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We investigate the effect of a finite volume on the critical behavior of the theory of the strong interaction,
Quantum Chromodynamics (QCD), by means of a quark-meson model for Nf ¼ 2 quark flavors. In
particular, we analyze the effect of a finite volume on the location of the critical point in the phase diagram
existing in our model. In our analysis, we take into account the effect of long-range fluctuations with the
aid of renormalization group techniques. We find that these quantum and thermal fluctuations, absent in
mean-field studies, play an import role for the dynamics in a finite volume. We show that the critical point
is shifted towards smaller temperatures and larger values of the quark chemical potential if the volume size
is decreased. This behavior persists for antiperiodic as well as periodic boundary conditions for the quark
fields as used in many lattice QCD simulations.
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I. INTRODUCTION

The detection of the critical end point in the phase
diagram at finite temperature and quark chemical potential
of the theory of the strong interaction (QCD) is an
inherently difficult problem. In fact, it may even be the
case that there is no first-order chiral phase transition at
large chemical potential [1–7] and the critical end point
(CEP) of the chiral phase boundary does not exist at all.
The complications arising in the search for the critical point
are manifold. For example, one of the most important
fully nonperturbative theoretical tools for the exploration of
the QCD phase diagram, namely lattice QCD simulations,
suffers from the so-called sign problem when applied to
finite quark chemical potential. Although powerful tech-
niques have been developed to circumvent this problem for
smaller chemical potentials [8–19], ranging from reweight-
ing techniques over Taylor expansions to imaginary-valued
quark chemical potentials, these studies are still restricted
to a finite simulation volume; see, e.g., Refs. [20–23] for
reviews.
The effects of a finite volume on the curvature of the

chiral phase transition line at small chemical potentials
can be determined from lattice QCD results [17,18,24–27].
Recently, the effects of a finite volume V ¼ L3 as well as of
long-range fluctuations have been analyzed by means of
the quark-meson model which serves as a low-energy QCD
model [28,29]. It was found that depending on the pion
mass the curvature becomes continuously smaller for
decreasing volume sizes and periodic boundary conditions
for the quark fields in the spatial directions. Decreasing the

length of the box below mπL≲ 2, the curvature then tends
to increase again and even exceeds its infinite-volume
value. This very specific behavior can be traced back to
the implementation of periodic boundary conditions. For
antiperiodic boundary conditions, the quarks do not have a
spatial zero mode and the curvature is a monotonically
decreasing function of the volume size. These results for
the curvature are in accordance with the behavior of low-
energy observables, such as the quark condensate, as a
function of the volume size at zero temperature [30,31]. In
any case, the volume dependence of the curvature suggests
also that the (chiral) CEP may be shifted in a finite volume.
From the above discussion, for instance, it appears most
likely that the critical point is shifted towards larger values
of the chemical potential and smaller temperatures in case
of periodic boundary conditions and 2≲mπL < ∞.
However, it may also very well completely disappear in
the small-volume limit. The discussion of the volume
dependence of the location of the CEP also raises a
conceptional issue, namely how to define a CEP associated
with a diverging susceptibility in a finite system. We shall
discuss this in more detail below.
In the present work, we shall focus on the behavior of the

QCD critical end point as a function of the volume size,
with an emphasis on quark fields with periodic boundary
conditions in spatial directions. We expect that this setup is
the most useful one to help in further guiding present and
future lattice simulations of the QCD phase diagram. For
our study, we employ the quark-meson model. This model
has already proven to be useful in our previous studies of
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chiral dynamics at finite temperature or quark chemical
potential in a finite volume [28,29,32,33]. We expect that
such a model setup is very useful to provide a framework
for understanding better the mechanisms of chiral sym-
metry breaking in finite systems. The volume dependence
of the chiral CEP has been studied before with the aid of
quark-meson-type models in mean-field approximations
[34–38]. In the present work, we go beyond the mean-field
approximation and include the fluctuations of the meson
fields. We have found that the fluctuations of bosonic
fields, in particular fluctuations of the order parameter, are
of utmost importance for the physics of such models in a
finite volume [28,29,33,39], in addition to the effects of
fermionic fluctuations. For a continuous symmetry such
as the chiral flavor symmetry, fluctuations of Goldstone
modes restore the symmetry in a finite-volume system in
the absence of explicit symmetry breaking. This implies
that the phase with spontaneously broken chiral symmetry
does not exist at all in the chiral limit [40]. Therefore it is
reasonable to expect that the chiral phase transition temper-
ature decreases when the current quark mass (pion mass) is
decreased for a given fixed volume size. This has also been
found in a previous renormalization group study including
fluctuation effects associated with the Goldstone modes;
see Ref. [32]. Note that a mean-field study cannot capture
this effect correctly due to the absence of the Goldstone-
mode fluctuations. In fact, it is possible to obtain a finite
chiral phase transition temperature in mean-field theory in a
finite-volume system, even in the chiral limit. On the other
hand, if our present study of the shift of the CEP in a finite
volume is in accordance with previous mean-field studies
in a given parameter range defined by the dimensionless
quantity mπL, then our results can be considered as a hint
that fluctuation effects are at least subdominant in this mπL
regime for some observables.
In the next Sec. II we briefly introduce the renormaliza-

tion group (RG) setup which underlies our study. The
results for the location of the critical point as a function
of the volume size are then discussed in Sec. III. Finally,
our conclusions and a brief outlook are given in Sec. IV.

