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The double parton distributions (dPDF), both conventional (i.e. double ladder) and those corresponding
to 1 → 2 ladder splitting, are calculated and compared for different two-parton combinations. The
conventional and splitting dPDFs have very similar shape in x1 and x2. We make a first quantitative
evaluation of the single-ladder-splitting contribution to double parton scattering (DPS) production of two
S- or P-wave quarkonia, two Higgs bosons and cc̄cc̄. The ratio of the single-ladder-splitting to
conventional (i.e. double ladder against double ladder) contributions is discussed as a function of
center-of-mass energy, mass of the produced system and other kinematical variables. Using a simple model
for the dependence of the conventional two-parton distribution on transverse parton separation (Gaussian
and independent of xi and scales), we find that the single-ladder-splitting (or 2v1) contribution is as big as
the conventional (or 2v2) contribution discussed in recent years in the literature. In many experimental
studies of DPS, one extracts the quantity 1=σeff ¼ σDPS=ðσSPS;1σSPS;2), with σSPS;1 and σSPS;2 being the
single scattering cross sections for the two subprocesses in the DPS process. Many past phenomenological
studies of DPS have only considered the conventional contribution and have obtained values a factor of ∼2
too small for 1=σeff. Our analysis shows that it is important also to consider the ladder-splitting mechanism,
and that this might resolve the discrepancy (this was also pointed out in a recent study by Blok et al.). The
differential distributions in rapidity and transverse momenta calculated for conventional and single-ladder-
splitting DPS processes are however very similar which causes their experimental separation to be rather
difficult, if not impossible. The direct consequence of the existence of the two components (conventional
and splitting) is the energy and process dependence of the empirical parameter σeff. This is illustrated in our
paper for the considered processes.
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I. INTRODUCTION

The LHC, as the highest energy collider ever available, is
the best place to study double parton scattering (DPS) (or,
more generally, multiparton interactions). This fact trig-
gered several recent theoretical studies of DPS. The
theoretical understanding of DPS is not yet complete.
Double parton distributions in the proton depending only
on the longitudinal momentum fractions x1; x2 of the two
partons and the corresponding scales μ21; μ

2
2 were intro-

duced long ago, and evolution equations for these quan-
tities were derived [1–4]. However, more recently [5–12] it
was established that these quantities are not adequate to
describe proton-proton DPS (although they may be used to
describe the dominant contribution to the proton-heavy
nucleus DPS process [13,14]). Rather, one should describe
this process in terms of two-parton generalized parton
distributions (2pGPDs), which aside from the momentum
fractions and scales of the two partons also depend on the

transverse impact parameter between the partons, b. The
work of Refs. [5–7,12] involved considering low order
Feynman diagrams and then generalizing the findings to
allow a resummation outwards from the hard process, while
that of Refs. [8–11] was somewhat more formal in nature
and laid down some first steps towards a factorization proof
for DPS (with Refs. [8,9] utilizing the method of soft
collinear effective theory, and Refs. [10,11] following the
more traditional Collin-Soper-Sterman approach).
One important finding of the work in Refs. [6,7,9,12]

was that there are (at least) two different types of con-
tribution to the DPS cross section, which are accompanied
by different geometrical prefactors. One of these is the
“conventional” or 2v2 contribution in which two separate
ladders emerge from both protons and interact in two
separate hard interactions—this one has been well known
for a long time [15,16] and is the one that is often
considered in phenomenological analyses. The other type
of process is the “perturbative ladder splitting” or 2v1
contribution, which is similar to the 2v2 process except that
one proton initially provides one ladder, which later
perturbatively splits into two. The 2v1 contribution to
the DPS cross section has not received much attention in
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numerical studies, apart from one study [17] that gives
estimates of the size of the effect in four-jet, γ þ 3j, Wþjj
and WþW− production. There may also be a 1v1 con-
tribution to DPS in which there is a perturbative ladder
splitting in both protons, although there is some contro-
versy in the literature over whether this process should
entirely be regarded as single parton scattering (SPS), or if
there is a portion of it that can be regarded as DPS
[5,7,9,11,12,18].
In Ref. [17] a sizable effect of the 2v1 ladder splitting

process was observed for the processes studied there with a
rather weak dependence on the kinematical variables. This
indicates that the ladder splitting process may be important
for other DPS processes studied at the LHC. In this paper
we will study the relative importance of the conventional
2v2 and ladder splitting 2v1 processes, for various proc-
esses whose production is dominated by gluon-gluon
fusion. The representative examples are e.g. production
of two S-wave (η) or P-wave (χ) quarkonia, two Higgs
bosons and double open charm. The last process was
studied recently by two of us [19–21]. A cross section for
the process was estimated and detailed comparison to
experimental data obtained by the LHCb collaboration
[22] was made. Even including higher-order corrections in
the kt-factorization approach some deficit of the cross
section was observed [21], at least with the standard set of
parameters. This deficit cannot be understood as due to
leading-order (LO) single parton scattering gg → cc̄cc̄
mechanism [21,23], and it is interesting to investigate if
it can be at least partially due to the parton splitting
contribution.
In the following we shall quantify the splitting 2v1

contribution for these processes and discuss its influence on
the so-called effective cross section measured by compari-
son of the factorized model with experimental data. We
generalize the formula for the total cross section from
Ref. [6] to the case of differential distributions. Since our
focus is on the relative contribution from the 2v2 and 2v1
contributions, we will not consider any possible 1v1
contribution to DPS (the method by which one would
calculate such a contribution within DPS is anyway unclear

at the present moment). Effectively we are therefore
following Refs. [5,7,9] and just taking such 1v1 processes
to be pure SPS.

