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We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions
to compute to all orders in nuclear opacity the non-Abelian gluon bremsstrahlung of event-by-event
fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single
gluon, v {1}, and even numbered 2¢ gluon distribution, v¥{2£}, inclusive distributions in high-energy
p + A reactions as a function of harmonic n, target recoil cluster number, M, and gluon number, 27, at the
RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam
jet form color scintillation antenna (CSA) arrays that lead to characteristic boost-noninvariant trapezoidal
rapidity distributions in asymmetric B + A nuclear collisions. The scaling of the intrinsically azimuthally
anisotropic and long range in 7 nature of the non-Abelian bremsstrahlung leads to v, moments that are
similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference
phenomena sourced by the fluctuating CSA. Our analytic nonflow solutions are similar to recent
numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even
and odd v, without invoking k factorization. A test of the CSA mechanism is the predicted nearly linear n
rapidity dependence of the v, (kz,#). Non-Abelian beam jet bremsstrahlung may, thus, provide a simple
analytic solution to the beam energy scan puzzle of the near /s independence of v, (p7) moments observed
down to 10 AGeV, where large-x valence-quark beam jets dominate inelastic dynamics. Recoil
bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for
the unexpected similarity of v, in p(D) + A and noncentral A + A at the same dN/dn multiplicity as

observed at the RHIC and LHC.
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I. INTRODUCTION

An unexpected discovery at RHIC/BNL in D + Au
reactions at /s = 200 AGeV [1] and at LHC/CERN in
/s =5.02 ATeV p + Pb reactions [2-4] is the large
magnitude of midrapidity azimuthal anisotropy moments,
v,(kp,n =0), that are remarkably similar to those
observed previously in noncentral Au + Au [5-7] and Pb +
Pb [8—12] reactions. See preliminary p 4 Pb data in Fig. 1,
taken from ATLAS Ref. [13] Fig. 24, that also shows a
large rapidity-even dipole »; harmonic [14].

In addition, the beam energy scan (BES) at RHIC [15]
revealed a near /s independence from 8 AGeV to
276 ATeV of the v, in A+ A at fixed centrality that
was also unexpected.

In high-energy A + A, the v, moments have been
interpreted as possible evidence for the near ‘“perfect
fluidity” of the strongly-coupled quark-gluon plasmas
(sQGP) produced in such reactions [16-20]. However,
the recent observation of similar », in much smaller
p(D) + A systems and, also, the near beam energy inde-
pendence of the moments observed in the beam energy scan
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(BES) [15] from 7.7 AGeV to 2.76 ATeV in A + A have
posed a problem for the perfect fluid interpretation, because
near inviscid hydrodynamics is not expected to apply in
space-time regions where the local temperature falls below
the confinement temperature, 7'(x, 1) < T, ~ 160 MeV. In
that hadron resonance gas (HRG) “corona” region, the
viscosity-to-entropy ratio is predicted to grow rapidly with
decreasing temperature [21], and the corona volume
fraction must increase relative to the ever-shrinking volume
of the perfect fluid “core” with T > T, when either the
projectile atomic number A and size A'/3 fm or the center-
of-mass (CM) energy +/s decreases.

While hydrodynamic equations have been shown to
be sufficient to describe p(D)+ A data with particular
assumptions about initial and freeze-out conditions [22,23],
its necessity as a unique interpretation of the data is not
guaranteed. This point was underlined recently using a
specific initial-state saturation model [24] that was shown
to be able to fit p(D) + A correlation data on even v,
moments without final-state interactions.

That saturation model has also been used [19] to specify
initial conditions for perfect fluid hydrodynamics in A + A.
However, in p + A such initial conditions for hydrody-
namics are not as well controlled, because the gluon
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FIG. 1 (color online). w,(py) with n =2 to 5 obtained for
|An| > 2 and the p; range of 1-3 GeV. An overlay sketch of
preliminary rapidity-even v; data shown at QM14 [14] is also
indicated by a dark green curve. The error bars and shaded boxes
represent the statistical and systematic uncertainties, respectively.
ATLAS v, (v3) data in the 220 < N7¢¢ < 260 range are compared
to the CMS data [2] obtained by subtracting the peripheral events
(the number of offline tracks N ’D’f"f < 20), shown by the dashed

(solid) curves. Reproduced from ATLAS Ref. [13] p + Pb Fig. 24.

saturation scale, Q,(x,A = 1) < 1 GeV, is small, and its
fluctuations in the transverse plane on subnucleon scales
are not reliably predicted.

The near independence of v, moments on beam energy
observed in BES [15] at RHIC from 7.7 AGeV to
2760 AGeV pose further serious challenges to the unique-
ness of the perfect-fluid interpretations of the data because
of previous predictions [25] for systematic reduction of the
moments due to the increasing HRG corona. Those
predictions appeared to be confirmed by SPS /s =
17 AGeV data [26]. The most recent BES measurements,
however, appear to contradict the diluting role of the HRG
corona. The HRG corona fraction should dilute perfect-
fluid QGP core flow signatures at lower energies unless
additional dynamical mechanisms, possibly associated with
increasing baryon density, accidentally conspire to com-
pensate for the growing HRG corona fraction. Such a
combination of canceling effects with /s was demon-
strated to be possible using a specific hybrid hydro +
URQMD model [27] or three fluid models [28]. While such
hybrid models are sufficient to explain the BES independ-
ence of v, data in A+ A, the necessity and, hence,
uniqueness of such hybrid descriptions are not guaranteed.

The BES [15] data also a pose a challenge to the color
glass condensate (CGC) gluon saturation model [29] used
to specify initial conditions for hydrodynamic flow pre-
dictions in A + A. This is because Q2 is predicted to
decrease with log(s), and thus gluon-saturation-dominated
high-energy gluon fusion models of initial-state dynamics
should switch over into valence-quark-diquark-dominated
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inelastic dynamics when partons with fractional energy
x > 0.01 play the dominant role. At RHIC and lower
energies, valence quark and diquark QCD string phenom-
enology based on the LUND model [30] and its B+ A
generalization to nuclear collision via the HIJING model
[31] can smoothly interpolate between AGS and RHIC
energies. Such a multiple-beam-jet-based approach to
B + A naturally accounts, for example, for the striking
long-range triangular, boost-noninvariant form of
(dN ,4/dn)/(dN ,,/dn) nuclear enhancement of the final
hadron rapidity density in p(D) + A observed at all CM
energies up to LHC [32]. By including multiple mini- and
hard-jet production, it can account for the /s growth of
dN g, 4/dn; though at top /s = 200 AGeV RHIC and at
LHC energies, there is strong evidence for the onset of
gluon saturation [33] that limits 2 — 2 minijet processes
to  pr>Q;(x,A) x A3/x* that grows with A
and 1/x = \/s/(pre").

The importance of multiple beam jets with rapidity
kinematics controlled by valence quarks and diquarks
was first proposed within the Brodsky-Gunion-Kuhn
(BGK) model [34], which is reproduced also in the
HIJING [35] model. The trapezoidal boost-noninvariant
dependence of the local density, dN/dnd?x, predicted in
Ref. [35] as a function of the transverse coordinate X even
in symmetric A 4+ A, may also play an important role in the
triangular long-range 7 dependence of wv,(n,+/s) as
observed in Au + Au by PHOBOS [36].

