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We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions
to compute to all orders in nuclear opacity the non-Abelian gluon bremsstrahlung of event-by-event
fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single
gluon, vMn f1g, and even numbered 2l gluon distribution, vMn f2lg, inclusive distributions in high-energy
pþ A reactions as a function of harmonic n, target recoil cluster number,M, and gluon number, 2l, at the
RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam
jet form color scintillation antenna (CSA) arrays that lead to characteristic boost-noninvariant trapezoidal
rapidity distributions in asymmetric Bþ A nuclear collisions. The scaling of the intrinsically azimuthally
anisotropic and long range in η nature of the non-Abelian bremsstrahlung leads to vn moments that are
similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference
phenomena sourced by the fluctuating CSA. Our analytic nonflow solutions are similar to recent
numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even
and odd vn without invoking kT factorization. A test of the CSA mechanism is the predicted nearly linear η
rapidity dependence of the vnðkT; ηÞ. Non-Abelian beam jet bremsstrahlung may, thus, provide a simple
analytic solution to the beam energy scan puzzle of the near

ffiffiffi
s

p
independence of vnðpTÞmoments observed

down to 10 AGeV, where large-x valence-quark beam jets dominate inelastic dynamics. Recoil
bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for
the unexpected similarity of vn in pðDÞ þ A and noncentral Aþ A at the same dN=dη multiplicity as
observed at the RHIC and LHC.
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I. INTRODUCTION

An unexpected discovery at RHIC/BNL in Dþ Au
reactions at

ffiffiffi
s

p ¼ 200 AGeV [1] and at LHC/CERN inffiffiffi
s

p ¼ 5.02 ATeV pþ Pb reactions [2–4] is the large
magnitude of midrapidity azimuthal anisotropy moments,
vnðkT; η ¼ 0Þ, that are remarkably similar to those
observed previously in noncentral Auþ Au [5–7] and Pbþ
Pb [8–12] reactions. See preliminary pþ Pb data in Fig. 1,
taken from ATLAS Ref. [13] Fig. 24, that also shows a
large rapidity-even dipole v1 harmonic [14].
In addition, the beam energy scan (BES) at RHIC [15]

revealed a near
ffiffiffi
s

p
independence from 8 AGeV to

2.76 ATeV of the vn in Aþ A at fixed centrality that
was also unexpected.
In high-energy Aþ A, the vn moments have been

interpreted as possible evidence for the near “perfect
fluidity” of the strongly-coupled quark-gluon plasmas
(sQGP) produced in such reactions [16–20]. However,
the recent observation of similar vn in much smaller
pðDÞ þ A systems and, also, the near beam energy inde-
pendence of the moments observed in the beam energy scan

(BES) [15] from 7.7 AGeV to 2.76 ATeV in Aþ A have
posed a problem for the perfect fluid interpretation, because
near inviscid hydrodynamics is not expected to apply in
space-time regions where the local temperature falls below
the confinement temperature, Tðx; tÞ < Tc ∼ 160 MeV. In
that hadron resonance gas (HRG) “corona” region, the
viscosity-to-entropy ratio is predicted to grow rapidly with
decreasing temperature [21], and the corona volume
fraction must increase relative to the ever-shrinking volume
of the perfect fluid “core” with T > Tc when either the
projectile atomic number A and size A1=3 fm or the center-
of-mass (CM) energy

ffiffiffi
s

p
decreases.

While hydrodynamic equations have been shown to
be sufficient to describe pðDÞ þ A data with particular
assumptions about initial and freeze-out conditions [22,23],
its necessity as a unique interpretation of the data is not
guaranteed. This point was underlined recently using a
specific initial-state saturation model [24] that was shown
to be able to fit pðDÞ þ A correlation data on even vn
moments without final-state interactions.
That saturation model has also been used [19] to specify

initial conditions for perfect fluid hydrodynamics in Aþ A.
However, in pþ A such initial conditions for hydrody-
namics are not as well controlled, because the gluon*gyulassy@phys.columbia.edu
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saturation scale, Qsðx; A ¼ 1Þ < 1 GeV, is small, and its
fluctuations in the transverse plane on subnucleon scales
are not reliably predicted.
The near independence of vn moments on beam energy

observed in BES [15] at RHIC from 7.7 AGeV to
2760 AGeV pose further serious challenges to the unique-
ness of the perfect-fluid interpretations of the data because
of previous predictions [25] for systematic reduction of the
moments due to the increasing HRG corona. Those
predictions appeared to be confirmed by SPS

ffiffiffi
s

p ¼
17 AGeV data [26]. The most recent BES measurements,
however, appear to contradict the diluting role of the HRG
corona. The HRG corona fraction should dilute perfect-
fluid QGP core flow signatures at lower energies unless
additional dynamical mechanisms, possibly associated with
increasing baryon density, accidentally conspire to com-
pensate for the growing HRG corona fraction. Such a
combination of canceling effects with

ffiffiffi
s

p
was demon-

strated to be possible using a specific hybrid hydroþ
URQMDmodel [27] or three fluid models [28]. While such
hybrid models are sufficient to explain the BES independ-
ence of v2 data in Aþ A, the necessity and, hence,
uniqueness of such hybrid descriptions are not guaranteed.
The BES [15] data also a pose a challenge to the color

glass condensate (CGC) gluon saturation model [29] used
to specify initial conditions for hydrodynamic flow pre-
dictions in Aþ A. This is because Q2

s is predicted to
decrease with logðsÞ, and thus gluon-saturation-dominated
high-energy gluon fusion models of initial-state dynamics
should switch over into valence-quark-diquark-dominated

inelastic dynamics when partons with fractional energy
x > 0.01 play the dominant role. At RHIC and lower
energies, valence quark and diquark QCD string phenom-
enology based on the LUND model [30] and its Bþ A
generalization to nuclear collision via the HIJING model
[31] can smoothly interpolate between AGS and RHIC
energies. Such a multiple-beam-jet-based approach to
Bþ A naturally accounts, for example, for the striking
long-range triangular, boost-noninvariant form of
ðdNpA=dηÞ=ðdNpp=dηÞ nuclear enhancement of the final
hadron rapidity density in pðDÞ þ A observed at all CM
energies up to LHC [32]. By including multiple mini- and
hard-jet production, it can account for the

ffiffiffi
s

p
growth of

dNBþA=dη; though at top
ffiffiffi
s

p ¼ 200 AGeV RHIC and at
LHC energies, there is strong evidence for the onset of
gluon saturation [33] that limits 2 → 2 minijet processes
to pT > Qsðx; AÞ ∝ A1=3=xλ that grows with A
and 1=x ¼ ffiffiffi

s
p

=ðpTeηÞ.
The importance of multiple beam jets with rapidity

kinematics controlled by valence quarks and diquarks
was first proposed within the Brodsky-Gunion-Kuhn
(BGK) model [34], which is reproduced also in the
HIJING [35] model. The trapezoidal boost-noninvariant
dependence of the local density, dN=dηd2x, predicted in
Ref. [35] as a function of the transverse coordinate x even
in symmetric Aþ A, may also play an important role in the
triangular long-range η dependence of v2ðη;

ffiffiffi
s

p
) as

observed in Auþ Au by PHOBOS [36].
In this paper we explore the possibility that a dynamical

source, that could partially account for the above puzzling
azimuthal moment systematics, may be traced to a basic
perturbative QCD (pQCD) feature. The pQCD based model
here extends the opacity χ ¼ 1 Gunion-Bertsch [37] (GB)
perturbative QCD bremsstrahlung used to model.
πþπ→ gþX to all orders in opacity, e−χ

P∞
n¼1 χ

n=n!…,
Vitev-Gunion-Bertsch (VGB) multiple-interaction pQCD
bremsstrahlung for applications to Bþ A nuclear colli-
sions. We show that VGB bremsstrahlung naturally leads
on an event-by-event basis to a hierarchy of nontrivial
azimuthal asymmetry moments similar to that observed
in pþ A (see Fig. 1) and peripheral Aþ A at fixed
dN=dη [9,11,12].
A particularly important feature of beam jet non-Abelian

bremsstrahlung is that it automatically leads to long-range
rapidity η “ridge” correlations and to azimuthal asymmetry
harmonics from n ¼ 1; 2; 3;…. Conventional Lund-string
beam jet models [30], as encoded, e.g., in HIJING, on the
other hand, neglect recoil-induced moderate pT color
bremsstrahlung azimuthal asymmetries. From the pQCD
perspective, beam jets are simply arrays of parallel color
antennas that radiate due to multiple soft transverse
momentum transfers jqij ∼ 1 GeV between participant
projectile and i ¼ 1;…; NTðbÞ target nucleons. Many
event generators include ϕ-averaged (azimuthally random-
ized) bremsstrahlung effects via ∼αs=k2T up to the minijet