II. SKETCH OF THE FORMALISM

In this section we present a sketch of the formalism used
to calculate the splitting 2v1 and nonsplitting 2v2 con-
tributions to double quarkonium (double Higgs boson) and
cc̄cc̄ production. Various notations for calculating these
contributions have been used in the literature—in the
following we shall use the one from Ref. [6].

A. DPS production of two quarkonia
and two Higgs bosons

In Fig. 1 we show the 2v2 and 2v1 DPS mechanisms of
production of two quarkonia or two Higgs bosons. The first
mechanism is the classical DPS mechanism (2v2) and the
other two represent mechanisms (2v1) with perturbative
splitting of one of the ladders.
As mentioned in the introduction, we ignore any possible

contribution to DPS coming from double perturbative
splitting or 1v1 graphs, and focus instead on the relative
contributions coming from 2v1 and 2v2 graphs. Then,
under certain assumptions, the LO cross section for the
DPS production of two quarkonia or two Higgs bosons can
be written in a compact way [6,17] as

σðDPSÞ ¼ σð2v2Þ þ σð2v1Þ ð2:1Þ

with

σð2v2Þ ¼ m
2

1

σeff;2v2

Z
dx1dx2dx01dx

0
2

× σgg→χðx1x01sÞσgg→χðx2x02sÞ
×Dggðx1; x2; μ21; μ22ÞDggðx1; x2; μ21; μ22Þ ð2:2Þ

and

FIG. 1. The diagrams for DPS production of two quarkonia.
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σð2v1Þ ¼ m
2

1

σeff;2v1

Z
dx1dx2dx01dx

0
2

× σgg→χðx1x01sÞσgg→χðx2x02sÞ
× ðD̂ggðx01; x02; μ21; μ22ÞDggðx1; x2; μ21; μ22Þ
þDggðx01; x02; μ21; μ22ÞD̂ggðx1; x2; μ21; μ22ÞÞ; ð2:3Þ

where m ¼ 1 for two identical final states and m ¼ 2 for
two different final states. The quantities Dij and D̂ij are the
independent ladder pair and ladder splitting double parton
distributions (dPDFs), respectively. Roughly speaking, the
first gives the probability to find a pair of partons in the
proton that was generated as a result of a pair existing at
the nonperturbative level independently radiating partons.
The second gives the probability to find a pair of partons
that was generated as a result of one parton perturbatively
splitting into two. We will give more detail as to how these
objects are computed shortly.
The key assumption needed to obtain (2.1) is that the

2pGPD for the independent ladder pair can be factorized as
follows:

Γijðx1; x2; μ21; μ22; bÞ ¼ Dijðx1; x2; μ21; μ22ÞFðbÞ; ð2:4Þ

where FðbÞ is normalized to 1. Since the two partons i and
j are only connected via nonperturbative processes we
expect FðbÞ to be some smooth function with a width of
order of the proton radius. The quantities σeff;2v1 ¼ σeff;1v2
and σeff;2v2 in (2.3) and (2.2) are related to FðbÞ as follows:

1

σeff;2v2
¼

Z
d2b½FðbÞ�2; ð2:5Þ

1

σeff;2v1
¼ Fðb ¼ 0Þ: ð2:6Þ

Under the approximation in which the independent branch-
ing partons are uncorrelated in transverse space, FðbÞ is
given by a convolution of an azimuthally symmetric
transverse parton density in the proton ρðrÞ with itself,
where ρðrÞ must be normalized to 1 in order to ensure the
appropriate normalization of FðbÞ:

FðbÞ ¼
Z

d2rρðrÞρðb − rÞ: ð2:7Þ

In a simple model where ρðrÞ is taken to have Gaussian
functional form one gets σeff;2v1 ¼ σeff;2v2=2. Other simple
functional forms for ρðrÞ also with one width parameter
yield similar results, as illustrated in Table I. Using a model
with two width parameters for ρðrÞ, one obtains an
enhancement of the ratio σeff;2v2=σeff;2v1 as one of the
width parameters becomes small compared to the other, and
the distribution becomes “clumpy,” although this enhance-
ment is rather weak unless one chooses an extremely
clumpy distribution. In order to illustrate this, we use
the “triple hot spot”model described in Sec. IVof Ref. [24]
for the independent ladder pair transverse density (see also
Refs. [25–27]). In this model, the proton contains three
clumps of parton density which can be thought of as the
three gluon clouds surrounding the valence quarks, and
FðbÞ given by

FðbÞ ¼ 1

4

Z
d2b1d2bv1d

2bv2 jψðbv1 ; bv2Þj2

×
X2
ij

dðb1; bviÞdðb1 − b; bvjÞ; ð2:8Þ

where

jψðbv1 ;bv2Þj2¼
3

π2δ4v
exp

�
−

1

3δ2v
ððbv1 −bv2Þ2þðbv1 −bv3Þ2

þðbv2 −bv3Þ2Þ
�����

−bv3≡bv1þbv2

ð2:9Þ

dðb; bvÞ ¼
1

2πδ2s
exp

�
−
ðbv − bÞ2

2δ2s

�
: ð2:10Þ

There are two parameters δv and δs in the model, the first
of which determines the spacing between the hot spots, and
the second of which determines the width of the hot spots.
In Ref. [24], δs is taken to be a function of momentum
fraction x, but we will simply take it to be a constant here.

