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I. INTRODUCTION

Despite intense experimental and theoretical effort, there
have been no observations of beyond the standard model
(BSM) particles. Direct detection at high energy collider
experiments is not, however, the only way to uncover
evidence for new physics. Indirect detection through high-
precision measurements at relatively low energies is also
possible. At low energies, new physics appears through
quantum loop effects, which can probe energy scales far
greater than those available at current high energy experi-
ments, such as at the Large Hadron Collider. Detecting such
loop effects requires precise theoretical predictions of
standard model physics with which to compare experi-
mental data. A related approach is to study the unitarity of
the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix. In the standard model, the CKM matrix is unitary
and deviations from unitarity could indicate the presence of
new physics. Multiple, independent determinations over-
constrain the CKM parameters, usually expressed in terms
of “unitarity triangles.”
Heavy quark flavor physics is one area that could be

particularly sensitive to the effects of heavy BSM particles.
In particular, neutral B meson mixing, which is both loop
suppressed and CKM suppressed, provides a promising
avenue for new physics searches. In the past decade there
have been extensive experimental studies of neutral Bmeson
mixing and B decays from the CDF [1,2], D0 [3–5], and

most recently, LHCb [6,7] collaborations. Some of these
results have exposed a 2–3σ discrepancy between certain
standard model predictions and measurements [3,5,8]. In
addition, recent CKM unitarity triangle fits hint at the
presence of BSM physics, with some fits favoring new
physics contributions in the neutral B mixing sector [9–12].
Neutral Bmeson mixing is characterized by the mass and

decay width differences between the “heavy” and “light”
mass eigenstates, which are admixtures of quark flavor
eigenstates. The mass difference, ΔMq ¼ MH −ML, is
equivalent to the oscillation frequency of a neutral Bq

meson with light quark species q. Theoretical studies of
neutralBmeson mixing employ effective Hamiltonians that
incorporate four-fermion operators. Matrix elements of
these operators characterize the nonperturbative quantum
chromodynamics (QCD) behavior of the mixing process
and these matrix elements must be determined with a
precision sufficient to confront experimental data with
stringent tests. Precise ab initio calculations of nonpertur-
bative QCD effects require lattice QCD.
The scope of neutral Bmeson mixing calculations on the

lattice has been quite extensive and several lattice collab-
orations have produced results with up/down and strange
quarks in the sea [13–17]. The HPQCD collaboration is
currently carrying out nonperturbative calculations that
incorporate the effects of up/down, strange, and charm
quarks in the sea for the first time [18].
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The gauge ensembles that are currently available have a
lattice spacing too large to accommodate heavy quarks
directly at the physical b quark mass. Lattice calculations
are therefore generally carried out using an effective
theory for the heavy quark fields, such as heavy quark
effective theory (HQET) or nonrelativistic QCD (NRQCD).
Effective theories on the lattice must be related to con-
tinuum QCD to extract physically meaningful results. In
this paper we determine the one loop matching coefficients
required to relate lattice matrix elements of ΔB ¼ 2
operators, constructed using the highly improved staggered
quark (HISQ) and NRQCD actions, to the correspon-
ding matrix elements in continuum QCD. We match
through Oðαs;ΛQCD=Mb;αs=ðaMbÞÞ and include “sub-
tracted” dimension-seven operators, which remove power
law divergences at Oðαs=ðaMÞÞ, only at tree level.
Our calculation extends the work of [19] to include

massless HISQ light quarks and is a significant step in
the HPQCD collaboration’s program to determine improve-
ment and matching coefficients for lattice NRQCD at one
loop [20–22]. These matching calculations are an integral
component of the HPQCD collaboration’s precision B
physics effort. Here we largely follow the notation of [19]
for consistency and to enable easy comparison with that
paper. A similar matching calculation for a restricted range
of ΔB ¼ 2 operators in NRQCD was carried out in [23].
Matching calculations for static heavy quarks with a range
of light quark actions were undertaken in [24] and more
recently in [25–27]. A preliminary discussion of Oð1=MbÞ
operators in HQET was presented in [28]. We provide full
details of the extraction of the lattice NRQCD mixing
coefficients, which does not appear in the literature.
In the next section we discuss four-fermion operators in

continuum QCD and on the lattice. We then describe the
matching procedure that relates the matrix elements of these
operators. In Sec. IV we detail the calculation of the lattice
mixing coefficients. We present our results for the mixing
parameters from heavy-light four-fermion operators through
order αs, ΛQCD=Mb, and αs=ðaMbÞ in Sec. V. We conclude
with a summary in Sec. VI. In theAppendixwe provide some
details of the continuum calculations entering the matching
procedure. We discuss two different NDR-MS schemes that
have been used in the literature for the renormalization of the
standard model ΔB ¼ 2 operators Q2 and Q3, and we
correct two errors in Eqs. (B9) and (B10) of Ref. [19].

II. FOUR-FERMION OPERATORS

A. In continuum QCD

There are three dimension-six,ΔB ¼ 2 operators that are
relevant to neutral B meson mixing in the standard model:

Q1 ¼ ðΨ̄i
bγ

μPLΨi
qÞðΨ̄j

bγμPLΨ
j
qÞ; ð1Þ

Q2 ¼ ðΨ̄i
bPLΨi

qÞðΨ̄j
bPLΨ

j
qÞ; ð2Þ

Q3 ¼ ðΨ̄i
bPLΨ

j
qÞðΨ̄j

bPLΨi
qÞ: ð3Þ

Here the subscript on the QCD fields,Ψ and Ψ̄, denotes the
quark species: b for bottom quarks and q for down or
strange quarks, which we take to be massless. The super-
scripts i and j are color indices and PR;L ¼ ð1� γ5Þ are
right- and left-handed projectors. Operator Q1 determines
the mass difference ΔMq in the standard model and all
three are useful in studies of the width difference ΔΓq.
BSM physics can be parametrized by a ΔB ¼ 2 effective

Hamiltonian, which incorporates two further independent
operators,

Q4 ¼ ðΨ̄i
bPLΨi

qÞðΨ̄j
bPRΨ

j
qÞ; ð4Þ

Q5 ¼ ðΨ̄i
bPLΨ

j
qÞðΨ̄j

bPRΨi
qÞ: ð5Þ

Collectively these five operators are known as the “SUSY
basis of operators” in the literature [29]. We simplify
intermediate stages of the matching calculation by intro-
ducing two extra operators,

