° (pp — 1, f; Z°) on the soft cutoff
d, of the two-cutoff method, at 14 TeV, for y = m; + @ and
5, — 107,
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T T T T T T T T T
8 T ___S‘_r_lon-collinear i
8,=5x107
44 i
O NLO
£ 04 i
©
-4 4
O soft+collinear e
8 |
T T T T T T T T T
-5.0 -4.5 -4.0 -3.5 -3.0

Logd,

FIG. 7. Dependence of 6N'O (pp — 7, Z°) on the collinear

cutoff J, of the two-cutoff method, at 14 TeV, for y = m; + @

and 5, = 5 x 107,

we show the overall cutoff dependence cancellation
between oy + Ghard/coll AN Cponcotiinear- BOth Figs. 4 and
5 show a clear plateau over a wide range of §, and 6., and
the NLO cross section is proven to be cutoff independent.
Similar plots are presented in Figs. 6 and 7 at the
14 TeV LHC. _

The LO and NLO cross sections for 7, #; Z° production at
the LHC as the functions of the renormalization and
factorization scale u are plotted in Figs. 8 and 9 corre-
sponding to /s = 7 and 14 TeV, respectively. As shown in
Figs. 8 and 9, the curve for the NLO cross section is much
less sensitive to u than the one for the LO cross section,
which indicates that the NLO SUSY-QCD correction has
obviously reduced the uncertainty of the cross section on
the introduced parameter p in the plotted range of u/uy.
Indeed, as can be seen in Figs. 8 and 9, the scale

T T T
— LO
---.NLO
0.3 4
- Vs =7 Tev
— 0.2
2
o
0.1
0.0 T T T T T T T
0 1 2 3 4
TThS
FIG. 8. Scale dependence of the LO and NLO cross section at

the 7 TeV LHC.
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3 T T T T T T

0 T T T T T T
W

FIG. 9. Scale dependence of the LO and NLO cross section at
the 14 TeV LHC.

00012 4——

0.0008

0.0004

do/dp; (fb/GeV)

0.0000

T T T T
0 200 400 600 800 1000
py (GeV)

FIG. 10. LO and NLO transverse-momentum distributions for
stop at the 7 TeV LHC for u = p.

dependence of the LO and NLO curves is similar for both 7
and 14 TeV. The LO cross section has 65% and 54%
uncertainties, due to scale dependence, for both 7 and
14 TeV, respectively. These uncertainties are reduced at
NLO to about 27% for the 7 TeV and to about 14% for the
14 TeV cross sections. The uncertainties have been

PHYSICAL REVIEW D 90, 054027 (2014)

T T T T T T
0.006-
S
L
9
O
x
. 0.003+
(=¥
=2
[
©
0.000 . ; . ; . ; . ; .
0 200 400 600 800 1000
pp (GeV)
FIG. 11. LO and NLO transverse-momentum distributions for

stop at the 14 TeV LHC for p = p.

estimated as the positive/negative deviation with respect
to the midpoint of the bands. The bands are obtained by
varying pu between po and 4u.

The LO and NLO distributions of the transverse
momenta of the final stop quark are depicted in Figs. 10
and 11 at 7 and 14 TeV, respectively. Figures 10 and 11
demonstrate that the NLO QCD._ corrections enhance
significantly the distributions of p<T").

V. CONCLUSIONS

In this paper, we calculate the NLO SUSY-QCD cor-
rections to the process pp — f; f; Z° in the MSSM at the 7
and 14 TeV LHC. As a numerical demonstration, we
present and discuss the NLO SUSY-QCD corrections
around the SPS1la benchmark point. We investigate the
dependence of the LO and NLO SUSY-QCD corrected
cross sections on the factorization/renormalization energy
scale. We demonstrate that the uncertainty of the LO cross
section caused by the introduced energy scale is signifi-
cantly improved by including the NLO SUSY-QCD
corrections. We present the transverse-momentum distri-
butions of the stop quark, at the 7 and 14 TeV LHC, and
provide the NLO SUSY-QCD corrected distributions. We
find that the NLO SUSY-QCD contributions remarkably
affect the distributions.
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