TABLE I. Ratio of σeff;1v2 to σeff;2v2 for various simple choices for the proton transverse density profile ρðrÞ, under the approximations
(2.4) and (2.7) introduced in the text. The hard sphere projection and exponential profiles are studied in Ref. [24], and the dipole profile
is studied in Refs. [7,12,28,29]. R and mg are constants which do not affect the σeff;1v2=σeff;2v2 ratio.

Transverse density profile ρðrÞ σeff;1v2=σeff;2v2

Hard sphere ρðrÞ ¼ 3
2πR2 ð1 − r2=R2Þ1=2ΘðR − rÞ 0.52

Gaussian ρðrÞ ¼ 1
2πR2 exp ð− r2

2R2Þ 0.50
Top hat ρðrÞ ¼ 1

πR2 ΘðR − rÞ 0.46
Dipole ρðrÞ ¼ R

d2Δ
ð2πÞ2 e

iΔ·rðΔ2=m2
g þ 1Þ−2 0.43

Exponential ρðrÞ ¼ R
dz 1

8πR3 expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
=RÞ 0.43
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We can readily obtain an analytic expression for
σeff;1v2=σeff;2v2 in this model, which only depends on the
ratio δ2s=δ2v:

σeff;1v2
σeff;2v2

¼ 32δ4s=δ4v þ 16δ2s=δ2v þ 1

4ð4δ2s=δ2v þ 1Þ2 : ð2:11Þ

This function is plotted in Fig. 2 for δ2s=δ2v values
between 0 and 2. The function value never exceeds 0.5,
and asymptotes to the single Gaussian result of 0.5 as δs
becomes very much larger than δv. As δ2s=δ2v is reduced
(corresponding to the lumps in the transverse density

becoming more pronounced), σeff;1v2=σeff;2v2 decreases
as anticipated, reaching 0.25 at δ2s=δ2v ¼ 0. In practice
taking δ2s=δ2v to be smaller than perhaps ∼0.1 is not
reasonable (given that it is supposed to correspond to
the area of a nonperturbative gluon lump divided by the
area of a proton), and imposing this constraint we
find 0.372 < σeff;1v2=σeff;2v2 < 0.5.
Therefore we see that there is a geometrical enhancement

of the 2v1 contributions with respect to the 2v2 ones, and if
the approximations (2.4) and (2.7) are valid, then this
enhancement should be rather close to a factor of 2, as was
first emphasized in Ref. [7].
The independent ladder pair and ladder splitting dPDFs,

Dijðx1; x2; μ21; μ22Þ and D̂ijðx1; x2; μ21; μ22Þ, are calculated as
follows.
Let us begin with the ladder splitting double PDF, and

consider the case in which the scales are equal:
D̂ijðx1; x2; μ2; μ2Þ≡ D̂ijðx1; x2; μ2Þ. This is initiated at zero
at some low scale Q0:

D̂j1j2ðx1; x2; μ2 ¼ Q2
0Þ ¼ 0: ð2:12Þ

Q0 is the scale at which perturbative 1 → 2 splittings
begin to occur, which should be of order of ΛQCD. The
ladder splitting dPDF D̂ijðx1; x2; μ2Þ evolves according
to the double Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equation of Refs. [2,4]:

μ2
dD̂j1j2ðx1; x2; μ2Þ

dμ2
¼ αsðμ2Þ

2π

�X
j0
1

Z
1−x2

x1

dx01
x01

D̂j0
1
j2ðx01; x2; μ2ÞPj0

1
→j1

�
x1
x01

�

þ
X
j0
2

Z
1−x1

x2

dx02
x02

D̂j1j02ðx1; x02; μ2ÞPj0
2
→j2

�
x2
x02

�

þ
X
j0
Dj0 ðx1 þ x2; μ2Þ

1

x1 þ x2
Pj0→j1j2

�
x1

x1 þ x2

��
: ð2:13Þ

In order to calculate the ladder splitting for μ21 > μ22
(say), we start from the equal scale case and then evolve up
in μ21 using the following evolution equation:

μ21
dD̂j1j2ðx1; x2; μ21; μ22Þ

dμ21

¼ αsðμ21Þ
2π

�X
j0
1

Z
1−x2

x1

dx01
x01

D̂j0
1
j2ðx01; x2; μ21; μ22ÞPj0

1
→j1

�
x1
x01

��

ð2:14Þ

which only applies when μ21 > μ22. This equation is the
equivalent of Eq. (9) in Ref. [30] (except there the evolution
with respect to μ22 is presented when μ22 > μ21, so that
equation differs from (2.14) by swapping the 1 and 2

indices). It is straightforward to show that Eqs. (2.12),
(2.13) and (2.14) are equivalent to the following generali-
zation of Eq. (2.33) in Ref. [6]:

D̂j1j2ðx1; x2; μ21; μ22Þ

≡X
lj0i

Z
minðμ2

1
;μ2

2
Þ

Λ2

dk2
αsðk2Þ
2πk2

dx01
x01

dx02
x02

Dl
pðx01 þ x02; k

2Þ
x01 þ x02

× Pl→j0
1
j0
2

�
x01

x01 þ x02

�
Dj1

j0
1

�
x1
x01

; k2; μ21

�
Dj2

j0
2

�
x2
x02

; k2; μ22

�
:

ð2:15Þ

Note that in this equation the maximum scale for the
1 → 2 ladder splitting is set to minðμ21; μ22Þ ¼ μ22. Our logic

FIG. 2. Dependence of σeff;1v2=σeff;2v2 on δ2s=δ2v in the triple hot
spot model described in Ref. [24]. We have taken δs and δv not to
depend on longitudinal momentum fractions xi.
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for setting the scale to this value is as follows. Consider a
ladder splitting graph contributing to D̂j1j2

p ðy1; y2; μ21; μ22Þ,
with an arbitrary number of QCD emissions before/after the
1 → 2 splitting. The leading logarithmic contribution from
this graph is supposed to come from the regime in which
the transverse momenta of the emission/splitting processes
are strongly ordered, including the 1 → 2 splitting [only in
that region do the approximations needed to derive the
integrand of (2.15) hold]. This is the region in which the
transverse momenta of emissions on one leg after the 1 → 2
splitting are smaller than μ21, those of the other leg are
smaller than μ22 and the transverse momentum (or scale)
associated with the 1 → 2 splitting is smaller than
minðμ21; μ22Þ ¼ μ22 (since this occurs before either of the
two legs just mentioned). Our approach of taking the
maximum 1 → 2 splitting scale to be minðμ21; μ22Þ coincides
with that of Refs. [4,7,12,17,30], but differs from that
of Ref. [31].
To solve the differential equations (2.13) and (2.14) and

obtain the ladder splitting dPDFs in practice we use
the numerical code of Ref. [4]. A grid of dPDF values
covering the ranges 1 GeV2 < μ21; μ

2
2 < 5002 GeV2,

10−6 < x1; x2 < 1 was generated using 300 points in the
x direction, and 60 points in the logðμ2Þ direction for the
evolution. We use the MSTW 2008 LO single PDFs [32] as
the single PDFs in the evolution. Since the starting scale for
these PDFs is 1 GeV, we are not able to take Q0 lower than
this value, and in fact we setQ0 ¼ 1 GeV. We use the same
αs and variable flavor number scheme as MSTW 2008 LO,
with mc ¼ 1.40 GeV and mb ¼ 4.75 GeV.
For the independent pair distribution Dijðx1; x2; μ21; μ22Þ

wemust specify some nonperturbative input distributions at
the input scale μ21 ¼ μ22 ¼ Q2

0. Normally, due to the lack of
information about the dPDFs, one commonly takes the
input distributions to be a product of single PDFs:

Dijðx1; x2; μ21 ¼ Q2
0; μ

2
2 ¼ Q2

0Þ ¼ Diðx1; Q2
0ÞDjðx2; Q2

0Þ:
ð2:16Þ

Strictly speaking, this input should then be evolved up in
scale using (2.13) with the final inhomogeneous term
removed, and then (2.14) when μ21 > μ22. However, this

evolution is almost equivalent to independent DGLAP
evolution of the two partons, up to effects of the kinematic
limit in the homogeneous double DGLAP evolution [which
manifest themselves in Eqs. (2.13) and (2.14) by the limits
of the x0 integrations being 1 − xi rather than 1]. This
kinematic effect is known to be small unless x is rather large
[33], so if we take (2.16) as our input distributions, then, to
a good approximation, we can say

Dijðx1; x2; μ21; μ22Þ≃Diðx1; μ21ÞDjðx2; μ22Þ: ð2:17Þ

Here we use (2.17) for the independent pair dPDFs. We
take the single PDFs in this equation to be the MSTW 2008
LO PDFs for consistency with the ladder splitting dPDFs.
We should point out that in our study we ignore several

effects. The first of these is crosstalk between the non-
perturbatively generated ladder pair in the 2v1 graphs. This
was first noticed in Ref. [6] but was also shown there to be
numerically small in practice, so we can safely ignore it. We
also ignore effects associated with correlations or interfer-
ence in spin, color, flavor, fermion number and parton type
between the two partons [11,34]. Color, fermion number
and parton type correlations/interference are known to be
Sudakov suppressed [8,11,35], but could potentially be
non-negligible for small scales of order of a few GeV (see
Fig. 10 of Ref. [8]). Spin correlations were studied in
Ref. [33] in the context of the 2v2 process, and were found
to be rather small after evolution, especially when both
partons in Dij were gluons. They were reduced to a few
tens of per cent of the unpolarized contribution after only a
few GeV of evolution, even in the most optimistic input
scenario. However, it might be interesting to do a more
detailed study of the spin effects, also including their effect
in the 2v1 graphs. This is particularly in light of the
experimentally observed azimuthal correlations between
two D0 mesons produced in proton-proton collisions [22],
which cannot be described using an unpolarized DPS
mechanism (either 2v2 or 2v1) [20,21]. For the gluon-
initiated processes we will discuss here, quark flavor
interference is not a relevant effect since the flavor
interference distributions are not able to mix with the
double gluon distribution. Finally, we ignore interference
between DPS and SPS, or twist 3 vs twist 3 terms, which