In this paper we explore the possibility that a dynamical
source, that could partially account for the above puzzling
azimuthal moment systematics, may be traced to a basic
perturbative QCD (pQCD) feature. The pQCD based model
here extends the opacity y = 1 Gunion-Bertsch [37] (GB)
perturbative QCD bremsstrahlung used to model.
m+m— g+ X to all orders in opacity, e > %, y"/n!...,
Vitev-Gunion-Bertsch (VGB) multiple-interaction pQCD
bremsstrahlung for applications to B + A nuclear colli-
sions. We show that VGB bremsstrahlung naturally leads
on an event-by-event basis to a hierarchy of nontrivial
azimuthal asymmetry moments similar to that observed
in p+A (see Fig. 1) and peripheral A+ A at fixed
dN/dn [9,11,12].

A particularly important feature of beam jet non-Abelian
bremsstrahlung is that it automatically leads to long-range
rapidity # “ridge” correlations and to azimuthal asymmetry
harmonics from n = 1,2, 3, .... Conventional Lund-string
beam jet models [30], as encoded, e.g., in HIJING, on the
other hand, neglect recoil-induced moderate p; color
bremsstrahlung azimuthal asymmetries. From the pQCD
perspective, beam jets are simply arrays of parallel color
antennas that radiate due to multiple soft transverse
momentum transfers |q;| ~1 GeV between participant
projectile and i =1,...,Ny(b) target nucleons. Many
event generators include ¢-averaged (azimuthally random-
ized) bremsstrahlung effects via ~a,/k> up to the minijet
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scale ky < Q(x,A). In HIJING, the ARIADNE [38] code is
used in conjunction with the nonperturbative Lund string
fragmentation code JETSET [39] to incorporate this effect,
while highly azimuthally asymmetric hard pQCD jets with
kr > Q,(x,A) are included via the PYTHIA [39]) code. In
Ref. [30] it was emphasized that the high string tension of
color strings reduces greatly the sensitivity of Lund string
fragmentation to QCD bremsstrahlung and is an important
infrared safety feature of that nonperturbative hadroniza-
tion phenomenology.

In p+ A multiple collisions, however, the projectile
accumulates multiple transverse momentum kicks (the
Cronin effect) from scattering with cold nuclear partic-
ipants [40,41] that enhances the bremsstrahlung mean
square (k7),, ~ A'3u? via random walk in the target
frame. In the CGC approach, this A!/3 growth is built into
Q?(x,A) in the infinite momentum frame.

At the minijet scale, the underlying azimuthal asymme-
try of non-Abelian bremsstrahlung will tend to focus
gluons toward the azimuthal directions of exchanged
momenta. At present, this basic azimuthal dependence is
not taken into account in HIJING.

As we show below, there is a very important aspect to the
multiple color antenna arrays in high-energy p + A due to
the longitudinal coherence of clusters of participant target
beam jets separated by small transverse coordinates, too
small to be resolved by the transverse momenta involved.
While the total average number of Glauber participant
nucleons that interact with a projectile at impact parameter
b is determined by the area of the inelastic cross section
oin(s) ~fewfm? as Ngp(b) =o0;,(s) [dzpr(z.b), for
moderate momentum transfers with k; ~ O, ~ 1-2 GeV
bremsstrahlung, the target participant antennas naturally
group event-by-event into M < N resolved clusters sep-
arated in the transverse plane by subnucleon distances
1/ky ~0.2 fm, similar to the CGC model [42] and in
AdS/CFT shock modeling [43] of p 4+ A, but here simply to
the transverse resolution scale of multiple scattering
recoil kinematics in the target frame versus the infinite-
momentum frame.

This partial decoherence of the N;(b) participating
target dipoles creates nonisotropic spatial distributions of
color antennas that radiates according to the fluctuating
spatial asymmetries from event to event. Each cluster is
characterized by the number m,, of target participant dipole
antennas that exchange coherently Q2 = m,u’> with the
projectile at a specific azimuthal angle v, controlled by the
transverse geometrical distribution of the clusters.

Each recoil cluster @ =1,...,M radiates coherently
into a broad range of rapidities that appears in two
particle correlations as a beam jet “ridge” component with
k enhanced near —Q, = _Ziel,,qi' In addition, the pro-
jectile cluster radiates coherently into a broad range of
rapidities but with transverse momenta k enhanced near
Qo = (Qo,wo) = DM, Q,. On an event-by-event basis,
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M and the color antenna geometry fluctuate, producing
naturally n = M + 1 and other azimuthal harmonics in
two-gluon v, = (cos(n(¢p, — ¢,))).

Our goal here is to estimate analytically the magnitude of
the color bremsstrahlung source of pQCD dynamical
azimuthal two-particle correlations and its dependence
on n,k,M,Ny. We illustrate the results with specific
analytic cluster geometric limits, including Z, symmetric
and Gaussian random CSA. We propose a future gener-
alization of HIJING that could enable more realistic testing
the influence of anisotropic VGB bremsstrahlung on the
final hadron flavor-dependent azimuthal moments and
competing minijet and hard-jet sources of anisotropies.

I1. FIRST-ORDER IN OPACITY
(GUNION-BERTSCH) BREMSSTRAHLUNG
AND AZIMUTHAL ASYMMETRIES v,

The above puzzles with BES [15], D + Au at RHIC, and
p + Pb at LHC motivate us to consider an alternative: more
basic, perturbative QCD sources of azimuthal asymmetries.
The well-known non-Abelian bremsstrahlung Gunion-
Bertsch (GB) formula [37] for the soft-gluon radiation
single-inclusive distribution is
dN (11 CRas ﬂz q
dnd’kd*q  7* 7(q® +p?) kA (k —q)?’

2

(1)

where we characterize the parton-scattering elastic cross
section doy/d*q = ooy’ /n(q* + u?)? off color-neutral tar-
get participants with a momentum transfer q in terms of a
characteristic cold nuclear matter scale u®~ 0.12 GeV?
taken from fits to forward dihadron correlations in
Refs. [44-46]. Here ¢ = |q|, and the produced gluon has
rapidity 7 and transverse momentum k (k = |k|) in the final
state. It is obvious from Eq. (1) that non-Abelian gluon
bremsstrahlung is preferentially emitted along two direc-
tions specified by the beam “z” axis and the transverse
momentum transfer vector ¢. The uniform rapidity-even
n~log(xE/k) distribution associated with moderate q
scattering is a unique feature of non-Abelian bremsstrah-
lung in the kinematic k < xE < E range of interest
associated with beam jets and is due to the triple gluon
vertex. The uniform rapidity-even distribution is an espe-
cially important characteristic of non-Abelian radiation.
The combination of the two leads to a uniform rapidity
“ridge” in the direction of the momentum transfer q that
fluctuates in both magnitude and direction from event to
event but is measurable in two-or-higher-gluon correlation
measurements. The rapidity-even ridge is, of course,
kinematically limited to the 5 € [Y, Yp| interval between
the target and projectile rapidities. Independent but kine-
matically correlated multiple target and projectile beam jet
bremsstrahlung sources can account for the triangle boost-
noninvariant rapidity density observed in p + A.
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For the scattering of color neutral dipoles considered in
Ref. [37], the Rutherford perturbative o /¢g* distribution of
momentum transfers was modeled by color-neutral form
factors of the form ¢(¢*> + p*)~!. For GB radiation, the
k = q singularity is also regulated by such a form factor.
Therefore, the color neutralization scale y® regulates the
(k —q)? singularity in Eq. (1) as well. The x and A
dependence of that scale arises naturally in small-x models
based the gluon saturation scale Q,(x,A) [29,42,47]. Our
emphasis here, however, is to explore the general character-
istics of semi-hard bremsstrahlung from the perturbative
QCD perspectives that allow us to derive analytically many
of the observed remarkably simple scaling relations
between 2¢ azimuthal harmonic cummulants, v, (2¢), as
a basic coherent-state semiclassical wave interference effect
without invoking hydrodynamic local equilibrium
assumptions.