Q6 ¼ ðΨ̄i
bγμPLΨi

qÞðΨ̄j
bγ

μPRΨ
j
qÞ; ð6Þ

Q7 ¼ ðΨ̄i
bγμPLΨ

j
qÞðΨ̄j

bγ
μPRΨi

qÞ: ð7Þ

Matrix elements of these operators are related to matrix
elements of Q5 and Q4 via Fierz relations, so that, as one
would expect, Q6 and Q7 are not independent operators.
Matching calculations in perturbation theory are gen-

erally carried out by considering scattering between exter-
nal quark (or gluon) states. For the case of ΔB ¼ 2
operators, we consider scattering from an incoming state
consisting of a heavy antiquark and a light quark to an
outgoing state of a heavy quark and light antiquark. We
write these states symbolically by

jini ¼ jQ̄B; qCi; and houtj ¼ hq̄A;QDj; ð8Þ

where the superscripts are color indices. The corresponding
external Dirac spinors are uq and vq for the incoming light
quark and outgoing light antiquark and ūQ and v̄Q for the out-
goingheavyquark and incomingheavyantiquark respectively.
We denote the matrix elements of the operators Qi by

hQii ¼ houtjQijini; ð9Þ

and at tree level Q1, Q2, Q4, and Q6 are

hq̄A;QDjðΨ̄i
bΓ1Ψi

qÞðΨ̄j
bΓ2Ψ

j
qÞjQ̄B; qCitree

¼ δABδCD½ðūQΓ1uqÞðv̄QΓ2vqÞ þ ðūQΓ2uqÞðv̄QΓ1vqÞ�
− δADδBC½ðūQΓ1vqÞðv̄QΓ2uqÞ þ ðūQΓ2vqÞðv̄QΓ1uqÞ�;

ð10Þ
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which we represent diagrammatically in Fig. 1. The Dirac
operators Γ1;2 represent the operator insertions correspond-
ing to Eqs. (1) to (7). For matrix elements of Q3, Q5, and
Q7, we have instead

hq̄A;QDjðΨ̄i
bΓ1Ψ

j
qÞðΨ̄j

bΓ2Ψi
qÞjQ̄B; qCitree

¼ δADδCB½ðūQΓ1uqÞðv̄QΓ2vqÞ þ ðūQΓ2uqÞðv̄QΓ1vqÞ�
− δABδCD½ðūQΓ1vqÞðv̄QΓ2uqÞ þ ðūQΓ2vqÞðv̄QΓ1uqÞ�:

ð11Þ

Radiative corrections induce mixing between the four-
fermion operators, which we write as

hQiiMS ¼ hQiitree þ αscijhQjið0Þtree; ð12Þ

where the superscript (0) denotes matrix elements con-
structed using spinors that obey

ūQγ0 ¼ ūQ; and v̄Qγ0 ¼ −v̄Q; ð13Þ

in order to match to the effective theory. In principle the
product cijhQjið0Þtree is a sum over all operators Qj that mix
with Qi. In practice, however, only two such operators
appear: for example, for Q1 we have

hQ1iMS ¼ hQ1itree þ αsc11hQ1ið0Þtree þ αsc12hQ2ið0Þtree:

ð14Þ
In the following, we leave this sum implicit.

B. On the lattice

In the effective theory formalism of NRQCD, the heavy
quarks and antiquarks are treated as distinct quark species.
We separate the quark fields that create heavy quarks,
which we denote Ψ̄Q, from the fields that annihilate heavy
antiquarks, which we represent by Ψ̄Q̄.

The two-component heavy quark field is obtained from
the four-component QCD quark field, Ψ̄b, via the Foldy-
Wouthuysen-Tani transformation (see, for example, [30]),

Ψ̄b ¼ Ψ̄Q

�
1þ 1

2M
γ · ∇⃖þOð1=M2Þ

�
; ð15Þ

where the arrow indicates that the derivative acts on the
heavy quark field to the left. We insert this expansion into
the four-fermion operators of Eqs. (1) to (7) to determine
the appropriate NRQCD operators. We see immediately
that, at leading order in 1=M, we need operators of the form

Q̂i ¼ ðΨ̄QΓ1ΨqÞðΨ̄Q̄Γ2ΨqÞ þ ðΨ̄Q̄Γ1ΨqÞðΨ̄QΓ2ΨqÞ:
ð16Þ

We obtain the OðΛQCD=MÞ corrections by introducing
the operators

Q̂i1 ¼ 1

2M
½ð ~∇Ψ̄Q · γΓ1ΨqÞðΨ̄Q̄Γ2ΨqÞ

þ ðΨ̄QΓ1ΨqÞð ~∇Ψ̄Q̄ · γΓ2ΨqÞ
þ ð ~∇Ψ̄Q̄ · γΓ1ΨqÞðΨ̄QΓ2ΨqÞ
þ ðΨ̄Q̄Γ1ΨqÞð ~∇Ψ̄Q · γΓ2ΨqÞ�: ð17Þ

We denote the matrix elements of the effective theory by

hQ̂ii ¼ houtjQ̂ijini; and hQ̂i1i ¼ houtjQ̂i1jini; ð18Þ
where now the “in” and “out” states are understood to be an
incoming NRQCD antiquark and HISQ quark and an
outgoing NRQCD quark and HISQ antiquark, respectively.
Radiative corrections induce mixing between these oper-
ators, with mixing coefficients clattij , and we obtain

hQ̂ii ¼ hQ̂iið0Þtree þ αsclattij hQ̂jið0Þtree; ð19Þ

and similarly

hQ̂i1i ¼ hQ̂i1ið0Þtree þ αsζ
latt
ij hQ̂jið0Þtree: ð20Þ

We ignore the one loop corrections to hQ̂i1ið0Þtree, which only
arise at OðαsΛQCD=MbÞ in the matching procedure.
As discussed in more detail in [19], the mixing coef-

ficients ζlattij describe the “mixing down” of dimension-
seven operators Q̂i1 onto dimension-six operators Q̂j.
In the next section we outline the matching procedure

before describing the calculation of the lattice mixing
coefficients.