FIG. 3. The diagrams for DPS production of cc̄cc̄.
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were discussed in Refs. [8,11]. It is possible to show that
some of the twist 3 vs twist 3 effects are suppressed by
helicity nonconservation in the associated diagrams [8,36],
but it seems likely that not all such effects are suppressed in
this way—this topic needs further study.
In this paper we discuss production processes for which

gluon-gluon fusion is the dominant process. We begin with
processes gg → A in which a single particle A is produced
from the hard scattering process (A ¼ H; η; χ;….). Then, at
the leading order to which we work in this paper,

σgg→χðŝÞ ¼ Cgg→χ · δðŝ −M2
χÞ: ð2:18Þ

This allows us to simplify considerably the cross section. In
this approximation one can easily get the cross section
differential in rapidity of one and second object (meson or
Higgs boson).

σð2v2Þ ¼ m
2

1

σeff;2v2

Z
dy1dy2C2

gg→χx1x01x2x
0
2

×Dggðx1; x2; μ21; μ22ÞDggðx1; x2; μ21; μ22Þ ð2:19Þ

and

σð2v1Þ ¼ m
2

1

σeff;2v1

Z
dy1dy2C2

gg→χx1x01x2x
0
2

× ðD̂ggðx01; x02; μ21; μ22ÞDggðx1; x2; μ21; μ22Þ
þDggðx01; x02; μ21; μ22ÞD̂ggðx1; x2; μ21; μ22ÞÞ: ð2:20Þ

This allows us to easily calculate distributions in rapidity of
χA and χB. In the last two equations the longitudinal
momentum fractions are calculated from masses of the
produced objects (quarkonia, Higgs bosons) and their
rapidities

x1 ¼
Mffiffiffi
s

p expðy1Þ; x01 ¼
Mffiffiffi
s

p expð−y1Þ;

x2 ¼
Mffiffiffi
s

p expðy2Þ; x02 ¼
Mffiffiffi
s

p expð−y2Þ: ð2:21Þ

B. DPS production of cc̄cc̄

In Fig. 3 we show a similar DPS mechanism for cc̄cc̄
production. The 2v1 mechanism (the second and third
diagrams) was not considered so far in the literature.
In contrast to double quarkonium production in the case

of cc̄cc̄ production the cross section formula is a bit more
complicated and the kinematical variables of each produced
particle (c quark or c̄ antiquark) must be taken into account:

σð2v2Þ ¼ 1

2

1

σeff;2v2

Z
dy1dy2d2p1tdy3dy4d2p2t

×
1

16πŝ2
jMðgg → cc̄Þj2x1x01x2x02

×Dggðx1; x2; μ21; μ22ÞDggðx1; x2; μ21; μ22Þ ð2:22Þ

and

σð2v1Þ ¼ 1

2

1

σeff;2v1

Z
dy1dy2d2p1tdy3dy4d2p2t

×
1

16πŝ2
jMðgg → cc̄Þj2x1x01x2x02

× ðD̂ggðx01; x02; μ21; μ22ÞDggðx1; x2; μ21; μ22Þ
þDggðx01; x02; μ21; μ22ÞD̂ggðx1; x2; μ21; μ22ÞÞ ð2:23Þ

for conventional and perturbative splitting contributions,
respectively. The integration is 6-fold. The same is true for
differential distributions. In the last two equations the
longitudinal momentum fractions are calculated from the
transverse masses mt of the produced quarks/antiquarks
and their rapidities

x1 ¼
m1tffiffiffi
s

p ðexpðy1Þ þ expðy2ÞÞ;

x01 ¼
m1tffiffiffi
s

p ðexpð−y1Þ þ expð−y2ÞÞ;

x2 ¼
m2tffiffiffi
s

p ðexpðy3Þ þ expðy4ÞÞ;

x02 ¼
m2tffiffiffi
s

p ðexpð−y3Þ þ expð−y4ÞÞ: ð2:24Þ

The quantity m1t corresponds to the transverse mass of
either parton produced from the first hard subprocess, while
m2t corresponds to that from the second hard subprocess.
The transverse mass mt is defined in the usual way to
be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

p
.

C. Energy and process dependence of the effective cross
section due to the presence of the perturbative splitting

The cross section for DPS production of some final states
(e.g. χ,χ or cc̄; cc̄) can be written in a somewhat simplified
way as

σDPS ¼ 1

σeff;2v2
Ω2v2 þ 1

σeff;2v1
Ω2v1: ð2:25Þ

Ω2v2 and Ω2v1 contain the D functions and cross section of
a process chosen.1 The equation is true both for phase space
integrated cross section and differential distributions. The

1In general the quantities σeff;2v2, σeff;2v1 and σDPS above can be
differential in xs and can represent partially or fully phase space
integrated quantities.
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equation reflects the presence of the two components (2v2
and 2v1) as discussed above.
In phenomenology this is often simplified and written as