FIG. 1 (color online). vnðpTÞ with n ¼ 2 to 5 obtained for
jΔηj > 2 and the pT range of 1–3 GeV. An overlay sketch of
preliminary rapidity-even v1 data shown at QM14 [14] is also
indicated by a dark green curve. The error bars and shaded boxes
represent the statistical and systematic uncertainties, respectively.
ATLAS v2ðv3Þ data in the 220 < Nrec

ch < 260 range are compared
to the CMS data [2] obtained by subtracting the peripheral events
(the number of offline tracks Ntrk

off < 20), shown by the dashed
(solid) curves. Reproduced from ATLAS Ref. [13] pþ Pb Fig. 24.
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scale kT < Qsðx; AÞ. In HIJING, the ARIADNE [38] code is
used in conjunction with the nonperturbative Lund string
fragmentation code JETSET [39] to incorporate this effect,
while highly azimuthally asymmetric hard pQCD jets with
kT > Qsðx; AÞ are included via the PYTHIA [39]) code. In
Ref. [30] it was emphasized that the high string tension of
color strings reduces greatly the sensitivity of Lund string
fragmentation to QCD bremsstrahlung and is an important
infrared safety feature of that nonperturbative hadroniza-
tion phenomenology.
In pþ A multiple collisions, however, the projectile

accumulates multiple transverse momentum kicks (the
Cronin effect) from scattering with cold nuclear partic-
ipants [40,41] that enhances the bremsstrahlung mean
square hk2TipA ≈ A1=3μ2 via random walk in the target
frame. In the CGC approach, this A1=3 growth is built into
Q2

sðx; AÞ in the infinite momentum frame.
At the minijet scale, the underlying azimuthal asymme-

try of non-Abelian bremsstrahlung will tend to focus
gluons toward the azimuthal directions of exchanged
momenta. At present, this basic azimuthal dependence is
not taken into account in HIJING.
As we show below, there is a very important aspect to the

multiple color antenna arrays in high-energy pþ A due to
the longitudinal coherence of clusters of participant target
beam jets separated by small transverse coordinates, too
small to be resolved by the transverse momenta involved.
While the total average number of Glauber participant
nucleons that interact with a projectile at impact parameter
b is determined by the area of the inelastic cross section
σinðsÞ ∼ few fm2 as NTðbÞ ¼ σinðsÞ

R
dzρTðz;bÞ, for

moderate momentum transfers with kT ∼Qs ∼ 1–2 GeV
bremsstrahlung, the target participant antennas naturally
group event-by-event into M ≤ NT resolved clusters sep-
arated in the transverse plane by subnucleon distances
1=kT ∼ 0.2 fm, similar to the CGC model [42] and in
AdS/CFT shock modeling [43] of pþ A, but here simply to
the transverse resolution scale of multiple scattering
recoil kinematics in the target frame versus the infinite-
momentum frame.
This partial decoherence of the NTðbÞ participating

target dipoles creates nonisotropic spatial distributions of
color antennas that radiates according to the fluctuating
spatial asymmetries from event to event. Each cluster is
characterized by the number ma of target participant dipole
antennas that exchange coherently Q2

a ¼ maμ
2 with the

projectile at a specific azimuthal angle ψa controlled by the
transverse geometrical distribution of the clusters.
Each recoil cluster a ¼ 1;…;M radiates coherently

into a broad range of rapidities that appears in two
particle correlations as a beam jet “ridge” component with
k enhanced near −Qa ¼ −

P
i∈Iaqi. In addition, the pro-

jectile cluster radiates coherently into a broad range of
rapidities but with transverse momenta k enhanced near
Q0 ¼ ðQ0;ψ0Þ ¼

P
M
a¼1 Qa. On an event-by-event basis,

M and the color antenna geometry fluctuate, producing
naturally n ¼ M þ 1 and other azimuthal harmonics in
two-gluon vn ¼ hcosðnðϕ1 − ϕ2ÞÞi.
Our goal here is to estimate analytically the magnitude of

the color bremsstrahlung source of pQCD dynamical
azimuthal two-particle correlations and its dependence
on n; k;M;NT . We illustrate the results with specific
analytic cluster geometric limits, including Zn symmetric
and Gaussian random CSA. We propose a future gener-
alization of HIJING that could enable more realistic testing
the influence of anisotropic VGB bremsstrahlung on the
final hadron flavor-dependent azimuthal moments and
competing minijet and hard-jet sources of anisotropies.

II. FIRST-ORDER IN OPACITY
(GUNION-BERTSCH) BREMSSTRAHLUNG

AND AZIMUTHAL ASYMMETRIES vn

The above puzzles with BES [15],Dþ Au at RHIC, and
pþ Pb at LHC motivate us to consider an alternative: more
basic, perturbative QCD sources of azimuthal asymmetries.
The well-known non-Abelian bremsstrahlung Gunion-
Bertsch (GB) formula [37] for the soft-gluon radiation
single-inclusive distribution is

dN1
g

dηd2kd2q
¼ CRαs

π2
μ2

πðq2 þ μ2Þ2
q2

k2ðk − qÞ2 ; ð1Þ

where we characterize the parton-scattering elastic cross
section dσ0=d2q ¼ σ0μ

2=πðq2 þ μ2Þ2 off color-neutral tar-
get participants with a momentum transfer q in terms of a
characteristic cold nuclear matter scale μ2 ≈ 0.12 GeV2

taken from fits to forward dihadron correlations in
Refs. [44–46]. Here q ¼ jqj, and the produced gluon has
rapidity η and transverse momentum k (k ¼ jkj) in the final
state. It is obvious from Eq. (1) that non-Abelian gluon
bremsstrahlung is preferentially emitted along two direc-
tions specified by the beam “ẑ” axis and the transverse
momentum transfer vector q. The uniform rapidity-even
η ≈ logðxE=kÞ distribution associated with moderate q
scattering is a unique feature of non-Abelian bremsstrah-
lung in the kinematic k ≪ xE ≪ E range of interest
associated with beam jets and is due to the triple gluon
vertex. The uniform rapidity-even distribution is an espe-
cially important characteristic of non-Abelian radiation.
The combination of the two leads to a uniform rapidity
“ridge” in the direction of the momentum transfer q that
fluctuates in both magnitude and direction from event to
event but is measurable in two-or-higher-gluon correlation
measurements. The rapidity-even ridge is, of course,
kinematically limited to the η ∈ ½YT; YP� interval between
the target and projectile rapidities. Independent but kine-
matically correlated multiple target and projectile beam jet
bremsstrahlung sources can account for the triangle boost-
noninvariant rapidity density observed in pþ A.

NON-ABELIAN BREMSSTRAHLUNG AND AZIMUTHAL … PHYSICAL REVIEW D 90, 054025 (2014)

054025-3



For the scattering of color neutral dipoles considered in
Ref. [37], the Rutherford perturbative α2=q4 distribution of
momentum transfers was modeled by color-neutral form
factors of the form q2ðq2 þ μ2Þ−1. For GB radiation, the
k ¼ q singularity is also regulated by such a form factor.
Therefore, the color neutralization scale μ2 regulates the
ðk − qÞ2 singularity in Eq. (1) as well. The x and A
dependence of that scale arises naturally in small-x models
based the gluon saturation scale Qsðx; AÞ [29,42,47]. Our
emphasis here, however, is to explore the general character-
istics of semi-hard bremsstrahlung from the perturbative
QCD perspectives that allow us to derive analytically many
of the observed remarkably simple scaling relations
between 2l azimuthal harmonic cummulants, vnð2lÞ, as
a basic coherent-state semiclassical wave interference effect
without invoking hydrodynamic local equilibrium
assumptions.
The screened single inclusive GB perturbative gluon

distribution is

dNð1Þ
g

dηd2kd2q
≡ fðη;k;qÞ

¼ CRαs
π2k2

μ2q2

πðq2 þ μ2Þ2
Pη

ðk − qÞ2 þ μ2
ð2Þ

≡ FP
A − cosðϕ − ψÞ ; ð3Þ

where ϕ is the azimuthal angle of k and ψ is the azimuthal
angle of q, using the abbreviations