The screened single inclusive GB perturbative gluon
distribution is

dN)
m = f(n.k.q)
_ CRas IquZ PV[ (2)
7k 7(g® + p?)? (k —q)* + 42
FP
= 3
A= cosd—w) G)

where ¢ is the azimuthal angle of k and y is the azimuthal
angle of q, using the abbreviations

A=A, =K +q +u)/(2kq) > 1, (4)

— ©q R (5)
= 2K (@ + 42 2kq

P=P,=(1-e"r)u(1—errr)n, (6)

where we introduce a kinematic rapidity envelope factor P,
corresponding to approximately uniform rapidity depend-
ence of the non-Abelian bremsstrahlung [37] regulated with
(I = |xp|)™ kinematic spectator power counting [47,48].
Note that ny = 2ng.. — 1 ~ 4 for gluon production from
the scattering of two color-neutral dipoles in the large
|xp| = 1 limit. The P, rapidity envelopes can be used to
build up multi-beam-jet boost-noninvariant triangular
dN ,,/dn as in the BGK [34] model and also to model
the intrinsic boost-noninvariance of dN,,/dndx | in even
and symmetric A + A collisions, as with HIJING [35].

The single-gluon azimuthal moments, v, = v,{1} in
cumulant notation, from a single GB color antenna defined
by the momentum transfer q = (g, y) with azimuthal angle
y are defined by
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d¢p  cos(ng)
GB ([ k =FP | ———
v, ( ,q,l//)fo( ’Q) /zﬂA—cos(qﬁ—l//)
) iny\n
= FPRef ﬁge—)z
|z|=1 2ri (Z -2Az + l)
2(ez_)"
Z+_Z_

where we defined z = exp(i(¢ — )), so that d¢p = —idz/z
and cos(¢p —y) = (z+ 1/z2)/2. Note that there are two
simple real poles z, = A + VA? — 1. Since A > 1, only z_
contributes to the unit contour integral, resulting in the final
analytic expression above. Note that the azimuthal aver-
aged single-gluon-inclusive (n = 0) bremsstrahlung distri-
bution with vy =1 is then

fo=2FP/(z; —z_) = FiPy/ (A}, = 1)'/?
 dN /dndk*dg>. (8)

This has a linear divergence at k = ¢ in the ¢ = 0 limit in
addition to the usual Abelian collinear 1/k*> divergence.
The first is regulated by the color-neutral dipole form factor
in the GB model.

The azimuthal Fourier moments are, however, finite in
Eq. (7), even in the case of vanishing u, and depend
analytically on n and A via

V7P (kg w) = cosly] (A — /A7, = 1), (9)

}lij%U?B(k, q,0) = (k/q)6(q = k), (10)

VP (k. q,w) = cos[ny](v§®(k, ¢,0))",  (11)

limo® (k. ¢.0) = (k/q)"0(q ~ k). (12)

Note that in the g =0 limit, all », — 1 reach unity at
k = ¢ but vanish for k > ¢. For finite 4 > 0, all moments
maximize at k> =k2=¢>+u*> with w,(k,)=
(v/(1 4+ 42/q%) — u/q)". Figure 2 illustrates the magnitude
of GB v,(k/u, q/pu) moments as a function of k/u for
n=1,...,5 and two different g/u =1, 3.

Note the remarkable power-law scaling with n (for fixed
k, q.y) of the azimuthal moments of gluon bremsstrahlung
from a single GB color antenna:

(0572 (k. q. 0)]'/" = [P (k. q.0)]/™, (13)

that is similar to the scaling observed by ALICE, CMS and
ATLAS [4,8,11] at LHC, at least for the higher n >3
moments dominated by purely geometric fluctuations. This
scaling is, of course, not expected to hold perfectly for an
ensemble averaged over ¢ ratios of cos(nA¢) averaged
dihadron-inclusive rates. One of our aims below is to test
the survival of the above ideal scaling in Eq. (13) to
ensemble averages in two-gluon-inclusive processes.
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FIG. 2 (color online). Single GB beam jet bremsstrahlung
azimuthal Fourier moments, v$®(k, g) from Eq. (11), are shown
versus k/u forn = 1 — 5 for g/u = 1(3) as solid (dashed) curves.

However, note that by rotation invariance, all harmonics
n > 0 vanish for single-inclusive GB antennas when
averaged over the momentum transfer azimuthal angle
. We show below in Sec. V that the finite rms fluctuating
harmonics of two-particle-inclusive ((cos(nA¢)))'/? sur-
vive with similar magnitude and k dependence as in
Figs. 2 and 3.

0.8

va(K/ )

k/u

FIG. 3 (color online). Single GB beam jet bremsstrahlung
azimuthal Fourier moments, (v7® (k. q)), averaged over g with
M?*/(q> + M?)?, are shown versus k/u for n=1-5 for
(M/u)* = 1(10) as solid (dashed) curves.
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FIG. 4 (color online). The ideal 1/n power scaling of ¢
averaged (v$®(k, g))!/" with k < M [see Eq. (11)] breaks down
at higher k, because in the ¢ = 0 limit of non-Abelian brems-
strahlung limits, k < g [see Eq. (12)].

In Fig. 4, we see that the simple fixed-g power-law
scaling of Egs. (11) and (13) holds for k/M < 1 but
gradually breaks down at higher k > M when the ensemble
is averaged over ¢? in (f,(k)).

III. ALL ORDERS IN OPACITY VGB
GENERALIZATION OF GUNION-BERTSCH
RADIATION

A recursive reaction operator method was originally
developed in GLV [49,50] to compute final-state multiple-
collision-induced gluon bremsstrahlung and elastic colli-
sional energy loss [40] to all orders in opacity for applications
to jet quenching. Extensions of the method to final-state
heavy-quark jet energy loss was given in Refs. [51,52].

Vitev further extended the reaction operator method to
compute non-Abelian energy loss in cold nuclear matter in
Ref. [53]. In addition to final-state (FS) bremsstrahlung,
Vitev solved the cold matter initial-state (IS) bremsstrah-
lung problem to all orders in opacity, and also the
generalization of the first-order in opacity Gunion-
Bertsch [37] non-Abelian bremsstrahlung problem to all
orders in opacity for the asymptotic (¢) — —o0,1; — +00)
boundary condition. We refer here to the Vitev all-order in
opacity generalized GB radiation solution as VGB.

In Ref. [53], the VGB solution was regarded to be of
mainly academic interest, since the focus there was
on induced initial-state and final-state gluon bremsstrah-
lung associated with hard processes in p + A [44-46].
In this paper, we focus entirely on the application of the
VGB solution to low-to-moderate-transverse-momentum
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k < few GeV gluon radiation from multiple beam jets in
the same spirit as in GB [37], where the aim was to
understand the general qualitative characteristics of inelas-
tic high-energy single-inclusive processes from a low-order
perturbative QCD perspective.