III. THE MATCHING PROCEDURE

We now relate the matrix elements of the NRQCD-
HISQ operators, which ultimately will be determined

BA

CD

A

D

B

C

FIG. 1. Tree-level diagrams representing the matrix elements of
operators Q1, Q2, Q4, and Q6. The incoming state is a heavy
antiquark and a light quark and the outgoing state is a heavy
quark and a light antiquark. The letters A, B, C, and D are color
indices and correspond to the conventions of Eq. (10).
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nonperturbatively on the lattice, to the matrix elements of
QCD operators in the MS scheme. In other words, we wish
to relate Eqs. (19) and (20) to Eq. (12).
We first expand the QCD matrix element hQiitree in

Eq. (12) in powers of the inverse heavy quark mass:

hQiitree ¼ hQiið0Þtree þ hQi1ið0Þtree: ð21Þ

Thus the QCD matrix element becomes

hQiiMS ¼ hQiið0Þtree þ hQi1ið0Þtree þ αscijhQjið0Þtree: ð22Þ

Our aim is to write the QCD matrix element in terms of
the NRQCD-HISQ matrix elements. Therefore we need to
reexpress the tree-level matrix elements hQiið0Þtree and
hQi1ið0Þtree in terms of the matrix elements on the lattice.
To achieve this, we invert Eqs. (19) and (20) to obtain

hQ̂iið0Þtree ¼ hQ̂ii − αsclattij hQ̂ji; ð23Þ

and

hQ̂i1ið0Þtree ¼ hQ̂i1i − αsζ
latt
ij hQ̂ji: ð24Þ

Using

hQ̂iið0Þtree ¼ hQiið0Þtree; and hQ̂i1ið0Þtree ¼ hQi1ið0Þtree; ð25Þ

we can now plug these results into Eq. (22) to find

hQiiMS ¼ ½1þ αsρii�hQ̂ii þ αsρijhQ̂ji þ hQ̂i1i
− αsζ

latt
ij hQ̂ji þOðα2s ; αsΛQCD=MÞ; ð26Þ

where the matching coefficients, ρij, are given by

ρij ¼ cij − clattij : ð27Þ

We now define the “subtracted” matrix elements, which
remove power law divergences at Oðαs=ðaMÞÞ [19], as

hQ̂i1isub ¼ hQ̂i1i − αsζ
latt
ij hQ̂ji; ð28Þ

so that our final expression is

hQiiMS ¼ hQ̂ii þ αsρijhQ̂ji þ hQ̂i1isub
þOðα2s ; αsΛQCD=MÞ: ð29Þ

For a more comprehensive discussion of power law
divergences in lattice NRQCD see [31] and [32].

IV. EVALUATION OF LATTICE MIXING
COEFFICIENTS

Complete details of the lattice actions used in our
matching procedure were given in [22] and here we simply
summarize the relevant information. For the gauge fields
we use the Symanzik improved gauge action with tree level
coefficients [33–36], because radiative improvements to the
gluon action do not contribute to the matching calculation
at one loop [22]. We include a gauge-fixing term and,
where possible, we confirm that gauge invariant quantities
are gauge parameter independent by working in both
Feynman and Landau gauges.
We discretize the light quarks using the HISQ action [37]

and set the bare light quark mass to zero. For the heavy
quark fields, we use the tree-level NRQCD action of
[20,22]. We do not consider the effects of radiative
improvement of the NRQCD action, which are not required
for our one loop calculation.
Our results were obtained using two independent meth-

ods: with the automated lattice perturbation theory routines
HIPPY and HPSRC [38,39]; and with MATHEMATICA
and FORTRAN routines developed for earlier matching
calculations [22,40]. We described both of these methods in
detail in [22].
We undertook a number of checks of our results. We

reproduced the results of [19] with NRQCD heavy quarks
and AsqTad light quarks to test the automated lattice
perturbation theory routines. In many cases, we established
that gauge invariant quantities, such as the mass renorm-
alization, are gauge parameter independent by working in
both Feynman and Landau gauges. Furthermore, we carried
out several diagram specific checks, which we discuss in
more detail in the next subsections.
Finally, we confirmed that infrared divergent parameters,

such as the wave function renormalization and certain
matching parameters, exhibited the correct continuum-like
behavior.
As with the heavy-light current matching results of [22],

we believe that these two methods are sufficiently inde-
pendent that agreement between these methods provides a
stringent check of our results.

A. Dimension-six operators

The spinor structures corresponding to the one loop
contributions to the matrix elements of the dimension-six
operators of Eq. (19) can be written schematically as the
product of two spinor bilinears, each with some particular
Lorentz and color structure specified by the precise con-
tribution in question. We illustrate the corresponding
Feynman diagrams in Fig. 2. This idea schematically
generalizes the tree-level results of Eqs. (10) and (11).
With this schematic in mind, we can break down the

diagrams of Fig. 2 into two types: those diagrams in which
a gluon propagator connects each spinor bilinear and those
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without such a propagator connection. It is straightforward
to recognize that diagrams (a), (b), (c0), and (d0) of Fig. 2
fall into the latter category and all others into the former. In
the following, we focus the discussion on the determination
of mixing coefficients for Q̂1, Q̂2, Q̂4, and Q̂6. We discuss
Q̂3, Q̂5, and Q̂7 at the end of this subsection.