A≡ Akq ≡ ðk2 þ q2 þ μ2Þ=ð2kqÞ ≥ 1; ð4Þ

F≡ Fkq ≡ CRαs
π2k2

μ2q2

πðq2 þ μ2Þ2
1

2kq
; ð5Þ

P≡ Pη ≡ ð1 − eYT−ηÞnfð1 − eη−YPÞnf ; ð6Þ

where we introduce a kinematic rapidity envelope factor Pη

corresponding to approximately uniform rapidity depend-
ence of the non-Abelian bremsstrahlung [37] regulated with
ð1 − jxFjÞnf kinematic spectator power counting [47,48].
Note that nf ¼ 2nspec − 1 ∼ 4 for gluon production from
the scattering of two color-neutral dipoles in the large
jxFj → 1 limit. The Pη rapidity envelopes can be used to
build up multi-beam-jet boost-noninvariant triangular
dNpA=dη as in the BGK [34] model and also to model
the intrinsic boost-noninvariance of dNAA=dηdx⊥ in even
and symmetric Aþ A collisions, as with HIJING [35].
The single-gluon azimuthal moments, vn ¼ vnf1g in

cumulant notation, from a single GB color antenna defined
by the momentum transfer q ¼ ðq;ψÞ with azimuthal angle
ψ are defined by

vGBn ðk; q;ψÞf0ðk; qÞ ¼ FP
Z

dϕ
2π

cosðnϕÞ
A − cosðϕ − ψÞ

¼ FPRe
I
jzj¼1

dz
2πi

ð−2einψÞzn
ðz2 − 2Azþ 1Þ

¼ FPRe
2ðeiψz−Þn
zþ − z−

; ð7Þ

where we defined z≡ expðiðϕ − ψÞÞ, so that dϕ ¼ −idz=z
and cosðϕ − ψÞ ¼ ðzþ 1=zÞ=2. Note that there are two
simple real poles z� ¼ A�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 1

p
. Since A ≥ 1, only z−

contributes to the unit contour integral, resulting in the final
analytic expression above. Note that the azimuthal aver-
aged single-gluon-inclusive (n ¼ 0) bremsstrahlung distri-
bution with v0 ¼ 1 is then

f0 ¼ 2FP=ðzþ − z−Þ ¼ FkqPη=ðA2
kq − 1Þ1=2

∝ dN=dηdk2dq2: ð8Þ
This has a linear divergence at k ¼ q in the μ ¼ 0 limit in
addition to the usual Abelian collinear 1=k2 divergence.
The first is regulated by the color-neutral dipole form factor
in the GB model.
The azimuthal Fourier moments are, however, finite in

Eq. (7), even in the case of vanishing μ, and depend
analytically on n and A via

vGB1 ðk; q;ψÞ ¼ cos½ψ �ðAkq −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
kq − 1

q
Þ; ð9Þ

lim
μ→0

vGB1 ðk; q; 0Þ ¼ ðk=qÞθðq − kÞ; ð10Þ

vGBn ðk; q;ψÞ ¼ cos½nψ �ðvGB1 ðk; q; 0ÞÞn; ð11Þ

lim
μ→0

vGBn ðk; q; 0Þ ¼ ðk=qÞnθðq − kÞ: ð12Þ

Note that in the μ ¼ 0 limit, all vn → 1 reach unity at
k ¼ q but vanish for k > q. For finite μ > 0, all moments
maximize at k2 ¼ k2� ¼ q2 þ μ2 with vnðk�Þ ¼
ð ffiffiðp

1þ μ2=q2Þ − μ=qÞn. Figure 2 illustrates the magnitude
of GB vnðk=μ; q=μÞ moments as a function of k=μ for
n ¼ 1;…; 5 and two different q=μ ¼ 1, 3.
Note the remarkable power-law scaling with n (for fixed

k; q:ψ) of the azimuthal moments of gluon bremsstrahlung
from a single GB color antenna:

½vGBn ðk; q; 0Þ�1=n ¼ ½vGBm ðk; q; 0Þ�1=m; ð13Þ
that is similar to the scaling observed by ALICE, CMS and
ATLAS [4,8,11] at LHC, at least for the higher n ≥ 3
moments dominated by purely geometric fluctuations. This
scaling is, of course, not expected to hold perfectly for an
ensemble averaged over q ratios of cosðnΔϕÞ averaged
dihadron-inclusive rates. One of our aims below is to test
the survival of the above ideal scaling in Eq. (13) to
ensemble averages in two-gluon-inclusive processes.
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However, note that by rotation invariance, all harmonics
n > 0 vanish for single-inclusive GB antennas when
averaged over the momentum transfer azimuthal angle
ψ . We show below in Sec. V that the finite rms fluctuating
harmonics of two-particle-inclusive ðhcosðnΔϕÞiÞ1=2 sur-
vive with similar magnitude and k dependence as in
Figs. 2 and 3.

In Fig. 4, we see that the simple fixed-q power-law
scaling of Eqs. (11) and (13) holds for k=M < 1 but
gradually breaks down at higher k > M when the ensemble
is averaged over q2 in hfnðkÞi.

III. ALL ORDERS IN OPACITY VGB
GENERALIZATION OF GUNION-BERTSCH

RADIATION

A recursive reaction operator method was originally
developed in GLV [49,50] to compute final-state multiple-
collision-induced gluon bremsstrahlung and elastic colli-
sional energy loss [40] to all orders inopacity for applications
to jet quenching. Extensions of the method to final-state
heavy-quark jet energy loss was given in Refs. [51,52].
Vitev further extended the reaction operator method to

compute non-Abelian energy loss in cold nuclear matter in
Ref. [53]. In addition to final-state (FS) bremsstrahlung,
Vitev solved the cold matter initial-state (IS) bremsstrah-
lung problem to all orders in opacity, and also the
generalization of the first-order in opacity Gunion-
Bertsch [37] non-Abelian bremsstrahlung problem to all
orders in opacity for the asymptotic (t0 → −∞; tf → þ∞)
boundary condition. We refer here to the Vitev all-order in
opacity generalized GB radiation solution as VGB.
In Ref. [53], the VGB solution was regarded to be of

mainly academic interest, since the focus there was
on induced initial-state and final-state gluon bremsstrah-
lung associated with hard processes in pþ A [44–46].
In this paper, we focus entirely on the application of the
VGB solution to low-to-moderate-transverse-momentum
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FIG. 2 (color online). Single GB beam jet bremsstrahlung
azimuthal Fourier moments, vGBn ðk; qÞ from Eq. (11), are shown
versus k=μ for n ¼ 1 − 5 for q=μ ¼ 1ð3Þ as solid (dashed) curves.
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FIG. 3 (color online). Single GB beam jet bremsstrahlung
azimuthal Fourier moments, hvGBn ðk; qÞiq averaged over q with
M2=ðq2 þM2Þ2, are shown versus k=μ for n ¼ 1 − 5 for
ðM=μÞ2 ¼ 1ð10Þ as solid (dashed) curves.
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FIG. 4 (color online). The ideal 1=n power scaling of q
averaged hvGBn ðk; qÞi1=n with k ≲M [see Eq. (11)] breaks down
at higher k, because in the μ ¼ 0 limit of non-Abelian brems-
strahlung limits, k ≤ q [see Eq. (12)].
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k < fewGeV gluon radiation from multiple beam jets in
the same spirit as in GB [37], where the aim was to
understand the general qualitative characteristics of inelas-
tic high-energy single-inclusive processes from a low-order
perturbative QCD perspective.
Our aim here is to calculate azimuthal asymmetry

moments, vnðη;kÞ, arising from basic perturbative QCD
bremsstrahlung effects in high-energy pþ A interactions.
The physical picture approximates pþ A scattering as the
scattering of an incoming color dipole at an impact
parameter, b, of high (positive) rapidity YP ≫ 1 with
Npart

T ∼ A1=3 nuclear target participant nucleons with high
(negative) YT ≪ −1 in the CM. The target participant
dipoles at a fixed transverse coordinate R are separated
by longitudinal separations Δzi ¼ zi − zi−1 ∼ fm in the
cold nucleus target rest frame. However, they act coherently

when emitting gluons near midrapidity due to Lorentz
contraction in the CM and the long formation time of
gluons ∼½2 coshðηÞ�=k in the lab frame.
However, the target participants are distributed in the

transverse direction by transverse separations Rij ¼
jRi −Rjj∼<

ffiffiffiffiffiffiffiffiffiffiffi
σin=π

p
∼fm, which can be resolved for

k > 1 GeV. This can lead to multiple incoherent groups or
clusters of target participant nucleons that radiate coherently
gluons with jηj < 1, k > 1 GeV gluons coherently. We
propose in Sec. IV below a simple percolation model to
estimate the partially coherent target recoil bremsstrahlung.
However, we concentrate in this section on the coherent
projectile bremsstrahlung contribution.
The complete VGB solution to all orders in opacity,