Our aim here is to calculate azimuthal asymmetry
moments, v,(n, k), arising from basic perturbative QCD
bremsstrahlung effects in high-energy p + A interactions.
The physical picture approximates p + A scattering as the
scattering of an incoming color dipole at an impact
parameter, b, of high (positive) rapidity Yp > 1 with
NP ~ A3 nuclear target participant nucleons with high
(negative) Y7 < —1 in the CM. The target participant
dipoles at a fixed transverse coordinate R are separated
by longitudinal separations Az; = z; — z;_; ~fm in the
cold nucleus target rest frame. However, they act coherently

n

X B1271 . [Bgl + 22 B?H])iCOS
i—2

dNVBS S ANYBS  Cya,
dnd’k = dnd’k  n

>

n=1

where the transverse vector “antenna” amplitudes B7, are
defined in terms of differences between ‘“cascade” vector
amplitudes C;, as

B =Cj, — Cip. (15)
o k-gmman  K-Q, . (16)
mk—-qi-—q,)?  (k—Qy)?

Indices j, k,n here keep track of combinations of non-
vanishing momentum transfers q; from direct versus virtual
diagrams contributing at a given opacity order n of the
opacity expansion. The partial summed momentum trans-
fers are Q;, = > 1. ;4;, being the singular directions of
non-Abelian bremsstrahlung that also control the inverse
formation times

(k - an)2

@ 2E

jn

(17)
g9

Here E, = xEp < Ep is the energy of the gluon in a frame
where the energy of the proton projectile is assumed to be
large, Ep > m,,.

|
dANYSB  Cray & [" / -z
coh s dAZiGg z)p Zi,b :| |: /d2q<
aik = 2 | (@) |TT ] &0

dAZi
/1!]

(S3emes)]
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when emitting gluons near midrapidity due to Lorentz
contraction in the CM and the long formation time of
gluons ~[2 cosh(n)]/k in the lab frame.

However, the target participants are distributed in the
transverse direction by transverse separations R;; =

IR, — R j|5 \/6i,/m~fm, which can be resolved for
k > 1 GeV. This can lead to multiple incoherent groups or
clusters of target participant nucleons that radiate coherently
gluons with || <1, k> 1 GeV gluons coherently. We
propose in Sec. IV below a simple percolation model to
estimate the partially coherent target recoil bremsstrahlung.
However, we concentrate in this section on the coherent
projectile bremsstrahlung contribution.

The complete VGB solution to all orders in opacity,

x =x(b) = [dzo,(z)p(z,b),derived by Vitev in Ref. [53]is

d [,1:[1 / d*q;(vj(q;) = 5*(ay))

(14)

|

There are two simple limits depending on the kinematic
range of interest. In the coherent or factorization limit
where nwj,4, < 1, we can approximate all the cosines by
unity. This is the limit we are interested in for our present
applications to midrapidity multiparticle production not
too close to projectile and target fragmentation regions,
e, Yr+1<np<Yp—1.

The target scattering centers are ordered in this VGB
problem as zyp=-00 <z; <--- <z, <z; =400 with
Az; = (z; = zi—1) for i > 2. 6,(z)p(z, b) is the local inverse
mean free path of a gluon with the nuclear target at position

z impact parameter b in the target rest frame. The v?(q;) =
do,(z;)
d*q;

momentum transfers at the scattering center z;.

In the coherent scattering limit of relevance to near
midrapidity radiation, and neglecting possible z depend-
ence of the screening scale y of the normalized distribution
v*(q), we can write more explicitly at the impact
parameter b

—62(q,')>}

denote normalized distributions of transverse

1 dael
Oel qu/

X( k-q¢----q, k-q--—--—q, )K k-q¢-----q, k-q—-—gq, )
k-q----q,)° (k-q - —q,) (k-aq---q,)° (k-q—-—q,)°
~( k-G —--—-a  k-g----q, )}
42 < _ . (18)
,-; k-qy1—~-9q,)° (k—gq;—-—q,)’
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- .

FIG. 5 (color online). Schematic diagram corresponding to
coherent bremsstrahlung from the projectile dipole from Eqgs. (19)
and (20). At opacity order n, the azimuthal distribution is
enhanced for transverse momenta k near the total accumulated
momentum transfer Qq=Q;, =>.,Q,, where a=1,....M
groups of recoiling target dipoles.

In order to extract the physical interpretation of the
above compete but unwieldy expression, we derive in
Appendix A the linked cluster theorem version of
Eq. (18) to be

ANV (k) = 3 [ eari@aver ko). (19)
n=1

where P¢/(Q) is the probability density that, after n elastic
scatterings, the cumulative total momentum transfer is Q,

n " d’q; do
pe! _ _ Z_ J el
@) = et [{TI 525

J=1

xS Q= (q;+ - +4,)). (20)

that is independent of the azimuthal direction y of Q by
rotation invariance. This distribution also arose naturally in
the reaction operator derivation of the link cluster theorem
for multiple elastic scattering in Ref. [40].

Equation (19) is clearly the intuitive factorization limit
where at each order only the total accumulated momentum
transfer, Q, controls the azimuthal and momentum transfer
dependence of the bremsstrahlung distribution.

By rotation invariance, dN°® (k,Q) = dN“B (k,Q,¢ —v)
can only depend on the k£ and Q azimuthal angles through
their difference. After integrating over y, the azimuthal angle
of Q, then of course dNVOP cannot depend on the azimuthal
angle ¢ of k. Therefore, it is obvious that at the single
inclusive level all v, =0 vanish for n > 0. To observe
the intrinsic fluctuating azimuthal asymmetries event by
event, we turn to two-particle correlations to extract non-
vanishing second moments like (cos(n(¢; — ¢,))). First, we
discuss the bremsstrahlung contribution from recoil target
participants.

PHYSICAL REVIEW D 90, 054025 (2014)
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FIG. 6 (color online). (Schematic diagram corresponding to
partial coherent backward 5 < 0 gluon bremsstrahlung from
Eq. (23). At opacity order n, the azimuthal distribution is
enhanced for transverse momenta k near the recoil momentum
transfers —Q,, where a =1,...,M labels incoherent target
groups of color dipoles fragmenting into the negative rapidity
region.

IV. BREMSSTRAHLUNG FROM RECOILING
TARGET PARTICIPANTS

Incoherent groups of transversely overlapping recoiling
target dipoles radiate gluon bremsstrahlung dominantly into
the negative-rapidity # < O hemisphere, as illustrated in
Fig. 6. In a given event when a projectile nucleon penetrates
through a target nucleus A at impact parameter b, the
projectile nucleon moving with positive rapidity ¥Yp > 0 is
approximated as in Ref. [37] by a color dipole with a
separation dy = 7iy/uy. The A target nucleons moving
toward negative rapidities, Y < 0, however, are distributed
with transverse coordinates R;, according to a Glauber
nuclear profile distribution 74 (R;) = [dzp(z, R;) over a
large-area 7A%/? fm? scale. Each target nucleon dipole is
assumed to have a separation d; = 71;/u;. Projectile target
dipole-dipole interactions with low transverse momentum
transfer q; < u; are suppressed by dipole form factors
approximated by ¢7/(q? + u?). Therefore, the projectile
interacts dominantly with only nearby target dipoles in the
transverse plane with (R; —b)? < 7za?(d, + d;)*/4 ~ o,
This leads to a fluctuating number n of target participants
with probability P, = e¢™#y" /n! that follows also from the
GLYV opacity expansion [40,50,53].