1. Diagrams (a) and (b)

Diagrams (a) and (b) are the most straightforward to
compute, since we can separate the spinor bilinears.
Diagrams (c0) and (d0) are similarly straightforward, but
only contribute to Q̂3, Q̂5, and Q̂7, which we discuss later.
The contribution to Q̂1 from diagram (a) is given by

aÞ ¼ 4

3
δABδCDðūQγμPLuqÞðv̄Q̄VμvqÞ; ð30Þ

where Vμ represents the one loop vertex correction to the
heavy-light quark bilinear v̄Q̄γμPLvq:

Vμ ¼ Vν
Q̄ Q̄ gGQ̄γμPLGqVσ

qqgKνσ: ð31Þ

Here the Vν represent the quark-quark-gluon vertices, GQ̄
the heavy antiquark propagator and Gq the quark propa-
gator, and Kνσ the gluon propagator. Note that, for the other
operators in the SUSY basis, there is no occurrence of γμ in
the operator insertions and consequently diagram (a) takes
the form

ðaÞ ¼ 4

3
δABδCDðūQPL;RuqÞðv̄Q̄VvqÞ; ð32Þ

where

V ¼ Vν
Q̄ Q̄ gGQ̄PL;RGqVσ

qqgKνσ: ð33Þ

We have chosen a specific combination of external
colors that isolates the contribution proportional to the
spinor bilinears ūQγμPLuq and v̄Q̄γ

μPLvq [compare to
Eq. (10)], with color factor ð4=3ÞδABδCD. We could equally
have chosen to isolate the spinor structure proportional to

ūQγμPLvq and v̄Q̄γ
μPLuq with color factor ð−4=3ÞδADδBC.

This choice would have given identical results. In the
following discussion we leave the color factor implicit for
clarity and always work with the contribution to O1
(analogous relations hold for the other operators).
We separate out the temporal and spatial components so

that, for diagram (a), for example, we write

ðaÞ ¼ c0ðūQγ0PLuqÞðv̄Q̄γ0PLvqÞ

þ
X3
k¼1

ckðūQγkPLuqÞðv̄Q̄γkPLvqÞ: ð34Þ

By symmetry of the spatial directions, the three coefficients
ck, for k ∈ f1; 2; 3g, are all equal. In terms of the operator
mixing of Eq. (19), we also have

ðaÞ ¼ clatt11 ðūQγμPLuqÞðv̄Q̄γμPLvqÞ
þ clatt12 ðūQPLuqÞðv̄Q̄PLvqÞ: ð35Þ

Therefore, by projecting out the coefficient of each spinor
structure in Eq. (34), we can obtain the mixing coefficients
from

clatt11 ¼ ck; and clatt12 ¼ ck − c0: ð36Þ

In the automated lattice perturbation theory routines used
in this calculation, the result of a generic Feynman diagram
integral is expressed as a “SPINOR,” which is a derived
type specified by the HPSRC module MOD_SPINORS.F90
[38,39]. The SPINOR type incorporates a 16-element array
that specifies the coefficient of each element of the Dirac
algebra. Therefore, to extract the coefficient of some
particular Dirac structure, all one needs to do is return
the corresponding element of the SPINOR array (external
spinors are dropped for the purposes of the calculation).
For example, to determine ck for diagram (a) we extract

the coefficient of, say, γ3 from the integrated expression for
the Feynman diagram. This corresponds exactly to the
standard continuum procedure of multiplying by an appro-
priate projector and taking the trace, which is the method
applied in our second, MATHEMATICA/FORTRAN,
approach to this calculation.
We applied two sets of cross-checks to our results for

these diagrams. First, we checked that diagrams (a) and (b)
give identical results. Second, we confirmed that the
mixing coefficients were equal to the corresponding
heavy-light current results of [22]:

clatt;ðaÞ11 ¼ ζðVkÞ
11 ; clatt;ðaÞ22 ¼ ζðV0Þ

11 ; clatt;ðaÞ12 ¼ ζðVkÞ
11 − ζðV0Þ

11 :

ð37Þ

Note that these ζ
ðVμÞ
11 are not the mixing coefficients of the

1=M operators described above (which we denote ζlattij ), but

FIG. 2. One loop diagrams representing the corrections to
matrix elements of the operators Qi. The external states are
those of Fig. 1 and Eq. (10).
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the mixing coefficients of the heavy-light currents
described in [22].

2. Diagrams (c) to (f0)

The calculation of the contributions from diagrams (c) to
(f 0) of Fig. 2 proceed along conceptually similar lines,
although the integrand structure is more complicated.
We will examine two examples of the possible spinor

structure to illustrate our method. The other diagrams
follow the same pattern, mutatis mutandis.
The contribution to Q̂1 from diagram (c) is given by

ðcÞ ¼ −
1

6
δABδCDðūQVð1ÞμνuqÞðv̄Q̄Vð2Þ

μν vqÞ; ð38Þ

where, using the notation described below Eq. (31),

Vð1Þμν ¼ γμPLGqVν
qqg; Vð2Þ

μν ¼ Vσ
QQgGQγμPLKσν:

ð39Þ

Once again we separate out the temporal and spatial
contributions to the diagram, akin to Eq. (34), and
determine the mixing coefficients from

clatt11 ¼ ck; and clatt12 ¼ ck − c0: ð40Þ

The procedure for diagram (a0) is much the same. This
time the starting point is (note the different spinor structure)

ða0Þ ¼ 1

2
δABδCDðūQVð1ÞμνvqÞðv̄Q̄Vð2Þ

μν uqÞ; ð41Þ

with Vð1Þμν and Vð2Þ
μν given in Eq. (39).

For these diagrams, we confirmed that the contributions
from the pairs of diagrams (c) and (d), (a0) and (b0), and (c0)
and (d0), are each identical.

3. Operators Q̂3 and Q̂5

The previous discussion focused on the extraction of the
mixing coefficients for Q̂1, Q̂2, Q̂4, and Q̂6, which all have
the same color structure. The contributions from Q̂3, Q̂5
and Q̂7 have a different color structure. It is straightforward
to the observer, however, that by judicious choice of
external colors and appropriate Fierz relations, the con-
tributions to these operators can be related to those from
operators Q̂2, Q̂4, and Q̂6.
For example, one can compare the term proportional to

δABδCD for Q̂2 with that proportional to δADδBC for Q̂3 and
then, taking into account the relative color factors, one finds

clatt;ðaÞ=ðbÞ33 ¼ 1

3
clatt;ðc

0Þ=ðd0Þ
33 ¼ −

1

8
clatt;ðaÞ=ðbÞ22 ;

clatt;ðcÞ=ðdÞ33 ¼ −8clatt;ðcÞ=ðdÞ22 ;

clatt;ðeÞ33 ¼ clatt;ðeÞ22 ; clatt;ðe
0Þ

33 ¼ clatt;ðe
0Þ

22 ;

clatt;ðfÞ33 ¼ clatt;ðfÞ22 ; clatt;ðf
0Þ

33 ¼ clatt;ðf
0Þ

22 : ð42Þ

We have verified by explicit calculation for a specific
choice of heavy quark mass that these relations hold.
Combined with the appropriate Fierz identities, these

results reduce the number of integrations we must carry out.
This significantly speeds up the matching procedure,
because there are approximately 80 nonzero coefficient
contributions that must be determined at each heavy quark
mass for the complete matching calculation.