χ ≡ χðbÞ ¼ R
dzσgðzÞρðz;bÞ, derivedbyVitev inRef. [53] is

dNVBG

dηd2k
¼

X∞
n¼1

dNVBG
n

dηd2k
¼ CRαs

π2
X∞
n¼1

�Yn
i¼1

Z
dΔzi
λgðziÞ

��Yn
j¼1

Z
d2qjðv2jðqjÞ − δ2ðqjÞÞ

�

×Bb
21 ·

�
Bn

21 þ 2
Xn
i¼2

Bn
ðiþ1Þi cos

�Xi

j¼2

ωjnΔzj
��

; ð14Þ

where the transverse vector “antenna” amplitudes Bn
jk are

defined in terms of differences between “cascade” vector
amplitudes Cjn as

Bn
jk ¼ Cjn −Ckn; ð15Þ

Cjn ¼
k − qj − � � � − qn

ðk − qj − � � � − qnÞ2
¼ k −Qjn

ðk −QjnÞ2
: ð16Þ

Indices j; k; n here keep track of combinations of non-
vanishing momentum transfers qi from direct versus virtual
diagrams contributing at a given opacity order n of the
opacity expansion. The partial summed momentum trans-
fers are Qjn ¼

P
n
i¼j qi, being the singular directions of

non-Abelian bremsstrahlung that also control the inverse
formation times

ωjn ¼
ðk −QjnÞ2

2Eg
: ð17Þ

Here Eg ¼ xEP ≪ EP is the energy of the gluon in a frame
where the energy of the proton projectile is assumed to be
large, EP ≫ mn.

There are two simple limits depending on the kinematic
range of interest. In the coherent or factorization limit
where nωjnλg ≪ 1, we can approximate all the cosines by
unity. This is the limit we are interested in for our present
applications to midrapidity multiparticle production not
too close to projectile and target fragmentation regions,
i.e., YT þ 1 < η < YP − 1.
The target scattering centers are ordered in this VGB

problem as z0 ¼ −∞ < z1 < � � � < zn < zf ¼ þ∞ with
Δzi ¼ ðzi − zi−1Þ for i ≥ 2. σgðzÞρðz;bÞ is the local inverse
mean free path of a gluon with the nuclear target at position

z impact parameter b in the target rest frame. The v2ðqjÞ ¼
dσelðzjÞ
d2qj

denote normalized distributions of transverse

momentum transfers at the scattering center zj.
In the coherent scattering limit of relevance to near

midrapidity radiation, and neglecting possible z depend-
ence of the screening scale μ of the normalized distribution
v2ðqÞ, we can write more explicitly at the impact
parameter b

dNVGB
coh

dηd2k
¼ CRαs

π2
X∞
n¼1

�Yn
i¼1

Z
dΔziσelðziÞρðzi;bÞ

��Yn
j¼1

Z
d2qj

�
1

σel

dσel
d2qj

− δ2ðqjÞ
��

×

�
k − q2 − � � � − qn

ðk − q2 − � � � − qnÞ2
−

k − q1 − � � � − qn

ðk − q1 − � � � − qnÞ2
�
·

��
k − q2 − � � � − qn

ðk − q2 − � � � − qnÞ2
−

k − q1 − � � � − qn

ðk − q1 − � � � − qnÞ2
�

þ 2
Xn
i¼2

�
k − qiþ1 − � � � − qn

ðk − qiþ1 − � � � − qnÞ2
−

k − qi − � � � − qn

ðk − qi − � � � − qnÞ2
��

: ð18Þ
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In order to extract the physical interpretation of the
above compete but unwieldy expression, we derive in
Appendix A the linked cluster theorem version of
Eq. (18) to be

dNVGB
coh ðkÞ ¼

X∞
n¼1

Z
d2QPel

n ðQÞdNGBðk;QÞ; ð19Þ

where Pel
n ðQÞ is the probability density that, after n elastic

scatterings, the cumulative total momentum transfer is Q,

Pel
n ðQÞ ¼ exp½−χ� χ

n

n!

Z �Yn
j¼1

d2qj

σel

dσel
d2qj

�

× δ2ðQ − ðq1 þ � � � þ qnÞÞ; ð20Þ

that is independent of the azimuthal direction ψ of Q by
rotation invariance. This distribution also arose naturally in
the reaction operator derivation of the link cluster theorem
for multiple elastic scattering in Ref. [40].
Equation (19) is clearly the intuitive factorization limit

where at each order only the total accumulated momentum
transfer, Q, controls the azimuthal and momentum transfer
dependence of the bremsstrahlung distribution.
By rotation invariance, dNGBðk;QÞ¼ dNGBðk;Q;ϕ−ψÞ

can only depend on the k and Q azimuthal angles through
their difference. After integrating over ψ, the azimuthal angle
ofQ, then of course dNVGB cannot depend on the azimuthal
angle ϕ of k. Therefore, it is obvious that at the single
inclusive level all vn ¼ 0 vanish for n > 0. To observe
the intrinsic fluctuating azimuthal asymmetries event by
event, we turn to two-particle correlations to extract non-
vanishing secondmoments like hcosðnðϕ1 − ϕ2ÞÞi. First, we
discuss the bremsstrahlung contribution from recoil target
participants.

IV. BREMSSTRAHLUNG FROM RECOILING
TARGET PARTICIPANTS

Incoherent groups of transversely overlapping recoiling
target dipoles radiate gluon bremsstrahlung dominantly into
the negative-rapidity η < 0 hemisphere, as illustrated in
Fig. 6. In a given event when a projectile nucleon penetrates
through a target nucleus A at impact parameter b, the
projectile nucleon moving with positive rapidity YP > 0 is
approximated as in Ref. [37] by a color dipole with a
separation d0 ¼ n̂0=μ0. The A target nucleons moving
toward negative rapidities, YT < 0, however, are distributed
with transverse coordinates Ri, according to a Glauber
nuclear profile distribution TAðRiÞ ¼

R
dzρAðz;RiÞ over a

large-area πA2=3 fm2 scale. Each target nucleon dipole is
assumed to have a separation di ¼ n̂i=μi. Projectile target
dipole-dipole interactions with low transverse momentum
transfer qi < μi are suppressed by dipole form factors
approximated by q2i =ðq2i þ μ2i Þ. Therefore, the projectile
interacts dominantly with only nearby target dipoles in the
transverse plane with ðRi − bÞ2 ≲ πα2ðd0 þ diÞ2=4 ∼ σin.
This leads to a fluctuating number n of target participants
with probability Pn ¼ e−χχn=n! that follows also from the
GLV opacity expansion [40,50,53].
For a given target participant number, n, the target

dipoles naturally cluster near the projectile impact param-
eter b as illustrated in Figs. 5 and 6. In a specific event,
there are in general 1 ≤ M ≤ n overlapping clusters that
radiate coherently toward the negative-rapidity η < 0 hemi-
sphere as illustrated in Fig. 6. The distribution of the
number M of recoiling coherent groups depends on n;k,
and the momentum exchanges qi with the projectile that
build up to the total exchange to the projectile

QP ¼
XM
a¼1

Qa ¼
XM
a¼1

�X
i∈Ia

qi

�
; ð21Þ

FIG. 5 (color online). Schematic diagram corresponding to
coherent bremsstrahlung from the projectile dipole from Eqs. (19)
and (20). At opacity order n, the azimuthal distribution is
enhanced for transverse momenta k near the total accumulated
momentum transfer Q0 ≡Q1n ¼

P
aQa, where a ¼ 1;…;M

groups of recoiling target dipoles.