For a given target participant number, n, the target
dipoles naturally cluster near the projectile impact param-
eter b as illustrated in Figs. 5 and 6. In a specific event,
there are in general 1 < M < n overlapping clusters that
radiate coherently toward the negative-rapidity # < 0 hemi-
sphere as illustrated in Fig. 6. The distribution of the
number M of recoiling coherent groups depends on n, k,
and the momentum exchanges (; with the projectile that
build up to the total exchange to the projectile

QP=§;QCI =§:(Zqi),

a=1 \i€l,

(21)
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where [, is a particular subset of the n indices i € [1,n] =
> .1, that the emitted gluon with transverse wave number &
(and generally # < 0) cannot resolve, and Q, = > ,¢; q; is
the contribution from group [, to the total momentum
transfer to the projectile.

A simple percolation model for identifying clusters of
coherently recoiling target groups of dipoles is to require
that all members in a cluster have separation R;; = R; —
R; in the transverse plane in a modulus that is less than the
produced gluon transverse momentum resolution scale, i.e.,

c

; (22)

Rij < d(k) =
where ¢ ~ 1 is of order unity. If i € /, and j € I, as well as
J € Iy, then j is added to 1, if its (d;;);c; < (dij)ics,- The
M clusters are percolation groups in the above sense. Of
course, many other variants of transverse clustering algo-
rithms exist. For our purpose of illustrating analytically
dynamical sources v, in p + A compared to peripheral
A+ A, it suffices to study the dependence of v, on the
number of independent recoil antennas M with (n) = N
fixed by Glauber participant geometry. In future applica-
tions via Monte Carlo generators such as HIJING [31], the
sensitivity of results to more realistic multi-beam-jet geo-
metric fluctuations can be studied. Note that independent
target participant beam jet clusters are cylindrical cuts into
the target frame near the impact parameter b with diameters
~1/k. We expect typically M ~ 2-4 independent recoil
clusters even for the most central p + A collisions, as
illustrated in Figs. 5 and 6. This picture is similar to the
CGC model picture, except that no classical longitudinal
fields are assumed in our entirely perturbative QCD
dynamical bremsstrahlung approach here.

In a given event, recoil bremsstrahlung contribution to
the single inclusive gluon distribution from M coherently
acting but transversely resolvable target antenna clusters is
given by

dNT (n.k; {q;}) =D dNB(k, —Qu)Pq(n).  (23)
a=1

where P,(n) specifies different rapidity profile functions
for each cluster required to produce the characteristic BGK
[34] boost-noninvariant triangular enhancement of the
rapidity density, (dN,4/dn)/(dN ,,/dn), growing toward
the value (n) = N near the target rapidity Y, and dropping
toward unity near the projectile rapidity Y.

In the special doubly coherent projectile and target limit
with M = 1, dN}" reduces to

ANFN (. k; {q;},) =

with Pr(n) = >_,P,(n). Note that in the high-energy small
x~ « exp|Yr — n] gluon saturation dynamics correlates Qp
with rapidity # instead of the simple factorization assumed

dN°P (k. ~Qp)Pr(n), (24)
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in Eq. (24). In our simple perturbative dipole picture, this
correlation can be implemented parametrically by taking
The fully coherent projectile bremsstrahlung contribu-
tion is
dNp ™ (1. k: {a;}) = dN® (K, +Qp) Py ().
For p + p scattering with M = N = 1, the sum reduces in
the CM to

(25)

dep = dNGB(k» +QP)PP(77) + dNGB(k’ _QP)PP(_’/[)7

(26)

which is symmetric with respect to changing the sign of the
total momentum transfer, Qp, as well as to reflecting 7.
In the more general partially coherent target case with
1 < M < N independent clusters of dipole antennas, the total
single-inclusive radiation distribution in mode (k,#,) is

dANMN = dNY (1. k: Qp) + dNT™ (7. k11 {Qu})
M
B
=Y T o (27)
a=0 kl + Qa + Ha
where we define Q) = —Qp = =) _,Q,, to be able to include

the projectile contribution in the summation over target
clusters. The numerator factor B;, is defined using Egs. (5)
and (6) to be

B, = Fk,-,QaPa(”li)’

For a fixed set Q, = (Q,,w,) of independent recoil
momenta, the single-gluon-inclusive azimuthal Fourier
moments (cos(ng)) are given by linear combinations of

GB(ky, Q,) cos(ny,) from Egs. (7)-(12). However, since
all the terms in the sum contribute with one of M + 1
cos(ny,) factors, averaging over rotations y, — y, + 6
again causes all ensemble-averaged (v,) = 0 to vanish for
n > 1. In order to extract information about the relative
fluctuating v,,, we therefore turn to two-gluon correlations
in the next section.

(28)

V. MULTIGLUON CUMULANT AZIMUTHAL
HARMONICS, v, {27}, FROM COLOR
SCINTILLATION ANTENNA (CSA) ARRAYS

Multiple bremsstrahlung gluons are radiated over long
ranges (“ridges”) in Y < n; < Yp from multiple kinemat-
ically and transverse-space-correlated beam jets that form
“color scintillation antenna” (CSA) arrays that fluctuate
from event to event. Depending on the transverse space
geometry, R, and the transverse momentum transfers, Q,,
and their distributions, the CSA bremsstrahlung leads to
fluctuating patterns of azimuthal correlations among the
radiated gluons. Gluon bremsstrahlung from a single beam
jet color dipole antenna builds up a “near side” correlations.
Kinematic recoil momentum correlations between N

054025-8



NON-ABELIAN BREMSSTRAHLUNG AND AZIMUTHAL ...

participant targets and the projectile antennas, however,
also naturally radiate with k*> ~ Nyu? in complex fluctuating
azimuthal harmonic bremsstrahlung patterns. At very high
transverse momenta k> >> Mu?, collinear factorized back-
to-back hard jet production dominates over multiple beam
jet bremsstrahlung and leads to very strong away-side
n = 1 correlations that must be subtracted in order to reveal
the moderate k> < Myu? correlations that we compute here.
We also assume that we can neglect a possibly large-
magnitude transverse isotropic nonperturbative bulk
|

dN%(’h’kl’ ---”12f7k25) =

where B,, is defined in Eq. (28) and again the summation
range includes the projectile a =0 contribution with
Qo =—-Qp. We emphasize that the total gluon inclusive
has in addition to dN5. an 1sotroplc dN52"P¢"" and a highly
away-side-correlated dN%/*' component that we assume
can be subtracted away. Implicitly, we also assume here the
greatly simplified “local parton hadron” duality hadroniza-
tion prescription as in CGC models. Of course, in CGC
saturation models the details, especially the x, A, and b will
differ, but it is useful to explore here the basic consequences
of this simple analytic model to get a feeling of how much
of the azimuthal fluctuation phenomenology may have its
roots in low-order Low-Nussinov/Gunion-Bertsch pQCD
interference phenomena. Quenching of signals due espe-
cially to more realistic hadronization phenomenology
[30,31,39] in the few GeV minijet scale will also need
to be investigated in the future.

Even with an uncorrelated gluon-number-coherent state
product ansatz for the multigluon-inclusive distribution
|
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background through appropriate experimental mixed event
subtraction schemes.