B. Dimension-seven operators

We represent the diagrams that include the 1=M oper-
ators, Q̂i1, in Fig. 3. Note that diagrams in which the
derivative acts directly on an external heavy quark or
antiquark vanish, because these external states have zero
spatial momentum.
We expect that the systematic truncation uncertainty is

dominated by missing terms of Oðα2sÞ and therefore we do
not include contributions that appear at OðαsΛQCD=MbÞ,
which we illustrate in Fig. 4. These contributions are
generated by gluon emission at the 1=M operator vertex
and, to our knowledge, have not been calculated in
continuum QCD.

FIG. 3. Sample one loop diagrams representing the corrections
to matrix elements of the 1=M operators Q̂j1. The black dot
represents a derivative acting on the heavy (anti)quark propaga-
tor. The external states are those of Fig. 1. We show the
corrections associated with diagrams (a), (b), (a0), and (b0) of
Fig. 2. Analogous diagrams exist for diagrams (c) to (f 0). In
general diagrams such as a.ii and b.ii vanish, because the
derivative acts on an external heavy (anti)quark with zero
momentum.
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The extraction of the mixing coefficients, ζlattij , for the
1=M operators parallels that for the leading order operators,
with two small differences. The first is the inclusion of a
derivative acting on the heavy (anti)quark propagator. The
second is the presence of the extra gamma matrix in the
operator, which means that the result is extracted from
the coefficient of a different element of the Dirac algebra
than in the leading order case. These changes aside, the
process is the same.
The results are all infrared finite, which we confirm by

explicit calculation at different values of the gluon masses.
Furthermore we verify that

ζlatt;ðaÞ=ðbÞ11 ¼ ζðVkÞ
10 ; and ζlatt;ðaÞ=ðbÞ12 ¼ ζðVkÞ

10 − ζðV0Þ
10 ; ð43Þ

where the ζ
ðVμÞ
10 are the heavy-light current matching results

of [22].

C. Wave function renormalization

To complete the matching calculation we also require the
HISQ and NRQCD wave function renormalization con-
tributions. The one loop parameters of NRQCD have been
extensively studied in the literature, for example in
[20,22,40,41] and we describe the complete one loop
calculations for both massless and massive HISQ in
[22]. For the purposes of this paper, we need only the
massless HISQ result:

Zq ¼ 1 − αs

�
Cq þ

1

3π
½1 − ð1 − ξÞ� log ða2λ2Þ

�
þOðα2sÞ;

ð44Þ

where aλ is a gluon mass introduced to regulate the infrared
divergence. Here ξ is the gauge-fixing parameter: for
Feynman gauge, ξ ¼ 1. The infrared finite contribution,
Cq, is Cq ¼ 0.3940ð3Þ in Feynman gauge.
The NRQCD wave function renormalization, ZH, is

given by

ZH ¼ 1þ αs

�
CH −

1

3π
½2þ ð1 − ξÞ� log ða2λ2Þ

�
þOðα2sÞ:

ð45Þ

We tabulate the infrared finite contribution, CH, in
Table I. We present results with the tree-level NRQCD
coefficients, ci ¼ 1, and use the Landau link definition of

the tadpole improvement factor u0, with uð1Þ0 ¼ 0.7503ð1Þ.
All results use stability parameter n ¼ 4.
In the following, we incorporate the wave function

renormalizations, Zq and ZQ, in the mixing coefficients
cij with i ¼ j.

V. RESULTS

A. In continuum QCD

The mixing coefficients defined in Eq. (12), cij, are given
to OðαsÞ in [19]. Coefficients c11, c12, c22, and c21 were
first published in [23]. Here we collect the results for
the mixing coefficients for completeness. We discuss the
continuum one loop calculation in more detail in the
Appendix, where we focus on the scheme dependence of
the “evanescent” operators that enter the matching pro-
cedure and correct Eqs. (B9) and (B10) of [19].

FIG. 4. Sample one loop diagrams representing the one loop
corrections to matrix elements of the 1=M operators Q̂j1. We
show the four corrections associated with diagram (a) of Fig. 2.
Analogous diagrams exist for diagrams (b) to (f 0). For more
details, see the caption of Fig. 2. We do not include these
contributions in our matching procedure.

TABLE I. Infrared finite contributions to the one loop wave
function renormalization in NRQCD. All results use stability
parameter n ¼ 4. We implement tadpole improvement with the
Landau link definition of u0. All results are in Feynman gauge.
The statistical uncertainties from the numerical integration of the
relevant diagrams are unity in the final digit.

aM0 3.297 3.263 3.25 2.66 2.62 1.91 1.89

CH −0.235 −0.241 −0.244 −0.366 −0.374 −0.617 −0.627

TABLE II. One loop lattice coefficients, clattij , for HISQ-
NRQCD ΔB ¼ 2 operators. We include only the infrared finite
contributions to the coefficients. The statistical uncertainties from
the numerical integration of the relevant diagrams are �0.002.