FIG. 6 (color online). (Schematic diagram corresponding to
partial coherent backward η < 0 gluon bremsstrahlung from
Eq. (23). At opacity order n, the azimuthal distribution is
enhanced for transverse momenta k near the recoil momentum
transfers −Qa, where a ¼ 1;…;M labels incoherent target
groups of color dipoles fragmenting into the negative rapidity
region.
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where Ia is a particular subset of the n indices i ∈ ½1; n� ¼P
aIa that the emitted gluon with transverse wave number k

(and generally η < 0) cannot resolve, and Qa ¼
P

i∈Iaqi is
the contribution from group Ia to the total momentum
transfer to the projectile.
A simple percolation model for identifying clusters of

coherently recoiling target groups of dipoles is to require
that all members in a cluster have separation Rij ¼ Ri −
Rj in the transverse plane in a modulus that is less than the
produced gluon transverse momentum resolution scale, i.e.,

Rij ≲ dðkÞ ¼ c
k

ð22Þ

where c ∼ 1 is of order unity. If i ∈ Ia and j ∈ Ia as well as
j ∈ Ib, then j is added to Ia if its hdijii∈Ia < hdijii∈Ib . The
M clusters are percolation groups in the above sense. Of
course, many other variants of transverse clustering algo-
rithms exist. For our purpose of illustrating analytically
dynamical sources vn in pþ A compared to peripheral
Aþ A, it suffices to study the dependence of vn on the
number of independent recoil antennas M with hni ¼ N
fixed by Glauber participant geometry. In future applica-
tions via Monte Carlo generators such as HIJING [31], the
sensitivity of results to more realistic multi-beam-jet geo-
metric fluctuations can be studied. Note that independent
target participant beam jet clusters are cylindrical cuts into
the target frame near the impact parameter bwith diameters
∼1=k. We expect typically M ∼ 2–4 independent recoil
clusters even for the most central pþ A collisions, as
illustrated in Figs. 5 and 6. This picture is similar to the
CGC model picture, except that no classical longitudinal
fields are assumed in our entirely perturbative QCD
dynamical bremsstrahlung approach here.
In a given event, recoil bremsstrahlung contribution to

the single inclusive gluon distribution from M coherently
acting but transversely resolvable target antenna clusters is
given by

dNM;N
T ðη;k; fqjgÞ≡

XM
a¼1

dNGBðk;−QaÞPaðηÞ; ð23Þ

where PaðηÞ specifies different rapidity profile functions
for each cluster required to produce the characteristic BGK
[34] boost-noninvariant triangular enhancement of the
rapidity density, ðdNpA=dηÞ=ðdNpp=dηÞ, growing toward
the value hni ¼ N near the target rapidity YT and dropping
toward unity near the projectile rapidity Yp.
In the special doubly coherent projectile and target limit

with M ¼ 1, dN1;N
T reduces to

dN1;N
T ðη;k; fqignÞ≡ dNGBðk;−QPÞPTðηÞ; ð24Þ

with PTðηÞ ¼
P

aPaðηÞ. Note that in the high-energy small
x− ∝ exp½YT − η� gluon saturation dynamics correlates QP
with rapidity η instead of the simple factorization assumed

in Eq. (24). In our simple perturbative dipole picture, this
correlation can be implemented parametrically by taking
μiðηÞ ∝ Qsðη; AÞ [24,42,47].
The fully coherent projectile bremsstrahlung contribu-

tion is

dNM;N
P ðη;k; fqigÞ≡ dNGBðk;þQPÞP0ðηÞ: ð25Þ

For pþ p scattering with M ¼ N ¼ 1, the sum reduces in
the CM to

dNpp ¼ dNGBðk;þQPÞPPðηÞ þ dNGBðk;−QPÞPPð−ηÞ;
ð26Þ

which is symmetric with respect to changing the sign of the
total momentum transfer, QP, as well as to reflecting η.
In the more general partially coherent target case with

1 < M ≤ N independent clusters of dipole antennas, the total
single-inclusive radiation distribution in mode ðk1; η1Þ is
dNM;N ¼ dNN

P ðη;k1;QPÞ þ dNM;N
T ðη;k1; fQagÞ

¼
XM
a¼0

B1a

ðk1 þQaÞ2 þ μ2a
; ð27Þ

where we defineQ0 ≡ −QP ¼ −
P

aQa to be able to include
the projectile contribution in the summation over target
clusters. The numerator factor Bia is defined using Eqs. (5)
and (6) to be

Bia ≡ Fki;Qa
PaðηiÞ: ð28Þ

For a fixed set Qa ¼ ðQa;ψaÞ of independent recoil
momenta, the single-gluon-inclusive azimuthal Fourier
moments hcosðnϕÞi are given by linear combinations of
vGBn ðk1; QaÞ cosðnψaÞ from Eqs. (7)–(12). However, since
all the terms in the sum contribute with one of M þ 1
cosðnψaÞ factors, averaging over rotations ψa → ψa þ θ
again causes all ensemble-averaged hvni ¼ 0 to vanish for
n ≥ 1. In order to extract information about the relative
fluctuating vn, we therefore turn to two-gluon correlations
in the next section.

V. MULTIGLUON CUMULANT AZIMUTHAL
HARMONICS, vnf2lg, FROM COLOR

SCINTILLATION ANTENNA (CSA) ARRAYS

Multiple bremsstrahlung gluons are radiated over long
ranges (“ridges”) in YT < ηi < YP from multiple kinemat-
ically and transverse-space-correlated beam jets that form
“color scintillation antenna” (CSA) arrays that fluctuate
from event to event. Depending on the transverse space
geometry,Ra, and the transverse momentum transfers, Qa,
and their distributions, the CSA bremsstrahlung leads to
fluctuating patterns of azimuthal correlations among the
radiated gluons. Gluon bremsstrahlung from a single beam
jet color dipole antenna builds up a “near side” correlations.
Kinematic recoil momentum correlations between N
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participant targets and the projectile antennas, however,
also naturally radiate with k2 ∼ Nμ2 in complex fluctuating
azimuthal harmonic bremsstrahlung patterns. At very high
transverse momenta k2 ≫ Mμ2, collinear factorized back-
to-back hard jet production dominates over multiple beam
jet bremsstrahlung and leads to very strong away-side
n ¼ 1 correlations that must be subtracted in order to reveal
the moderate k2 ≲Mμ2 correlations that we compute here.
We also assume that we can neglect a possibly large-
magnitude transverse isotropic nonperturbative bulk

background through appropriate experimental mixed event
subtraction schemes.
Assuming that M antenna clusters out of the N ¼

Npart
T ðbÞ target participants radiate independently—i.e.,

assuming that each cluster in the CSA array produces
approximately a semiclassical coherent state of gluon
radiation with random phase with respect to other clusters
(see analogous partially coherent pion interferomentry
formalism in Ref. [54]), the even-numbered 2l inclusive
gluon distribution factorizes as

dNM
2lðη1;k1;…; η2l;k2lÞ ¼

Y2l
i¼1

�XM
ai¼0

Bkiai

Akiai − cosðϕi þ ψaiÞ
�
; ð29Þ

where Bia is defined in Eq. (28) and again the summation
range includes the projectile a ¼ 0 contribution with
Q0 ≡ −QP. We emphasize that the total gluon inclusive
has in addition to dNM

2l an isotropic dN
non:pert.
2l and a highly

away-side-correlated dNdijet
2l component that we assume

can be subtracted away. Implicitly, we also assume here the
greatly simplified “local parton hadron” duality hadroniza-
tion prescription as in CGC models. Of course, in CGC
saturation models the details, especially the x; A, and b will
differ, but it is useful to explore here the basic consequences
of this simple analytic model to get a feeling of how much
of the azimuthal fluctuation phenomenology may have its
roots in low-order Low-Nussinov/Gunion-Bertsch pQCD
interference phenomena. Quenching of signals due espe-
cially to more realistic hadronization phenomenology
[30,31,39] in the few GeV minijet scale will also need
to be investigated in the future.
Even with an uncorrelated gluon-number-coherent state

product ansatz for the multigluon-inclusive distribution

above, the even-numbered m ¼ 2l gluons with ðk1; η1Þ
to ðkm; ηmÞ become correlated through the CSA geometric
and kinematic recoil correlations.
Consider, for example, theM ¼ 2 case (see Appendix B)

of two recoiling target dipoles antennas that emit k1

preferentially near −Q1 ¼ ðq1;ψ1 þ πÞ and near
−Q2 ¼ ðq2;ψ2 þ πÞ, at two different recoil azimuthal
angles ψ1 þ π and ψ2 þ π, while the projectile dipole
emits k2 preferentially near QP ¼ Q1 þQ2 at a third ϕP
azimuthal angle. Such a three-color antenna system then
naturally leads to two-particle triangularity v3f2g≡
hcosð3ðϕ1 − ϕ2ÞÞi ≠ 0 due to dynamical correlations
between k1 and k2. As we also show below in Sec. V,
special cases of Zn symmetric antenna arrays illustrate
“perfect pitch” bremsstrahlung with vn0 f2g ¼ δnn0v