Assuming that M antenna clusters out of the N =
NY(b) target participants radiate independently—i.e.,
assuming that each cluster in the CSA array produces
approximately a semiclassical coherent state of gluon
radiation with random phase with respect to other clusters
(see analogous partially coherent pion interferomentry
formalism in Ref. [54]), the even-numbered 2¢ inclusive
gluon distribution factorizes as

M By,
(> o). 9
2 A — o5l + ¥

|
above, the even-numbered m = 2¢ gluons with (k;,7;)
to (Kk,,,7,,) become correlated through the CSA geometric
and kinematic recoil correlations.

Consider, for example, the M = 2 case (see Appendix B)
of two recoiling target dipoles antennas that emit k;
preferentially near —-Q; = (q;,w;+7x) and near
—-Q, = (g2, ¥, + x), at two different recoil azimuthal
angles y; +z and w, + z, while the projectile dipole
emits k, preferentially near Qp = Q; + Q, at a third ¢p
azimuthal angle. Such a three-color antenna system then
naturally leads to two-particle triangularity v;{2} =
(cos(3(¢p; —¢,))) #0 due to dynamical correlations
between k; and k,. As we also show below in Sec. V,
special cases of Z, symmetric antenna arrays 1llustrate
“perfect pitch” bremsstrahlung with v, {2} = §,,v5" {2}
two-particle harmonic.

Consider in detail the prototype M = 1 VGB antenna
case again, but for 2 gluon cumulant nth relative harmonic
moments for a fixed Q impulse from

FU=1020) = (L ) O e ) pu=1 (9 )

B, Qe+zn¢,

B d¢z i . > 20 < % Bkae—in¢j >
H (/ 27 Ay —cos(; +wp) ]l;[H / 2m Ay,p — cos(; + o)

20

:w

= fi= 1{M}H B(k;. Q)"

Note that by construction, f¥{2#} are SO(2) rotation
invariant about the beam axis, and thus independent, unlike
odd moments of the random orientation, y(, of the reaction
plane defined by the transverse momentum transfer Q. Here

Zk0 = Ako — /A%,Q — 1 are the poles inside the unit

e"™(2.0)" fok.0) H (e7™0(z1,0)" fo,.0)

1=1 j=t+1

(30)

|

circle that contribute to the nth harmonics. For an odd
number of gluons, all harmonics vanish, but for even
numbers all harmonics, both even and odd, are generated
already by one M =1 color GB bremsstrahlung antenna.
For M = 2, two recoiling GB antennas Q and —Q, all odd
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n = 1,3, ... moments vanish by symmetry. An odd number
of antennas M is needed to generate odd n harmonics
through an even number of gluon correlators.

In the “mean recoil” approximation Q =~ Q, we see that a
single GB antenna satisfies the generalized power scaling
law in case subsets of the 27 gluons have identical
momenta. Suppose there are 1 < L < 27 distinct momenta
K, with r =1, ..., L such that m, of the 2¢ gluons have
momenta equal to a particular value K,, such that
S°L  m, =2¢. In this case,

(" (K. Q)™

Ew

vl =20} ki, ko Q)

(0a{2})? = (")) = (),

PHYSICAL REVIEW D 90, 054025 (2014)

The approximate factorization and power scaling of azi-
muthal harmonics from CSA coherent state non-Abelian
bremsstrahlung is similar to “perfect fluid hydrodynamic
collective flow” factorization and scaling, but in this case
no assumption about local equilibration or minimal vis-
cosity is necessary.

Higher-order cumulant harmonic correlations were pro-
posed [55-58] to help remove “nonflow” sources of
correlations such as momentum conservation, back-to-back
dijet, and Bose statistics effects and to isolate true collective
bulk fluid flow azimuthal asymmetries. The 2/-particle
cumulant suppresses the “nonflow” contribution by
eliminating the correlations which act between fewer
than 27 particles (see, e.g., Fig. 9 of Ref. [57]). The
first few cumulants for 2 =2,4,6 (notation from
Refs. [56,57]) are

(vn{4})4 = <_ei’1(¢1+¢2—¢3—¢4)> + 2<ei"(¢1—¢3)><ei"(¢2—¢4)> — 2<|1}2|2>2 — <|1jn|4>7
(0,{6})0 = ((e™ P +92195=0=05706)) — 9|0, [2) (|, |*) + 12([v2[*)?) /4. (32)

The observed [57] near equality of v,{2¢} for £ =
2,3,4 in Pb + Pb at LHC has been interpreted as evidence
supporting perfect fluid flow. The similarity of “elliptic
flow” v,{4}(pr) in p+Pb and Pb+ Pb observed by
ATLAS [4] and also for “triangular flow” v3{4}(pr) by
CMS [2] has been interpreted as further evidence for
perfect fluidity even on subnucleon scales in p + Pb.

However, we see that color bremsstrahlung exhibits
similar scaling of azimuthal harmonic cumulants in the
mean recoil approximation. In the case that all 2Z gluon
momenta are identical,

v,{2¢} = (VM= 26 ) (k, ..., k; Q)™ (33)
which implies in the above notation that
(loal*) = (02 )2, (34)

(I96]%) = (o2P)(Jwal®) = ([2a]?)° (35)

and similarly for all cumulants. Therefore, color brems-
strahlung obeys the similar azimuthal harmonic cumulant
independence on the number of gluons 27 used to
determine the harmonic moments, as does the perfect
hydrodynamic flow hypothesis. However, in our CSA
bremsstrahlung case, the apparent “flow” effect comes
purely from zero-temperature coherent state (semiclassical)
non-Abelian wave interference effects that depend on the
transverse geometric arrangement of CSA arrays.

For the p + A case of multiple M > 1 independent target
cluster CSA arrays, the cumulant harmonic moments

|
depend in a more complex way on the particular geometric
and recoil correlations defining the CSA. Special analytic
CSA cases for v,{2} corresponding to idealized Z, and
Gaussian CSA arrays are discussed in the following two
sections.

VI. SPECIAL CASE OF Z, CSA
BREMSSTRAHLUNG

As seen in Appendix B from Eq. (B4), it is clear that
particularly simple special cases of color antenna arrays,
where M = n — 1 target beam jet clusters all have similar
numbers of recoiling target partons m, = N/M =
N/(n—1), transfer all n =M + 1 projectiles, and the
target beam jets recoil with similar momentum transfers,
Q% = N/My?, but with specially spaced azimuthal
angles, {y,} = 2za/n.

These particular color antenna arrays, that we will refer
to as Z, color scintillation arrays (CSA), have a special
discrete azimuthal rotation symmetry corresponding to the
finite group of n roots of unity;

n—1
Z, = {za,n =g =0,...,n—1; g Zan = 0}.
a=0

(36)

For these Z,, CSA geometries of projectile and target color
dipole antennas, the double sum over a and b is trivial
because
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% K
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FIG. 7 (color online). Example illustrating apparent perfect
“triangular flow” but arising entirely from non-Abelian brems-
strahlung sourced by color scintillation antenna (CSA) arrays. In
this case, M = 2 target beam jet clusters recoil off a projectile
beam jet with Qy = — Y-, Q,, and all Q, are assumed to have
same magnitude but spaced in azimuth by 2z/3. A Z3 CSA
radiates only n =3 harmonics: v,{2}(k;, ky) = 5,305"
(k1. Q) v§B(ky, Qp). Part (a) shows an extreme case with
vy = 0.45, while (b) shows a more realistic v; = 0.07 case.
An arbitrary isotropic soft nonperturbative background is as-
sumed to be subtracted out.

cos(n(yy —wy)) = cos(2x(a —b)) =1, (37)

and thus all (M + 1)? = n? terms are identical. Note that
Eq. (37) is invariant to global SO(2) simultaneous rotations
of all antennas.