σDPS ¼ 1

σeff
Ω2v2: ð2:26Þ

Under our model for the 2v2 contribution, Ω2v2 falls
apart into a product of two single scattering cross sections,
and so the σeff in (2.26) is also the σeff extracted by the
experiments (i.e. simply the ratio of DPS to SPS cross
sections).
From the two equations above one gets

1

σeff
¼ 1

σeff;2v2
þ 1

σeff;2v1

Ω2v1

Ω2v2 : ð2:27Þ

If we assume that in addition σeff;2v1 ¼ σeff;2v2=2 one gets

1

σeff
¼ 1

σeff;2v2
ð1þ 2Ω2v1=Ω2v2Þ: ð2:28Þ

As will be discussed in this paper the ratio Ω2v1=Ω2v2

depends on the center-of-mass energy and process consid-
ered. This means that σeff as found from phenomenological
analyses of the data (see Refs. [37,38]) may depend on the
energy as well as process considered. We shall discuss this
in the result section.
In early phenomenological estimates of σeff that took

into account only the 2v2 mechanism [26,29], values of the
order 30 mb were found. This is twice as large as the typical
σeff values found in the experimental studies (σeff ∼ 15 mb)
[39–45]. In Ref. [17] it was argued that this discrepancy can
be explained by the 2v1 mechanism. We also find a similar
enhancement of the DPS cross section (i.e. reduction of
σeff ) by a factor of 2 coming from the 2v1 mechanism, as
discussed below.

III. RESULTS

A. Double parton distributions

Before we present results for physical processes dis-
cussed in the present paper we wish to compare our
independent ladder pair and ladder splitting dPDFs, D
and D̂. In Fig. 4 we show plots of the dPDFs for selected
parton combinations, and with factorization scale μ2 ¼
100 GeV2 (this is relevant for instance for χb meson
production). The dPDFs shown are representative for all
(49) combinations included in our full analysis.
One sees that the shapes of the dPDFs differ for the

different parton combinations. Also, the overall size of the
ladder splitting dPDFs is rather smaller than the indepen-
dent ladder pair dPDFs: D̂=D is typically of order 10% at
small x1; x2. However, one notices that the shapes of the
ladder splitting and independent ladder pair dPDFs are
rather similar for fixed parton flavors ij, at least by eye. To

get a better quantitative handle on this, we have plotted the
ratios for each representative parton combination in Fig. 5.
Indeed we see that the ratio takes a roughly constant value
of 10% for small x1; x2. This is in accord with the plots of
D̂=D (or 1 − D̂=D) along the line x1 ¼ x2 given in
Refs. [4,46,47] (although note that these plots were
produced in the context of the old framework of
Refs. [1–3]).
We believe that this similarity in shapes for small x1; x2 is

related to the observation made in Refs. [6,48] that for
small x1; x2 the 1 → 2 splitting in D̂ typically occurs
extremely early in μ (just above Q0, e.g. less than
3 GeV for Q ¼ 10 GeV even for rather large x values of
order 10−1 [6]). Then, over most of the evolution range, the
dominant evolution for the D̂ is the same as that for the D
(i.e. two-parton branching evolution), and the similar
evolution for D and D̂ is what causes their shapes to
converge. In order to test this idea we used the numerical
code of Ref. [4] to calculate D at Q ¼ 10 GeV, taking
various different forms for the input D at Q0 ¼ 1 GeV [a
constant, ð1 − x1 − x2Þ, x−a1 x−a2 ð1 − x1 − x2Þ with a ¼ 0.5
or 1, etc.]. For simplicity we set all the Dijs to be the
same—in practice the input Dgg is the important one
determining the size of the Ds at low x1; x2. We found
very similar shapes in D for Q ¼ 10 GeV and x1; x2 ≲
10−2 regardless of the input distribution, which supports the
idea that it is the evolution that causes the shapes to be
similar. This qualitative behavior is also found analytically
in the double leading logarithmic approximation to the
parton distributions [49], which is supposed to be valid in
the limit Q2 → ∞; x → 0. In this approximation one finds
that the low x behavior is built up from the perturbative
evolution, provided that the starting distribution is not
too steep.
Another feature of note in the ratio plots is the large

enhancement of the uū ratio when the x fraction of the ū is
close to 1, and the x fraction of the u is not too small—
between 10−3 and 10−1. The ratio is large here because the
independent splitting dPDF is suppressed by the small size
of the ū single PDF factor, while the perturbative splitting
dPDF receives comparatively large contributions from
direct g → uū splittings (the g that splits then has to have
a rather large x, but the MSTW2008LO gluon density is
quite large at μ2 ¼ 100 GeV2 even at large x). As the x
fraction of the u is decreased, the contribution from direct
g → uū splittings to D̂ remains similar (since in this region
it only depends on the much larger x of the ū), while the
independent pair dPDF increases due to the u PDF factor,
and the ratio decreases. This explanation can be tested by
plotting the ratio for the parton combination ud̄; then we
expect no enhancement in the ratio of the kind that we
found for the uū. This is because a gluon cannot directly
split into a ud̄ pair. We include the ud̄ ratio as the final plot
in Fig. 5, and indeed find no enhancement of the ratio for
this plot.
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A further interesting point to make about the ud̄ plot is
that the ratio is roughly the same as the gg, ug or uū at small
x1; x2 even though this distribution receives no direct feed
from the inhomogeneous term in (2.13). This is due to the
aforementioned point that for small final x1; x2 the 1 → 2

splitting occurs very early, leaving plenty of evolution
space for further emissions that allow (for example) a g to
eventually give rise to a ud̄ pair (plus various other emitted
partons). This means that we cannot suppress the 2v1
contribution to DPS by picking processes such as same sign