aM0 3.297 3.263 3.25 2.66 2.62 1.91 1.89

clatt11 0.208 0.197 0.194 0.008 −0.005 −0.374 −0.389
clatt12 −0.720 −0.727 −0.730 −0.865 −0.877 −1.138 −1.150
clatt22 0.450 0.448 0.447 0.417 0.417 0.337 0.335
clatt21 −0.052 −0.051 −0.051 −0.030 −0.032 0.000 0.001
clatt33 0.090 0.086 0.083 −0.015 −0.021 −0.230 −0.239
clatt31 −0.008 −0.006 −0.004 0.021 0.023 0.072 0.073
clatt44 0.832 0.830 0.829 0.816 0.818 0.792 0.791
clatt45 0.039 0.036 0.036 −0.018 −0.023 −0.124 −0.129
clatt55 0.202 0.195 0.192 0.060 0.052 −0.204 −0.215
clatt54 0.488 0.489 0.490 0.522 0.525 0.587 0.591
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The nonzero coefficients for the standard model oper-
ators in the “BBGLN” scheme of [42] are

c11 ¼
1

4π

�
−
35

3
− 2 log

μ2

M2
− 4 log

λ2

M2

�
; ð46Þ

c12 ¼ −
8

4π
; ð47Þ

c22 ¼
1

4π

�
10þ 16

3
log

μ2

M2
−
4

3
log

λ2

M2

�
; ð48Þ

c21 ¼
1

4π

�
3

2
þ 1

3
log

μ2

M2
þ 2

3
log

λ2

M2

�
; ð49Þ

c33 ¼
1

4π

�
−2 −

8

3
log

μ2

M2
−
4

3
log

λ2

M2

�
; ð50Þ

c31 ¼
1

4π

�
3þ 4

3
log

μ2

M2
þ 2

3
log

λ2

M2

�
; ð51Þ

while the mixing coefficients for the remaining operators in
the SUSY basis are

c44 ¼
1

4π

�
143

12
þ 8 log

μ2

M2
−
7

2
log

λ2

M2

�
; ð52Þ

c45 ¼
1

4π

�
−
23

4
−
3

2
log

λ2

M2

�
; ð53Þ

c55 ¼
1

4π

�
−
85

12
− log

μ2

M2
−
7

2
log

λ2

M2

�
; ð54Þ

c54 ¼
1

4π

�
13

4
þ 3 log

μ2

M2
−
3

2
log

λ2

M2

�
: ð55Þ

FIG. 5 (color online). Mass dependence of the lattice coeffi-
cients clattij , for i ¼ j. Statistical uncertainties from numerical
integration are �0.002 and smaller than the data points on
this scale.

FIG. 6 (color online). Mass dependence of the lattice coeffi-
cients clattij , for i ≠ j. Statistical uncertainties from numerical
integration are �0.002 and smaller than the data points on
this scale.

TABLE III. One loop matching coefficients for HISQ-NRQCD
ΔB ¼ 2 operators. The statistical uncertainties from the numeri-
cal integration of the relevant diagrams are �0.002.

aM0 3.297 3.263 3.25 2.66 2.62 1.91 1.89

ρ11 −0.377 −0.373 −0.372 −0.314 −0.310 −0.142 −0.134
ρ12 0.083 0.090 0.093 0.227 0.238 0.507 0.513
ρ22 0.599 0.599 0.599 0.586 0.583 0.596 0.596
ρ21 0.045 0.045 0.045 0.059 0.049 0.051 0.051
ρ33 0.004 0.006 0.008 0.063 0.066 0.208 0.215
ρ31 0.120 0.119 0.119 0.114 0.114 0.098 0.098
ρ44 0.781 0.777 0.776 0.677 0.667 0.517 0.512
ρ45 −0.212 −0.211 −0.212 −0.206 −0.205 −0.179 −0.177
ρ55 −0.101 −0.100 −0.099 −0.079 −0.079 0.001 0.006
ρ54 0.055 0.052 0.050 −0.030 −0.036 −0.174 −0.180

TABLE IV. Next-to-leading order matching coefficients for
HISQ-NRQCD ΔB ¼ 2 operators. The statistical uncertainties
from the numerical integration of the relevant diagrams are
�0.002.

aM0 3.297 3.263 3.25 2.66 2.62 1.91 1.89

ζ11 0.095 0.096 0.097 0.115 0.117 0.154 0.155
ζ12 0.382 0.386 0.387 0.462 0.467 0.615 0.620
ζ22 0.159 0.161 0.161 0.192 0.165 0.256 0.258
ζ21 0.004 0.004 0.004 0.005 0.005 0.006 0.006
ζ33 −0.032 −0.032 −0.032 −0.038 −0.039 −0.051 −0.052
ζ31 0.028 0.028 0.028 0.034 0.034 0.045 0.045
ζ44 0.135 0.137 0.137 0.163 0.166 0.218 0.220
ζ45 0.040 0.040 0.040 0.048 0.049 0.064 0.065
ζ55 0.040 0.040 0.040 0.048 0.049 0.064 0.065
ζ54 −0.056 −0.056 −0.056 −0.067 −0.068 −0.090 −0.090
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In addition, we require the mixing coefficients for the
intermediate operators Q6 and Q7 of Eqs. (6) and (7),
which are given by

c46 ¼
1

4π

�
23

8
þ 3

4
log

λ2

M2

�
; ð56Þ

c57 ¼
1

4π

�
−
13

8
−
3

2
log

μ2

M2
þ 3

4
log

λ2

M2

�
: ð57Þ

B. On the lattice

We tabulate the infrared finite contributions to the one
loop lattice coefficients in Table II. For a breakdown of the
individual contributions to the mixing coefficients, see [19],
which demonstrates how one obtains the final result for clatt44

and clatt46 and recovers the continuum infrared behavior. For
illustration, we plot the mass dependence of the coefficients
clattij , for i ¼ j and i ≠ j, in Figs. 5 and 6, respectively. Note
that the scales on the vertical axes of these two plots are
identical, to enable easy comparison.

C. Matching coefficients

Tables III and IV summarize the final results of our
calculation. Table III lists the leading-order matching
coefficients, ρij, at a range of heavy quark masses and at
a scale equal to the heavy quark mass. We tabulate next-to-
leading contributions, ζij, in Table IV. We plot the leading
order coefficients ρij in Figs. 7 and 8, and the next-to-
leading order coefficients ζij in Figs. 9 and 10. We use the

FIG. 7 (color online). Mass dependence of the leading order
matching coefficients ρij, for i ¼ j. Statistical uncertainties from
numerical integration are�0.002 and smaller than the data points
on this scale.

FIG. 8 (color online). Mass dependence of the matching
coefficients ρij, for i ≠ j.

FIG. 9 (color online). Mass dependence of the next-to-leading
order matching coefficients ζij, for i ¼ j. Statistical uncertainties
from numerical integration are �0.002 and smaller than the data
points on this scale.