What is remarkable about Z,,, ; symmetric CSAs is that
due to the orthogonality properties of the z,, phases,

=

Z(]i,n = nak,n’ (38)

1

S
Il

—

n—

(Za,n>k(zz.n)k/ = nék,kJ’ (39)
1

2
Il

all harmonics except n = M + 1 vanish. The Z, CSAs thus
scintillate with “perfect” n-harmonic azimuthal correla-
tions. For Z, CSAs, the two-particle relative Fourier
moments v,{2} simply factor into a product of single-
particle moments v$B(k;, Q. 0), because the n complex

PHYSICAL REVIEW D 90, 054025 (2014)

FIG. 8 (color online).  As in Fig. 7, but for a Z5 symmetric CSA
that radiates an apparent “perfect pentatonic flow” pattern with
v, {2} (k1. ky) = 8, 5058 (k1. Qo) vSB(ky. Qp). Part (a) shows an
extreme vs = 0.45 case, while part (b) shows a more realistic
vs = 0.03 case.

0, = Qpz,, form a regular polygon with equal radii, as
illustrated for an n = 5 “star fish” antenna array in Fig. 7,
that generates a perfect cos(5(¢p; — ¢,)) two-particle azi-
muthal correlation.

For roots of unity CSA color antenna geometries, all
M + 1 antennas receive the same Q2 = Q3 = N/(n — 1)u?
momentum transfer and produce the same single-particle
v5B | (k, Qp.0) harmonics. Since the two-particle harmon-
ics vanish except for n = M + 1,

Z,
o {2}k ko) =5 81 vSE Ky Qo) vSE | (ko Qo).

M,N

Un’ {2}(]‘1’](2) Zn GB
Do) e (09 (k. Q)M 40
vAG/l]il(k%QO) ,M—H(l (1 O)) ( )

and for n = M + 1, vy {2} (k. ky) is reduced to simply
the product of single-GB CSA moments at k; and k,.

Examples of Z, radiation patterns for n = 3,5 for
extremely high v, = 0.45 in parts (a) and more realistic
v3 = 0.7 and v5 = 0.03 from Fig. 1 are shown in Figs. 7
and 8.
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VII. SPECIAL CASE OF GAUSSIAN CSA
BREMSSTRAHLUNG

Another simple limit is found when the recoil azimuthal
angles y,, are in random [0, 2z] and the Q,’s are distributed
with a Gaussian of the same width squared (Q?) = Q% =
(N/M)u? for a €[l,...,M]. In this antenna array, the
projectile Qy is also Gaussian distributed with zero mean,
but with an enhanced second moment,

(Q3) = MQ3 = Nu?. (41)
|

+M
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Unlike for perfect nth-harmonic antenna arrays with
Eq. (37), in the random Gaussian distributed case

COS(I’l(l//a - l//b)) = 6(1,17» (42)
and so only the a = b diagonal terms contribute. All a > 1
target terms are identical, and only the projectile contri-
bution is enhanced due to (Q3)/Q% = M random walk
exchanges from each cluster. In this case, Eq. (B4)
reduces to

exp[—Q?/(2(N/M)u?)]

N.M Gauss exp[-Q*/(2Ny?)]
n (kl’kZ) - /dZQ{ 277.'N/l2

X UICI;B(kb Q)USB(kZ’ Q>}’

Gauss

n M (k k) =

2aNu?

[ aofeelgion)

27(N/M)u? }{BlQBfoo.l,Qfo.z,Q
(43)
exp[-0?/(2(N/M)p?)]
20N }{BkaOk»QvS’B(k 0P (w4

We have suppressed target and projectile kinematic rapidity factors.
To get a feeling for the magnitude of the two particle azimuthal moments, we can approximate Q in the integrand outside

the Gaussian weights by its rms AQ = \/@ and perform the normalized integral over the Gaussians to estimate

(vF® (k. vNu))"

Crau? 1
Aty (Gt
(k. k) k2 (N + 1u

M
+

(R + (N + D)?)? = ANEp?) 2

The rapidity dependence corresponding to the BGK [34]
triangular rapidity enhancement N(Yp—1#)/(Yp—Y7)
of the single inclusive multiplicity toward the target
fragmentation region is suppressed above to simplify
the result. In addition, we emphasize that the mostly
nonperturbative low-k background is ignored in our sim-
plified consideration here. Full account for that background
will require implementation of the above nonisotropic
soft bremsstrahlung in an event generator such as
HUING.

A qualitative BGK [34] rapidity dependence for the
target cluster number M () that ignores the ¢/k resolution
scale considerations discussed in Eq. (22) can be estimated
by identifying N = y = [ dzp,(z. b) with the opacity as a
function of b and taking

Mgk (n) ~x(Yp=n)/(Yp = Y)(1 =e"m70)% . (46)

The main feature expected from such a BGK [34]
rapidity dependence of the target cluster number is that
the mean transverse momentum radiated gluons from
combined projectile and target bremsstrahlung gluons
grows toward the projectile rapidity region dominated by

(N/M + 1)u* (K +

(45)

(o2 (k. /N M) i

(N/M + 1)p?)? = 4(N/M)k*p?)' /2

the projectile contribution. This predicts then that the peak
k, of the v,(k) moments moves to larger

N+M(y) ,

kX~
O

(47)
as 7 is increased.

VIII. HIJNG MONTE CARLO COLOR
SCINTILLATING BEAM JET ARRAYS

To get a realistic estimate for the magnitudes and
systematics of pQCD VGB induced harmonics in realistic
p+p.p+A A+ A collisions, we have to embed the
anisotropic recoil bremsstrahlung gluons into phenomeno-
logical Lund strings with a hadronization scheme that has
been tuned to reproduce low-pr ¢-averaged inclusive
hadronic observables in e™ +e~, e+ p, p+p, p+A,
as well as A 4+ A. The HIJING Monte Carlo event generator
is one such model based on the LUND [30] string model
and the PYTHIA and JETSET [39] Monte Carlo models.

Simple local parton-hadron duality prescription as
used in CGC cannot be expected to predict quantitative
hadron-mass-dependent moderate p; < 2 GeV anisotropy
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moments over three decades of /s. The advantage of
Monte Carlo event generators built on multidecade phe-
nomenological analysis is that they summarize the world
data by taking into account the particle data book, quantum
number, and energy momentum conservation and numer-
ous Standard Model dynamical details. Of course, they do
not purport to cover all possible phenomena.

A key feature missing in HIJING and most other event
generators for A + B collisions so far are basic pQCD
azimuthal anisotropies at the moderate p; < 2 GeV scale
that are so clearly predicted by GB and generalized VGB
bremsstrahlung models. What is included in most event
generators are strong back-to-back jet azimuthal anisotro-
pies due to collinear factorized pQCD mini- and hard jet
production above some saturation scale pr > py~ 2 GeV.
As currently implemented, HIJING takes into account
softer-scale k < p, gluons phenomenologically via random
transverse LUND string “wiggles” using ARIADNE [38], but
HIJING neglects the basic pQCD azimuthal recoil corre-
lations predicted by VGB color bremsstrahlung. An current
open question is the magnitude of radiated anisotropies that
would arise when the ARIADNE part of the JETSET code is
replaced by VGB anisotropic bremsstrahlung derived in
this paper. We intend to address this numerically intensive
problem elsewhere.