FIG. 4 (color online). Double parton distribution functions: standard (left column) and for perturbative splitting (right column) for
three different parton combinations for μ2 ¼ 100 GeV2.
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WW that are initiated by such parton pairs (unless one finds
a way to probe very large xs in this process).
The similar shape of the ladder splitting dPDFs for small

x1; x2 as compared to the independent ladder dPDFs
indicates that the differential cross section contributions
associated with the 2v1 and 2v2 mechanisms will be rather
similar. This we will see in the next two subsections.

B. Quarkonium production

In the calculations, results of which will be discussed
below, we assume μ21; μ

2
2 ¼ M2

χ , where Mχ is a generic
name for the S-wave, P-wave quarkonium or Higgs
boson mass.
In Table II we present the ratio of σ2v1=σ2v2 for the

production of two identical-mass objects (two identical
quarkonia, two Higgs bosons). Following our earlier
discussion from Sec. II A we take the ratio
σeff;2v2=σeff;2v1 ¼ 2. The ratio only slightly depends on
the mass of the object and center-of-mass energy but the

tendency is rather clear. The masses chosen correspond
roughly to production of ηc, χc (M ¼ 3 GeV), ηb, χb
(M ¼ 10 GeV) quarkonia and Higgs boson (M ¼
126 GeV). The double Higgs case is purely academic as
the corresponding DPS cross section is rather small (a
∼10−4 fraction of fb, much smaller than the single parton
scattering cross section [50–54]) but the effect of the
perturbative splitting can be here well illustrated.

FIG. 5 (color online). Ratios of perturbative splitting to conventional double parton distributions for gg (top left), gu (top right), uū
(bottom left) and ud̄ (bottom right).

TABLE II. The ratio of σ2v1=σ2v2 for double quarkonium
production (full phase space) for different masses of the produced
object (rows) and different center-of-mass energies (columns) in
TeV.

M ðGeVÞ= ffiffiffi
s

p ðTeVÞ 0.2 0.5 1.96 8.0 13.0

3. 0.840 0.775 0.667 0.507 0.437
10. 1.116 1.022 0.891 0.780 0.743
126. � � � � � � 1.347 1.134 1.070

CONVENTIONAL VERSUS SINGLE-LADDER-SPLITTING … PHYSICAL REVIEW D 90, 054017 (2014)

054017-9



In Fig. 6 we show the ratio defined as

Rðy1; y2Þ ¼
dσ2v1
dy1dy2

ðy1; y2Þ
dσ2v2
dy1dy2

ðy1; y2Þ
: ð3:1Þ

From these plots we can see that Rðy1; y2Þ does not
depend strongly on the rapidities y1 and y2, as one would
expect given that the ratio of the ladder splitting and
independent ladder pair dPDFs does not depend strongly
on x1; x2 (Fig. 5).
In the calculation of the cross sections in this and in the

next subsection we have to fix the two nonperturbative
parameters: σeff;2v2 and σeff;2v1. Their values are not well
known. Once again we take the ratio σeff;2v2=σeff;2v1 ¼ 2.
We choose σeff;2v2 ¼ 30 mb which corresponds to assum-
ing that partons in a “nonperturbatively generated” pair are
essentially uncorrelated in transverse space [26,29] (but
note that varying σeff;2v2 with the ratio σeff;2v2=σeff;2v1 fixed

FIG. 6 (color online). Rðy1; y2Þ for
ffiffiffi
s

p ¼ 8 TeV for different masses: M ¼ 3 GeV (top left), M ¼ 10 GeV (top right) and
M ¼ 126 GeV (bottom middle).

FIG. 7 (color online). Energy and quarkoniummass dependence
of σeff as a consequence of the existence of two components. In this
calculation we have taken σeff;2v2 ¼ 30 mb and σeff;2v1 ¼ 15 mb.
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affects only the normalizations of the cross sections
presented below).
In Fig. 7 we show how the empirical σeff value depends

on center-of-mass energy assuming that the value of σeff;2v2
is independent of energy. We see a clear dependence of σeff
on energy in the plot, and also on the mass of the
quarkonium. Assuming that there is no other mechanism
for an energy dependence of σeff , σeff is therefore expected
to increase with center-of-mass energy. Note also that the
empirical σeff value obtained is in the ball park of the values
extracted in experimental measurements of DPS (∼15 mb),
even though σeff;2v2 is rather larger, assumed here to
be 30 mb.