FIG. 10 (color online). Mass dependence of the next-to-leading
order matching coefficients ζij, for i ≠ j. Statistical uncertainties
from numerical integration are �0.002 and smaller than the data
points on this scale.
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same vertical axes to simplify comparison between Figs. 7
and 8 and between Figs. 9 and 10. We choose heavy quark
masses that correspond to the HPQCD collaboration’s
ongoing nonperturbative calculations of neutral B mixing
[18]. These masses are a subset of those presented in the
matching calculation of [22].

VI. SUMMARY

We have determined the one loop matching coeffi-
cients required to match the matrix elements of heavy-
light four-fermion operators on the lattice to those in
continuum QCD. We used NRQCD for the heavy quarks
and massless HISQ light quarks. We incorporated the full
set of five independent ΔB ¼ 2 operators relevant to
neutral B mixing both within and beyond the standard
model and carried out the matching procedure through
Oðαs;ΛQCD=Mb; αs=ðaMbÞÞ. The perturbative coeffi-
cients are well behaved and all are smaller than unity.
The dominant systematic uncertainties in our matching

procedure appear at Oðα2sÞ with next-to-leading contribu-
tions at OðαsΛQCD=MbÞ, the exact values of which will
depend on the choice of lattice spacing and matching scale.
We estimate that these uncertainties will correspond to a
systematic uncertainty of approximately a few percent in
the final results for nonperturbative matrix elements in the
MS scheme [17]. We note that the uncertainties arising
from perturbative matching will be significantly reduced in
ratios of nonperturbative matrix elements [17,43] and that,
in general, many HISQ parameters exhibit better perturba-
tive convergence than their AsqTad counterparts [22].
These matching coefficients are critical ingredients in the

determination of neutral B meson mixing on the lattice
using NRQCD and HISQ quarks. Without these coeffi-
cients, matrix elements calculated nonperturbatively on the
lattice cannot be related to experimentally relevant results
in continuum QCD in the MS scheme. Since any lattice
calculation of neutral meson mixing that incorporates an
effective theory description of the heavy quark requires
some matching procedure, we have included full details of
the lattice perturbation theory calculation, not previously
available in the literature, as an aid to future calculations.
Although recent work on the decays of the Bs meson has

been carried out using the relativistic HISQ action for b and
s quarks [44], such calculations are currently prohibitively
expensive for the Bd meson. Furthermore, computations at
the physical b quark mass are not yet possible and an
HQET-guided expansion up to the physical point is still
required. Therefore, the use of effective theories for heavy-
light systems remains the most practical method for precise
predictions of neutral B meson mixing phenomena.
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APPENDIX: COMMENTS ON THE CONTINUUM
ONE LOOP CALCULATION

In this Appendix we give some details of the continuum
one loop calculations entering the matching procedure. We
focus mainly on scheme dependence, particularly in the
“SLL sector,” the sector that covers operators Q2 and Q3.
The continuum results given in Sec. VA appeared in [19]
and expressions for c11, c12, c22 and c21 were first
published in [23]. For those calculations the BBGLN
scheme [42] was used in the SLL sector. In an
Appendix of [19] results were also presented in the SLL
sector in the BMU scheme [45], another popular scheme,
denoted ~c22, ~c21, ~c33 and ~c31. We have since discovered
errors in results for ~c33 and ~c31 and correct them here.
We use the NDR-MS scheme to regularize ultraviolet

divergences. We employ a gluon mass, λ, to handle infrared
divergences, as in the lattice calculations. To fix a renorm-
alization scheme completely within dimensional regulari-
zation of four-fermion operators, one must also specify
one’s choices of evanescent operators, which enter the
calculations as counterterms. Hence one starts from a
specific basis of physical operators and then lists the
evanescent operators that arise when one tries to project
complicated Dirac structures in loop diagrams back onto
the physical basis. Most calculations in the literature follow
the renormalization procedures with evanescent operators
of Buras and Weisz [46]. For one loop calculations it is
more convenient to list projections onto the physical basis
for the various Dirac structures encountered. Then the
evanescent operators are defined as the difference between
left-hand and right-hand sides of these projection relations.
The evanescent operators vanish in d ¼ 4 dimensions by
construction, and for d ≠ 4 dimensions they are understood
to be subtracted away through the renormalization process.
In the Buras and Weisz renormalization scheme [46],
equations explicitly involving evanescent operators will
become relevant only at two loops. Even at one loop,
however, and staying within the framework of the Buras
and Weisz renormalization scheme, the set of evanescent
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operators is not unique. Different projections correspond to
different evanescent operators being subtracted by the
renormalization procedure. Different projections also lead
to different finite contributions to the matching coefficients
(the cij’s), although the one loop anomalous dimensions
remain the same.

1. Examples from the VLL sector

Essentially all continuum calculations used in phenom-
enology are in agreement on the choices for evanescent
operators relevant for Q1, Q4 and Q5. A well-known
projection relation, for instance, in the Q1 sector (also
called the “VLL sector”) is given by

½γμγνγρPL ⊗ γμγνγρPL� ¼ ð16 − 2ϵÞ½γρPL ⊗ γρPL�;
ðA1Þ

where we use d ¼ 4 − ϵ and PL ≡ 1 − γ5. Equation (A1) is
equivalent to defining and writing down the evanescent
operator,

EVLL
2 ¼ ðΨ̄i

bγμγνγρPLΨi
qÞðΨ̄j

bγ
μγνγρPLΨ

j
qÞ

− ð16 − 2ϵÞQ1: ðA2Þ

Another evanescent operator in the VLL sector is

EVLL
1 ¼ ðΨ̄i

bγρPLΨ
j
qÞðΨ̄j

bγ
ρPLΨi

qÞ −Q1: ðA3Þ

In order to write the “projection” version of this definition
we work with Dirac structures ½Γa ⊗ Γb� sandwiched
between external spinors. This allows us to take the
different color contractions (e.g., “iijj” or “ijji”) into
account. In other words if

hðΨ̄i
1ΓaΨi

2ÞðΨ̄j
3ΓbΨ

j
4Þitree ¼ ½ū1Γau2�½ū3Γbu4�; ðA4Þ

then

hðΨ̄i
1ΓaΨ

j
2ÞðΨ̄j

3ΓbΨi
4Þitree ¼ −½ū1Γau4�½ū3Γbu2�: ðA5Þ

This step appears between Eqs. (10) and (11) in the main
text. In this notation the projection version of Eq. (A3)
becomes

½ū1γρPLu4�½ū3γρPLu2� ¼ −½ū1γρPLu2�½ū3γρPLu4�
− hEVLL

1 i: ðA6Þ

Again the operator hEVLL
1 i is subtracted away in most

renormalization schemes and does not contribute in
Eq. (A6) (see Appendices A and B of Ref. [47] that
discuss this point). We have used projections such as (A1)
and (A6) in deriving c11 and c12 of Sec. VA.