IX. CONCLUSIONS

In summary, we applied the GLV reaction operator
approach to Vitev-Gunion-Bertsch (VGB) boundary con-
ditions in order to compute to all orders in nuclear opacity
the non-Abelian gluon bremsstrahlung for event-by-event
fluctuating semisoft beam jets produced in high-energy
nuclear collisions. We derived analytic expressions for the
azimuthal Fourier cumulant moments v, {2£} as a function
of the gluon transverse momenta and rapidities, {k;,7;}, in
terms of remarkably simple single-gluon beam jet GB
bremsstrahlung harmonics. These moments were shown to
obey power-law scaling laws similar to those observed
recently in high-energy p + A reactions at RHIC and at
LHC as a function of the target participant clusters
geometry. Multiple clusters of projectile and target beam
jets form color scintillation antenna (CSA) arrays that
radiate gluons with characteristic boost-noninvariant trap-
ezoidal rapidity distributions in asymmetric B + A nuclear
collisions. The intrinsically azimuthally anisotropic and
long-range in # nature of the non-Abelian bremsstrahlung
leads to v, moment systematics that are remarkably similar
to those predicted by perfect fluid hydrodynamic models.
However, in our case, they arise entirely from non-Abelian
wave interference phenomena sourced by the fluctuating
CSA of multiple beam jets.

We presented examples of simple solvable CSA models
and showed that our analytic nonflow bremsstrahlung
solutions for v,{2¢} are similar to recent numerical satu-
ration model predictions but differ by predicting a simple
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power-law hierarchy of both even and odd v,{2¢} without
invoking essential details of k7 factorization. However, CGC
saturation evolution is expected to be important for future
quantitative comparisons to data. The basic CSA mechanism
can be tested via its predicted systematics involving boost-
noninvariant trapezoidal BGK # rapidity-dependent sub-
structures involved in B + A reactions.

Non-Abelian beam jet CSA bremsstrahlung, investigated
in this paper, may provide a partial analytic solution to the
beam energy scan (BES) puzzle of the observed near /s
independence of the azimuthal moments down to a very
low CM energy of ~10 AGeV, where large-x valence-
quark beam-jet physics dominates over gluon production in
inelastic dynamics. Recoil bremsstrahlung from multiple
independent CSA clusters also provides a natural qualita-
tive pQCD explanation for the surprising similarity of v, in
p(D) + A and noncentral A + A at same dN /dn multiplic-
ity observed at RHIC and LHC.

This pQCD-based model shows that the uniqueness of
the perfect fluid interpretation of p + A and B + A azimu-
thal correlation data cannot be taken for granted. However,
a great deal of work remains to sort out quantitatively the
fraction of the observed v,{2¢} azimuthal harmonic
systematics that can be ascribed to final-state hydrody-
namic collective flow versus initial-state QCD coherent
state color scintillating interference wave phenomena.
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APPENDIX A: THE LINKED CLUSTER
THEOREM FOR COHERENT VGB GLUON
BREMSSTRAHLUNG

To derive the link cluster theorem for the coherent limit
of VGB, we introduce the shorthand notation for the
integrations over momentum transfers:
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Jli[l/d(wj—éj)f/jljldz‘l(

which have the convenient properties [ dw; = [d6; = 1and [d(w
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52(‘1;‘)>,

; — 6;) = 0. This makes it possible to discard any terms

1 dGel
ldzq/

(A1)

in the integrand that do not depend simultaneously on all n q; momenta at fixed opacity order n. Using this shorthand and
C;, notation from Eq. (16), we rewrite the right-hand side of Eq. (18) as

CROCS 0 Zn rn 7
VGB == ZE H/d(w,—(s,)

X (C2n - Cln) C2n Cln) + 2(C3n - C2n) +o+ 2(C(n+1)n - Cnn)]
Cray o )("
71;2 ; / <C2" - Cln) ’ KCZn - Cln) + 2(H - C2n>]
n=1"""
Cray o~ X
e 2] / w; =) [ (H=-Cy,) + (H=C,,)] [(H=Cy,) + (H-C,,)]
Cra, X"
=M Hl Ay =) [ = €1, = [H = € )
n= Lj= B
Crag~~ 1" [ |
T2 ZIE 1_[1 d(w; = 9;) H-C,,|?
n= -]= J

Here, we use the notation H = C,,; ), = k/ k> to denote
the “hard” vacuum radiation amplitude that shows up at
zeroth order in opacity in the case of final-state induced
radiation in GLV [50]. Note that in this notation convention
B’(er»l),n) =H-C,,.

Note that [ d(w; — ;) = 0, and therefore for j = 1 the
integral of —|H — C,,|* automatically vanishes. Note
further that the |H — C,,|* integrand depends only on k
and the fotal accumulated Q =) " ,q; momentum

|

) ./sz[/dwl..

Changing summation variables from oo >n>1 and
n<m>1 to co>f=n-m>0 and oo>m>1,
the double sum > % > % | factorizes, and the sum
over £ produces a factor exp[—y] corresponding to the
probability of no scattering. Therefore, Eq. (A3) leads to
the link cluster theorem in Eq. (19) for the multiple-
collision VGB generalization of Gunion-Bertsch gluon

bremsstrahlung.

dNVGB

coh

dnd*k

Z

n= 1

_ i% Lnl /d(wj —51.)} </ 2Q5(Q — (q; + ...+qn))){C§2as kz(kQ_zQ)z}.

(@ - i+ + )| {

(A2)

I
transfer. Thus, the integrand is symmetric under arbitrary
permutations of the indices. This is the key to obtaining the
linked cluster rearrangement, because out of the 2" combi-
nations of the w; and minus delta functions —4;, all
combinations with the same number m of [dw and
n—m of [d§ integrations give the same contribution.
At fixed opacity order n, the 2" combinations of
integrals reduce to sum over only »n integrals of the form
n!/(m!(n—m)!) [dw,...dw,(=1)"""|B7. |*. Therefore,

2}. (A3)

i

CRas Q2
n* KBk -Q)

APPENDIX B: TWO-GLUON
BREMSSTRAHLUNG AZIMUTHAL
HARMONICS v,{2}

For the two-gluon case, azimuthal harmonic correlations
can be directly derived in another way by integrating over
both ¢ = @+ A¢p/2 and ¢, = & — A¢p/2, keeping the
relative azimuthal angle A¢p = ¢ — ¢, fixed and weighing
the integrand by cos(nA¢) from
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£ (ke ko) = / / DA o (nAP)INY (ky. D + Ap/2. k. @ — AD/2)

1 1
— Q;OBmsz/ —CO nAgb)/ o Ay —coS(® +y, + Ap/2) Ay, — cos(P +yr, — A/2) (B1)

B i 5 B /ﬂd(l)’ 1 /frquﬁ cos(nAg) (82)
A 2w A —cos(¥) S 21 Ay, —cos(® + v, —y,) — A)
M M
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a,b=0 - a a,b=0
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a,b=0

where we define ® = ® + y, + A¢/2 and use the periodicity of the integrand to shift the ' range back to [z, z] in
Eq. (B2), then perform the A¢ integral with the help of Eq. (7). We use here the shorthand notation

7 _/ﬂ@ cos(n®)
mha = | 2 Ay, —cos(®)

(Akl’Qa - A%vau - 1)

(U?B(kla 0.))"fo.1.as (BS)

n
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- _ (Qa - )
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