Zn
n f2g

two-particle harmonic.
Consider in detail the prototype M ¼ 1 VGB antenna

case again, but for 2l gluon cumulant nth relative harmonic
moments for a fixed Q impulse from

fM¼1
n f2lg≡ heþinf

P
l
i¼1

ϕige−inf
P

2l
j¼lþ1

ϕjgifM¼1
0 f2lg

¼
Yl
i¼1

�Z
dϕi

2π

BkiQe
þinϕi

AkiQ − cosðϕi þ ψQÞ
� Y2l

j¼lþ1

�Z
dϕj

2π

BkjQe
−inϕj

AkjQ − cosðϕj þ ψQÞ
�

¼
Yl
i¼1

ðeinψQðzkiQÞnf0;ki;QÞ
Y2l

j¼lþ1

ðe−inψQðzkjQÞnf0;kj;QÞ

¼ fM¼1
0 f2lg

Y2l
i¼1

ðvGB1 ðki; QÞn: ð30Þ

Note that by construction, fMn f2lg are SOð2Þ rotation
invariant about the beam axis, and thus independent, unlike
odd moments of the random orientation, ψQ, of the reaction
plane defined by the transverse momentum transferQ. Here

zkiQ ¼ AkiQ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
kiQ

− 1
q

are the poles inside the unit

circle that contribute to the nth harmonics. For an odd
number of gluons, all harmonics vanish, but for even
numbers all harmonics, both even and odd, are generated
already by one M ¼ 1 color GB bremsstrahlung antenna.
For M ¼ 2, two recoiling GB antennas Q and −Q, all odd
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n ¼ 1; 3;…moments vanish by symmetry. An odd number
of antennas M is needed to generate odd n harmonics
through an even number of gluon correlators.
In the “mean recoil” approximationQ ≈ Q̄, we see that a

single GB antenna satisfies the generalized power scaling
law in case subsets of the 2l gluons have identical
momenta. Suppose there are 1 ≤ L ≤ 2l distinct momenta
Kr with r ¼ 1;…; L such that mr of the 2l gluons have
momenta equal to a particular value Kr, such thatP

L
r¼1mr ¼ 2l. In this case,

vM¼1
n f2lgðk1;…; k2l; Q̄Þ ≈

YL
r¼1

ðvGBn ðKr; Q̄ÞÞmr

¼
YL
r¼1

ðvGB1 ðKr; Q̄ÞÞnmr : ð31Þ

The approximate factorization and power scaling of azi-
muthal harmonics from CSA coherent state non-Abelian
bremsstrahlung is similar to “perfect fluid hydrodynamic
collective flow” factorization and scaling, but in this case
no assumption about local equilibration or minimal vis-
cosity is necessary.
Higher-order cumulant harmonic correlations were pro-

posed [55–58] to help remove “nonflow” sources of
correlations such as momentum conservation, back-to-back
dijet, and Bose statistics effects and to isolate true collective
bulk fluid flow azimuthal asymmetries. The 2l-particle
cumulant suppresses the “nonflow” contribution by
eliminating the correlations which act between fewer
than 2l particles (see, e.g., Fig. 9 of Ref. [57]). The
first few cumulants for 2l ¼ 2; 4; 6 (notation from
Refs. [56,57]) are

ðvnf2gÞ2 ≡ heinðϕ1−ϕ2Þi≡ hjv2j2i;
ðvnf4gÞ4 ≡ h−einðϕ1þϕ2−ϕ3−ϕ4Þi þ 2heinðϕ1−ϕ3Þiheinðϕ2−ϕ4Þi ¼ 2hjv2j2i2 − hjvnj4i;
ðvnf6gÞ6 ≡ ðheinðϕ1þϕ2þϕ3−ϕ4−ϕ5−ϕ6Þi − 9hjv2j2ihjvnj4i þ 12hjv2j2i3Þ=4: ð32Þ

The observed [57] near equality of vnf2lg for l ¼
2; 3; 4 in Pbþ Pb at LHC has been interpreted as evidence
supporting perfect fluid flow. The similarity of “elliptic
flow” v2f4gðpTÞ in pþ Pb and Pbþ Pb observed by
ATLAS [4] and also for “triangular flow” v3f4gðpTÞ by
CMS [2] has been interpreted as further evidence for
perfect fluidity even on subnucleon scales in pþ Pb.
However, we see that color bremsstrahlung exhibits

similar scaling of azimuthal harmonic cumulants in the
mean recoil approximation. In the case that all 2l gluon
momenta are identical,

v̄nf2lg≡ ðvM¼1
m f2lgðk;…; k; Q̄ÞÞn=m; ð33Þ

which implies in the above notation that

hjvnj4i ¼ hjv2j2i2; ð34Þ

hjv6j6i ¼ hjv2j2ihjvnj4i ¼ hjv2j2i3; ð35Þ

and similarly for all cumulants. Therefore, color brems-
strahlung obeys the similar azimuthal harmonic cumulant
independence on the number of gluons 2l used to
determine the harmonic moments, as does the perfect
hydrodynamic flow hypothesis. However, in our CSA
bremsstrahlung case, the apparent “flow” effect comes
purely from zero-temperature coherent state (semiclassical)
non-Abelian wave interference effects that depend on the
transverse geometric arrangement of CSA arrays.
For the pþ A case of multipleM > 1 independent target

cluster CSA arrays, the cumulant harmonic moments

depend in a more complex way on the particular geometric
and recoil correlations defining the CSA. Special analytic
CSA cases for v2f2g corresponding to idealized Zn and
Gaussian CSA arrays are discussed in the following two
sections.

VI. SPECIAL CASE OF Zn CSA
BREMSSTRAHLUNG

As seen in Appendix B from Eq. (B4), it is clear that
particularly simple special cases of color antenna arrays,
where M ¼ n − 1 target beam jet clusters all have similar
numbers of recoiling target partons ma ¼ N=M ¼
N=ðn − 1Þ, transfer all n ¼ M þ 1 projectiles, and the
target beam jets recoil with similar momentum transfers,
Q2

a ¼ N=Mμ2, but with specially spaced azimuthal
angles, fψag ¼ 2πa=n.
These particular color antenna arrays, that we will refer

to as Zn color scintillation arrays (CSA), have a special
discrete azimuthal rotation symmetry corresponding to the
finite group of n roots of unity;

Zn ¼
�
za;n ¼ ei2πa=nja ¼ 0;…; n − 1;

Xn−1
a¼0

za;n ¼ 0

�
:

ð36Þ

For these Zn CSA geometries of projectile and target color
dipole antennas, the double sum over a and b is trivial
because
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cosðnðψa − ψbÞÞ ¼ cosð2πða − bÞÞ ¼ 1; ð37Þ
and thus all ðM þ 1Þ2 ¼ n2 terms are identical. Note that
Eq. (37) is invariant to global SOð2Þ simultaneous rotations
of all antennas.
What is remarkable about ZMþ1 symmetric CSAs is that

due to the orthogonality properties of the zan phases,

Xn−1
a¼1

zka;n ¼ nδk;n; ð38Þ

Xn−1
a¼1

ðza;nÞkðz�a;nÞk0 ¼ nδk;k0 ; ð39Þ

all harmonics except n ¼ M þ 1 vanish. The Zn CSAs thus
scintillate with “perfect” n-harmonic azimuthal correla-
tions. For Zn CSAs, the two-particle relative Fourier
moments vnf2g simply factor into a product of single-
particle moments vGBn ðki; Q0; 0Þ, because the n complex

Qa ¼ Q0za;n form a regular polygon with equal radii, as
illustrated for an n ¼ 5 “star fish” antenna array in Fig. 7,
that generates a perfect cosð5ðϕ1 − ϕ2ÞÞ two-particle azi-
muthal correlation.
For roots of unity CSA color antenna geometries, all

M þ 1 antennas receive the sameQ2
a ¼ Q2

0 ¼ N=ðn − 1Þμ2
momentum transfer and produce the same single-particle
vGBMþ1ðk;Q0; 0Þ harmonics. Since the two-particle harmon-
ics vanish except for n ¼ M þ 1,

vM;N
n f2gðk1; k2Þ⟶

Zn
δn;Mþ1vGBMþ1ðk1; Q0ÞvGBMþ1ðk2; Q0Þ;

vM;N
n f2gðk1; k2Þ
vGBMþ1ðk2; Q0Þ

⟶
Zn

δn;Mþ1ðvGB1 ðk1; Q0ÞÞMþ1; ð40Þ

and for n ¼ M þ 1, vM;N
Mþ1f2gðk1; k2Þ is reduced to simply

the product of single-GB CSA moments at k1 and k2.
Examples of Zn radiation patterns for n ¼ 3; 5 for

extremely high vn ¼ 0.45 in parts (a) and more realistic
v3 ¼ 0.7 and v5 ¼ 0.03 from Fig. 1 are shown in Figs. 7
and 8.