2. The SLL sector in the BBGLN scheme

We turn next to the SLL sector, which includes operators
such as Q2 and Q3 and also, in some schemes, the tensor
operator

QT ≡ ðΨ̄i
bσμνPLΨi

qÞðΨ̄j
bσ

μνPLΨ
j
qÞ; ðA7Þ

where σμν ¼ 1
2
½γμ; γν�. As mentioned earlier, our continuum

results for c22, c21, c33 and c31 in Sec. VA are given in the
BBGLN scheme, introduced in [42]. This scheme uses Q2
andQ3 as the physical operator basis. Equation (15) of [42]
defines their evanescent operators in the SLL sector
through the following projection:

½ū1γμγνPLu2�½ū3γμγνPLu4� ¼ 2ð4 − ϵÞ½ū1PLu2�½ū3PLu4�
− 4ð2 − ϵÞ½ū1PLu4�½ū3PLu2�:

ðA8Þ
Equivalently one can list the evanescent operators

ESLL
1 ¼ ðΨ̄i

bγμγνPLΨi
qÞðΨ̄j

bγ
μγνPLΨ

j
qÞ

− 2ð4 − ϵÞQ2 − 4ð2 − ϵÞQ3; ðA9Þ
and

ESLL
2 ¼ ðΨ̄i

bγμγνPLΨ
j
qÞðΨ̄j

bγ
μγνPLΨi

qÞ
− 2ð4 − ϵÞQ3 − 4ð2 − ϵÞQ2: ðA10Þ

Using projections such as (A8), we first calculate the one
loop corrections to Q2 and Q3, including the mixing
between these two operators. This gives

� hQ2i
hQ3i

�
MS

¼ ½I þ αsM̂�
� hQ2i
hQ3i

�
tree

ðA11Þ

with

M̂ ¼
�
c022 c023
c032 c033

�
: ðA12Þ

We note that these are the full continuum QCD results, with
external momenta pq ¼ 0 for the light quarks and pQ ¼
ð�M; ~0Þ for the heavy (anti)quarks. The on-shell spinors
obeying ūQpμγμ ¼ MūQ and v̄Qpμγμ ¼ −Mv̄Q then also
obey ūQγ0 ¼ ūQ and v̄Qγ0 ¼ −v̄Q. This allows us to use the
large M relation,

hQ2itree þ hQ3itree þ
1

2
hQ1itree ¼ 0: ðA13Þ

So, the cij in Sec. VA for the VLLþ SLL sector become

c22 ¼ c022 − c023; c21 ¼ −
1

2
c023; ðA14Þ

c33 ¼ c033 − c032; c31 ¼ −
1

2
c032: ðA15Þ
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3. The SLL sector in the BMU scheme

The “BMU” scheme picks Q2 and QT for the physical
basis in the SLL sector. Reference [47] presents a very
convenient set of projections for this scheme in their
Appendix B, which covers the full basis, Q1, Q2, QT,
Q4 and Q6. Here we reproduce just those for the SLL
sector:

½γμγνPL ⊗ γμγνPL� ¼ ð4 − ϵÞ½PL ⊗ PL�
þ ½σμνPL ⊗ σμνPL�; ðA16Þ

½γμγνPL ⊗ γνγμPL� ¼ ð4 − ϵÞ½PL ⊗ PL�
− ½σμνPL ⊗ σμνPL�; ðA17Þ

½σμνγαγβPL ⊗ σμνγαγβPL� ¼ ð48 − 40ϵÞ½PL ⊗ PL�
þ ð12 − 3ϵÞ½σμνPL ⊗ σμνPL�;

ðA18Þ

½σμνγαγβPL ⊗ γβγασμνPL� ¼ −ð48 − 40ϵÞ½PL ⊗ PL�
þ ð12 − 7ϵÞ½σμνPL ⊗ σμνPL�:

ðA19Þ

Note that since all five operators in this basis have the same
color structure, we do not need to include external spinors
in the projection relations. Instead of Eq. (A11), we now
have

� hQ2i
hQTi

�
MS

¼ ½I þ αsM̂2T �
� hQ2i
hQTi

�
tree

; ðA20Þ

with

M̂2T ¼
�

~c022 ~c02T
~c0T2 ~c0TT

�
: ðA21Þ

One can now rotate to the Q2, Q3 basis so that

� hQ2i
hQ3i

�
tree

¼ R̂

� hQ2i
hQTi

�
tree

; M̂Q23 ¼ R̂M̂2TR̂
−1;

ðA22Þ

where

R̂ ¼
�

1 0

− 1
2

1
8

�
: ðA23Þ

Finally we use Eq. (A13) once again to obtain ~c22, ~c21, ~c33,
~c31 in the BMU scheme. The updated and corrected results
are

~c22 ¼
1

4π

�
6þ 16

3
log

μ2

M2
−
4

3
log

λ2

M2

�
; ðA24Þ

~c21 ¼
1

4π

�
4

3
þ 1

3
log

μ2

M2
þ 2

3
log

λ2

M2

�
; ðA25Þ

~c33 ¼
1

4π

�
−
2

3
−
8

3
log

μ2

M2
−
4

3
log

λ2

M2

�
; ðA26Þ

~c31 ¼
1

4π

�
17

6
þ 4

3
log

μ2

M2
þ 2

3
log

λ2

M2

�
: ðA27Þ

As expected, the anomalous dimension terms and infrared
logarithms are the same as in the BBGLN scheme.
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