C. cc̄cc̄ production

Now we proceed to double charm production. Here we
either assume μ21 ¼ m2

1t and μ22 ¼ m2
2t, or μ

2
1 ¼ M2

cc̄;1 and
μ22 ¼ M2

cc̄;2. The quantity mit is the transverse mass of
either parton emerging from subprocess i, whileMcc̄;i is the
invariant mass of the pair emerging from subprocess i. In
Table III we show the ratio of 2v1-to-2v2 cross sections for
different center-of-mass energies. The numbers here are
similar to those for the double quarkonium production.
Let us show now some examples of differential distri-

butions. In Fig. 8 we show the rapidity distribution of the
charm quark/antiquark for different choices of the scale atffiffiffi
s

p ¼ 7 TeV. The conventional and splitting terms are
shown separately. The splitting contribution (lowest curve,
red) is smaller, but has almost the same shape as the
conventional DPS contribution. We wish to note the huge
difference arising from the different choices of factorization
scale. The second choice μ2 ¼ M2

cc̄ leads to cross sections
more adequate for the description of the LHCb data for
double same-flavor D meson production [22].

TABLE III. The ratio of σ2v1=σ2v2 for cc̄cc̄ production (full
phase space) for different center-of-mass energies in TeV.

μ2 ðGeVÞ= ffiffiffi
s

p ðTeVÞ 0.2 0.5 1.96 7.0 13.0

m2
t 0.628 0.610 0.503 0.326 0.254

M2
cc̄ 0.914 0.855 0.760 0.667 0.606

FIG. 8 (color online). Rapidity distribution of charm quark/antiquark for
ffiffiffi
s

p ¼ 7 TeV for two different choices of scales: μ21 ¼ m2
1t,

μ22 ¼ m2
2t (left) and μ21 ¼ M2

cc̄;1, μ
2
2 ¼ M2

cc̄;2 (right).

FIG. 9 (color online). Transverse momentum distribution of charm quark/antiquark for
ffiffiffi
s

p ¼ 7 TeV for two different choices of
scales.
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In Fig. 9 we show corresponding distributions in trans-
verse momentum of charm quark/antiquark. Again the
shapes of conventional and splitting contributions are
almost the same.
The corresponding ratios of the 2v1-to-2v2 contributions

as a function of rapidity (left) and transverse momentum
(right) are shown in Fig. 10. Especially the transverse
momentum dependence shows a weak but clear tendency.
Finally in Fig. 11 we show the empirical σeff , this time

for double charm production. Again σeff rises with the
center-of-mass energy. A rather large difference between
different choices of scales can be observed.

IV. CONCLUSION

In the present paper we have presented first quantitative
estimates of the single perturbative splitting 2v1 contribu-
tion to double quarkonium, double Higgs boson and cc̄cc̄
production. In all cases we find that the splitting

contribution is of the same order of magnitude as the more
conventional 2v2 contribution often discussed in the
literature. This is consistent with the observation made
already in Ref. [17]. The perturbative splitting contribution
was not considered explicitly in previous detailed analyses
of cc̄cc̄ and pairs of the same-flavor D mesons.
Our calculation shows that the parton splitting contri-

bution is not negligible and has to be included in the full
analysis. However, it is too early in the moment for detailed
predictions of the corresponding contributions as our
results strongly depend on the values of not-well-known
parameters σeff;2v2 and σeff;2v1. Both their magnitude and
even their ratio are not well known. We have presented only
some examples inspired by a simple geometrical model. A
better understanding of the two nonperturbative parameters
seems an important future task.
We have shown that almost all differential distributions

(in rapidity, transverse momentum and even many two-
dimensional distributions) for the conventional and the
parton splitting contributions have essentially the same
shape. This makes their model-independent separation
extremely difficult. This also shows why the analyses
performed so far could describe different experimental
data sets in terms of the conventional 2v2 contribution
alone. The sum of the 2v1 and 2v2 contributions behaves
almost exactly like the 2v2 contribution, albeit with a
smaller σeff that depends only rather weakly on energy,
scale and momentum fractions.
With the perturbative 2v1 mechanism included, σeff

increases as
ffiffiffi
s

p
is increased, and decreases as Q is

increased. A decrease of σeff with Q was also observed
in Ref. [7] for the same reason. Similar trends were also
observed in Ref. [55], although the calculation there is
performed in a Balitsky-Fadin-Kuraev-Lipatov framework
rather than the DGLAP framework used here. In Ref. [55]
the decrease of the effective σeff with Q is somewhat
stronger. It is difficult to pin down the exact reason for this
difference due to the different calculational frameworks

FIG. 10 (color online). The ratios of 2v1-to-2v2 contributions as a function of rapidity (left) and transverse momentum (right) forffiffiffi
s

p ¼ 7 TeV for two different choices of scales.

FIG. 11 (color online). Energy and factorization scale depend-
ence of σeff for cc̄cc̄ production as a consequence of the existence
of the two components. In this calculation we have taken
σeff;2v2 ¼ 30 mb and σeff;2v1 ¼ 15 mb.
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used. However, we remark that the definitions of the
2pGPDs and total DPS cross section used in Ref. [55]
would, in the DGLAP framework, allow some effective 1v1
contribution to DPS, which here we do not include.
At present only the leading-order version of the single

perturbative splitting formalism is available. However, it is
well known that next-to-leading order corrections for
the gluon initiated processes are rather large, also for
processes considered here. In the case of cc̄cc̄ production
they can be taken into account e.g. in the kt factorization
[56]. It is not clear in the moment how to combine the
higher-order effects with the perturbative splitting mecha-
nism discussed here. An interesting question is whether the

ratio between the 2v1 and 2v2 contributions changes when
higher-order corrections are included. Further studies are
clearly needed.
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