FIG. 7 (color online). Example illustrating apparent perfect
“triangular flow” but arising entirely from non-Abelian brems-
strahlung sourced by color scintillation antenna (CSA) arrays. In
this case, M ¼ 2 target beam jet clusters recoil off a projectile
beam jet with Q0 ¼ −

P
M
a¼1 Qa, and all Qa are assumed to have

same magnitude but spaced in azimuth by 2π=3. A Z3 CSA
radiates only n ¼ 3 harmonics: vnf2gðk1; k2Þ ¼ δn;3vGB3
ðk1; Q0ÞvGB3 ðk2; Q0Þ. Part (a) shows an extreme case with
v3 ¼ 0.45, while (b) shows a more realistic v3 ¼ 0.07 case.
An arbitrary isotropic soft nonperturbative background is as-
sumed to be subtracted out.

FIG. 8 (color online). As in Fig. 7, but for a Z5 symmetric CSA
that radiates an apparent “perfect pentatonic flow” pattern with
vnf2gðk1; k2Þ ¼ δn;5vGB5 ðk1; Q0ÞvGB5 ðk2; Q0Þ. Part (a) shows an
extreme v5 ¼ 0.45 case, while part (b) shows a more realistic
v5 ¼ 0.03 case.
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VII. SPECIAL CASE OF GAUSSIAN CSA
BREMSSTRAHLUNG

Another simple limit is found when the recoil azimuthal
angles ψa are in random ½0; 2π� and theQa’s are distributed
with a Gaussian of the same width squared hQ2

ai ¼ Q2
T ¼

ðN=MÞμ2 for a ∈ ½1;…;M�. In this antenna array, the
projectile Q0 is also Gaussian distributed with zero mean,
but with an enhanced second moment,

hQ2
0i ¼ MQ2

T ¼ Nμ2: ð41Þ

Unlike for perfect nth-harmonic antenna arrays with
Eq. (37), in the random Gaussian distributed case

cosðnðψa − ψbÞÞ ¼ δa;b; ð42Þ

and so only the a ¼ b diagonal terms contribute. All a ≥ 1
target terms are identical, and only the projectile contri-
bution is enhanced due to hQ2

0i=Q2
T ¼ M random walk

exchanges from each cluster. In this case, Eq. (B4)
reduces to

fN;M
n ðk1; k2Þ →

Gauss
Z

d2Q

�
exp½−Q2=ð2Nμ2Þ�

2πNμ2
þM

exp½−Q2=ð2ðN=MÞμ2Þ�
2πðN=MÞμ2

�
fB1QB2Qf0;1;Qf0;2;Q

× vGBn ðk1; QÞvGBn ðk2; QÞg; ð43Þ

fN;M
n ðk; kÞ →

Gauss
Z

d2Q

�
exp½−Q2=ð2Nμ2Þ�

2πNμ2
þM

exp½−Q2=ð2ðN=MÞμ2Þ�
2πðN=MÞμ2

�
fBkQf0;k;QvGBn ðk;QÞg2: ð44Þ

We have suppressed target and projectile kinematic rapidity factors.
To get a feeling for the magnitude of the two particle azimuthal moments, we can approximateQ in the integrand outside

the Gaussian weights by its rms ΔQ ¼
ffiffiffiffiffiffiffiffiffiffi
hQ2i

p
and perform the normalized integral over the Gaussians to estimate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fN;M
n ðk; kÞ

q
≈
�
CRαsμ

2

π2k2

��
1

ðN þ 1Þμ2
ðvGB1 ðk; ffiffiffiffi

N
p

μÞÞn
ððk2 þ ðN þ 1Þμ2Þ2 − 4Nk2μ2Þ1=2

þ M
ðN=M þ 1Þμ2

ðvGB1 ðk; ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
μÞÞn

ððk2 þ ðN=M þ 1Þμ2Þ2 − 4ðN=MÞk2μ2Þ1=2
�
: ð45Þ

The rapidity dependence corresponding to the BGK [34]
triangular rapidity enhancement NðYP − ηÞ=ðYP − YTÞ
of the single inclusive multiplicity toward the target
fragmentation region is suppressed above to simplify
the result. In addition, we emphasize that the mostly
nonperturbative low-k background is ignored in our sim-
plified consideration here. Full account for that background
will require implementation of the above nonisotropic
soft bremsstrahlung in an event generator such as
HIJING.
A qualitative BGK [34] rapidity dependence for the

target cluster number MðηÞ that ignores the c=k resolution
scale considerations discussed in Eq. (22) can be estimated
by identifying N ¼ χ ¼ R

dzρAðz;bÞ with the opacity as a
function of b and taking

MBGKðηÞ ∼ χðYP − ηÞ=ðYP − YTÞð1 − eYT−ηÞnf : ð46Þ

The main feature expected from such a BGK [34]
rapidity dependence of the target cluster number is that
the mean transverse momentum radiated gluons from
combined projectile and target bremsstrahlung gluons
grows toward the projectile rapidity region dominated by

the projectile contribution. This predicts then that the peak
k� of the vnðkÞ moments moves to larger

k2� ≈
N þMðηÞ
1þMðηÞ μ

2 ð47Þ

as η is increased.

VIII. HIJNG MONTE CARLO COLOR
SCINTILLATING BEAM JET ARRAYS

To get a realistic estimate for the magnitudes and
systematics of pQCD VGB induced harmonics in realistic
pþ p; pþ A; Aþ A collisions, we have to embed the
anisotropic recoil bremsstrahlung gluons into phenomeno-
logical Lund strings with a hadronization scheme that has
been tuned to reproduce low-pT ϕ-averaged inclusive
hadronic observables in eþ þ e−, eþ p, pþ p, pþ A,
as well as Aþ A. The HIJINGMonte Carlo event generator
is one such model based on the LUND [30] string model
and the PYTHIA and JETSET [39] Monte Carlo models.
Simple local parton-hadron duality prescription as

used in CGC cannot be expected to predict quantitative
hadron-mass-dependent moderate pT < 2 GeV anisotropy
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moments over three decades of
ffiffiffi
s

p
. The advantage of

Monte Carlo event generators built on multidecade phe-
nomenological analysis is that they summarize the world
data by taking into account the particle data book, quantum
number, and energy momentum conservation and numer-
ous Standard Model dynamical details. Of course, they do
not purport to cover all possible phenomena.
A key feature missing in HIJING and most other event

generators for Aþ B collisions so far are basic pQCD
azimuthal anisotropies at the moderate pT < 2 GeV scale
that are so clearly predicted by GB and generalized VGB
bremsstrahlung models. What is included in most event
generators are strong back-to-back jet azimuthal anisotro-
pies due to collinear factorized pQCD mini- and hard jet
production above some saturation scale pT > p0 ∼ 2 GeV.
As currently implemented, HIJING takes into account
softer-scale k < p0 gluons phenomenologically via random
transverse LUND string “wiggles” using ARIADNE [38], but
HIJING neglects the basic pQCD azimuthal recoil corre-
lations predicted by VGB color bremsstrahlung. An current
open question is the magnitude of radiated anisotropies that
would arise when the ARIADNE part of the JETSET code is
replaced by VGB anisotropic bremsstrahlung derived in
this paper. We intend to address this numerically intensive
problem elsewhere.

IX. CONCLUSIONS

In summary, we applied the GLV reaction operator
approach to Vitev-Gunion-Bertsch (VGB) boundary con-
ditions in order to compute to all orders in nuclear opacity
the non-Abelian gluon bremsstrahlung for event-by-event
fluctuating semisoft beam jets produced in high-energy
nuclear collisions. We derived analytic expressions for the
azimuthal Fourier cumulant moments vnf2lg as a function
of the gluon transverse momenta and rapidities, fki; ηig, in
terms of remarkably simple single-gluon beam jet GB
bremsstrahlung harmonics. These moments were shown to
obey power-law scaling laws similar to those observed
recently in high-energy pþ A reactions at RHIC and at
LHC as a function of the target participant clusters
geometry. Multiple clusters of projectile and target beam
jets form color scintillation antenna (CSA) arrays that
radiate gluons with characteristic boost-noninvariant trap-
ezoidal rapidity distributions in asymmetric Bþ A nuclear
collisions. The intrinsically azimuthally anisotropic and
long-range in η nature of the non-Abelian bremsstrahlung
leads to vn moment systematics that are remarkably similar
to those predicted by perfect fluid hydrodynamic models.
However, in our case, they arise entirely from non-Abelian
wave interference phenomena sourced by the fluctuating
CSA of multiple beam jets.
We presented examples of simple solvable CSA models

and showed that our analytic nonflow bremsstrahlung
solutions for vnf2lg are similar to recent numerical satu-
ration model predictions but differ by predicting a simple

power-law hierarchy of both even and odd vnf2lg without
invoking essential details of kT factorization. However, CGC
saturation evolution is expected to be important for future
quantitative comparisons to data. The basic CSA mechanism
can be tested via its predicted systematics involving boost-
noninvariant trapezoidal BGK η rapidity-dependent sub-
structures involved in Bþ A reactions.
Non-Abelian beam jet CSA bremsstrahlung, investigated

in this paper, may provide a partial analytic solution to the
beam energy scan (BES) puzzle of the observed near

ffiffiffi
s

p
independence of the azimuthal moments down to a very
low CM energy of ∼10 AGeV, where large-x valence-
quark beam-jet physics dominates over gluon production in
inelastic dynamics. Recoil bremsstrahlung from multiple
independent CSA clusters also provides a natural qualita-
tive pQCD explanation for the surprising similarity of vn in
pðDÞ þ A and noncentral Aþ A at same dN=dη multiplic-
ity observed at RHIC and LHC.
This pQCD-based model shows that the uniqueness of

the perfect fluid interpretation of pþ A and Bþ A azimu-
thal correlation data cannot be taken for granted. However,
a great deal of work remains to sort out quantitatively the
fraction of the observed vnf2lg azimuthal harmonic
systematics that can be ascribed to final-state hydrody-
namic collective flow versus initial-state QCD coherent
state color scintillating interference wave phenomena.
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APPENDIX A: THE LINKED CLUSTER
THEOREM FOR COHERENT VGB GLUON

BREMSSTRAHLUNG

To derive the link cluster theorem for the coherent limit
of VGB, we introduce the shorthand notation for the
integrations over momentum transfers:
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Yn
j¼1

Z
dðwj − δjÞ≡

Z Yn
j¼1

d2qj

�
1

σel

dσel
d2qj

− δ2ðqjÞ
�
; ðA1Þ

which have the convenient properties
R
dwj ¼

R
dδj ¼ 1 and

R
dðwj − δjÞ ¼ 0. This makes it possible to discard any terms

in the integrand that do not depend simultaneously on all n qj momenta at fixed opacity order n. Using this shorthand and
Cjn notation from Eq. (16), we rewrite the right-hand side of Eq. (18) as

VGB ¼ CRαs
π2

X∞
n¼1

χn

n!

�Yn
j¼1

Z
dðwj − δjÞ

�

× ðC2n − C1nÞ · ½ðC2n − C1nÞ þ 2ðC3n −C2nÞ þ � � � þ 2ðCðnþ1Þn − CnnÞ�

¼ CRαs
π2

X∞
n¼1

χn

n!

�Yn
j¼1

Z
dðwj − δjÞ

�
ðC2n −C1nÞ · ½ðC2n −C1nÞ þ 2ðH −C2nÞ�

¼ CRαs
π2

X∞
n¼1

χn

n!

�Yn
j¼1

Z
dðwj − δjÞ

�
½−ðH −C2nÞ þ ðH − C1nÞ� · ½ðH −C2nÞ þ ðH −C1nÞ�

¼ CRαs
π2

X∞
n¼1

χn

n!

�Yn
j¼1

Z
dðwj − δjÞ

�
fjH −C1nj2 − jH − C2nj2g

¼ CRαs
π2

X∞
n¼1

χn

n!

�Yn
j¼1

Z
dðwj − δjÞ

�
jH − C1nj2

¼
X∞
n¼1

χn

n!

�Yn
j¼1

Z
dðwj − δjÞ

��Z
d2Qδ2ðQ − ðq1 þ � � � þ qnÞÞ

��
CRαs
π2

Q2

k2ðk −QÞ2
�
: ðA2Þ

Here, we use the notation H≡ Cðnþ1Þ;n ≡ k=k2 to denote
the “hard” vacuum radiation amplitude that shows up at
zeroth order in opacity in the case of final-state induced
radiation in GLV [50]. Note that in this notation convention
Bn

ðnþ1Þ;nÞ ≡H −Cnn.

Note that
R
dðwj − δjÞ ¼ 0, and therefore for j ¼ 1 the

integral of −jH − C2nj2 automatically vanishes. Note
further that the jH −C1nj2 integrand depends only on k
and the total accumulated Q ¼ P

n
i¼1 qi momentum

transfer. Thus, the integrand is symmetric under arbitrary
permutations of the indices. This is the key to obtaining the
linked cluster rearrangement, because out of the 2n combi-
nations of the wj and minus delta functions −δi, all
combinations with the same number m of

R
dw and

n −m of
R
dδ integrations give the same contribution.

At fixed opacity order n, the 2n combinations of
integrals reduce to sum over only n integrals of the form
n!=ðm!ðn −mÞ!Þ R dw1…dwmð−1Þn−mjBm

1mj2. Therefore,

dNVGB
coh

dηd2k
¼

X∞
n¼1

χn

n!

Xn
m¼1

ð−1Þn−mn!
m!ðn −mÞ!

Z
d2Q

�Z
dw1…dwmδ

2ðQ − ðq1 þ � � � þ qmÞÞ
��

CRαs
π2

Q2

k2ðk −QÞ2
�
: ðA3Þ

Changing summation variables from ∞ > n ≥ 1 and
n ≤ m ≥ 1 to ∞ > l ¼ n −m ≥ 0 and ∞ > m ≥ 1,
the double sum

P∞
l¼0

P∞
m¼1 factorizes, and the sum

over l produces a factor exp½−χ� corresponding to the
probability of no scattering. Therefore, Eq. (A3) leads to
the link cluster theorem in Eq. (19) for the multiple-
collision VGB generalization of Gunion-Bertsch gluon
bremsstrahlung.

APPENDIX B: TWO-GLUON
BREMSSTRAHLUNG AZIMUTHAL

HARMONICS vnf2g
For the two-gluon case, azimuthal harmonic correlations

can be directly derived in another way by integrating over
both ϕ1 ¼ Φþ Δϕ=2 and ϕ2 ¼ Φ − Δϕ=2, keeping the
relative azimuthal angle Δϕ ¼ ϕ1 − ϕ2 fixed and weighing
the integrand by cosðnΔϕÞ from
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fMn f2gðk1; k2Þ≡
Z

π

−π

dΦ
2π

Z
π

−π

dΔϕ
2π

cosðnΔϕÞdNM
2 ðk1;Φþ Δϕ=2; k2;Φ − Δϕ=2Þ

¼
XM
a;b¼0

B1aB2b

Z
π

−π

dΔϕ
2π

cosðnΔϕÞ
Z

π

−π

dΦ
2π

1

A1a − cosðΦþ ψa þ Δϕ=2Þ
1

A2b − cosðΦþ ψb − Δϕ=2Þ ðB1Þ

¼
XM
a;b¼0

B1aB2b

Z
π

−π

dΦ0

2π

1

A1a − cosðΦ0Þ
Z

π

−π

dΔϕ
2π

cosðnΔϕÞ
A2b − cosððΦ0 þ ψb − ψaÞ − ΔϕÞ ðB2Þ

¼
XM
a;b¼0

B1aB2bfn;2;b

Z
π

−π

dΦ0

2π

cosðnðΦ0 þ ψb − ψaÞÞ
A1a − cosðΦ0Þ ¼

XM
a;b¼0

B1aB2bfn;2;bfn;1;a cosðnðψb − ψaÞÞ ðB3Þ

¼
XM
a;b¼0

B1aB2bf0;1;af0;2;bðvGB1 ðk1; QaÞvGB1 ðk2; QbÞÞn cosðnðψb − ψaÞÞ; ðB4Þ

where we define Φ0 ¼ Φþ ψa þ Δϕ=2 and use the periodicity of the integrand to shift the Φ0 range back to ½−π; π� in
Eq. (B2), then perform the Δϕ integral with the help of Eq. (7). We use here the shorthand notation

fn;1;a ¼
Z

π

−π

dΦ
2π

cosðnΦÞ
A1a − cosðΦÞ ¼ ðvGB1 ðk1; QaÞÞnf0;1;a; ðB5Þ

fn;1;a ¼
ðAk1;Qa

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
k1;Qa

− 1
q

Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
k1;Qa

− 1
q

Þ
; ðB6Þ

lim
μ→0

fn;1;a ¼
�
k1
Qa

�
n θðQa − k1Þ

Q2
a − k21

Q2
a: ðB7Þ
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