II. RENORMALIZATION GROUP SETUP

For our investigation of critical behavior in a finite volume,
we employ the quark-meson model for Nf ¼ 2 flavors. In
our presentwork,we shall use the following ansatz/truncation
for the RG scale-dependent effective action:

Γk½q̄; q;ϕ� ¼
Z

d4x

�
q̄ði∂ þ igðσ þ i~τ · ~πγ5Þ þ iγ0μÞq

þ 1

2
ð∂μϕÞ2 þ Ukðϕ2Þ − cσ

�
; ð1Þ

where ϕT ¼ ðσ; ~πÞ hasN2
f ¼ 4 components and q represents

Nf ¼ 2 quark flavors. The scale k denotes the RG scale

which is introduced below. The initial condition for our RG
flow study of this effective action is given by the so-called
classical or “microscopic” action defined at the scale k ¼ Λ.
This scale is determined by the validity of a hadronic
representation of QCD. The mesonic potential at the UV
scale is parametrized by two couplings, m2

Λ and λΛ,

UΛðϕ2Þ ¼ 1

2
m2

Λϕ
2 þ 1

4
λΛðϕ2Þ2: ð2Þ

The current quarkmasses are determined by the term linear in
the field σ ∼ q̄q which also renders the pion fields ~π massive
in the low-energy limit. The bosonic couplingsmΛ and λΛ, the
Yukawa coupling g, and theOð4Þ-symmetry breaking term c
are parameters of our model which are used to fit a given set
of low-energy observables; see the discussion below. In our
model, the order parameter for chiral symmetry breaking is
given by the (vacuum) expectationvalue of the scalar field hσi
which can be identified with the pion decay constant fπ . Note
that we do not take into account a possible running of the
Yukawa coupling g, as done in, e.g., Refs. [41–47]. The
analysis of these studies suggests that it is justified to neglect
the running of this coupling in our study, at least for our first
RG study of the phase diagram in a finite volume. For more
quantitative predictions of the shift of the CEP, of course, this
running has to be taken into account eventually.
In the following, we study the RG flow of the order-

parameter potential U in leading order of the derivative
expansion. We do not take into account corrections arising
from a nontrivial RG flow of the wave-function renorm-
alizations of the quark and meson fields.1 Since we are not
aiming at a quantitatively accurate determination of either
the absolute location of the QCD critical point or of the
critical behavior as measured by critical exponents, we
consider this to be a justified approximation. However, we
would like to emphasize that our present approximation
already includes effects beyond the mean-field limit. In
fact, it has been found that the critical exponents it yields at
the thermal phase transition in the quark-meson model
already agree with the exact values on the 2% level2; see,
e.g., Refs. [33,42,43,53–55]. This observation can be traced
back to the small anomalous dimensions associated with
these wave-function renormalizations found in the model;
see, e.g., Refs. [42,43,55]. A more detailed discussion of
the relation of the present approximation to the mean-field
approximation in terms of a derivative expansion and a

1To be specific, we consider the wave-function renormaliza-
tions Zϕ and Zψ of the mesons and the quarks to be constant,
respectively: Zψ ¼ Zϕ ¼ 1. This implies that the anomalous
dimensions associated with these fields are zero, ηψ ¼ ηϕ ¼ 0.

2Note that a detailed error analysis is difficult and is mostly
done by varying and/or optimizing the regularization scheme, by
taking into account higher orders in the derivative expansion, and
by taking into account the full momentum dependence of a given
set of n-point functions; see, e.g., Refs. [48–52].
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so-called large-Nc expansion of the quantum effective
action Γ can be found in Refs. [43,44,46,56,57].
Before we turn to the discussion of our actual results

for the CEP, we would like to briefly introduce a few more
details on our approach. In the following we employ the
Wetterich equation for the derivation of the RG flow
equation for the order-parameter potential U [58]:

∂tΓk ¼
1

2
Trf½Γð2Þ

k þ Rk�−1∂tRkg: ð3Þ

This flow equation describes the change of the quantum
effective action Γ under variation of the RG scale k, or the
RG “time” t ¼ lnðk=ΛÞ, and therefore allows us to inter-
polate between the initial action S≃ ΓΛ at the UV scale Λ
and the quantum effective action Γ≡ Γk→0 in the limit
k → 0. To regularize the theory, a regulator function Rk is
included. For our finite-temperature and finite-volume
studies, it is convenient to choose a dimensionally reduced
regulator function, i.e. a so-called spatial regulator which
only regularizes the spatial momentum modes [59,60].
Our particular choice for the regulator function is a close
relative of the optimized regulator function [61–64]. We
would like to add that the use of the dimensionally reduced
regulator at finite temperature does not cause any concep-
tional problem in the local potential approximation under-
lying the present work. At next-to-leading order in the
derivative expansion, complications arise from the fact
that this class of regulators breaks explicitly Poincaré
invariance. However, this can then be handled by suitably
adjusting the initial conditions of the RG flow [44].
Inserting the truncation (1) into Eq. (3), we obtain the

flow equation for the RG-scale dependent order-parameter
potential Uk in a finite cubic volume V ¼ L3; see
Refs. [29,33]:

∂tUkðϕ2Þ ¼ k5
�
3

Eπ

�
1

2
þ nBðEπÞ

�
BpðkLÞ

þ 1

Eσ

�
1

2
þ nBðEσÞ

�
BpðkLÞ

−
2NcNf

Eq
ð1 − nFðEq; μÞ

− nFðEq;−μÞÞBlðkLÞ
�
; ð4Þ

where quasiparticle energies are defined as

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

i

q
; i ∈ fπ; σ; qg: ð5Þ

The effective squared meson masses are determined by
derivatives of the potential Uk,

M2
π ¼ 2

∂Uk

∂ϕ2
; M2

σ ¼ 2
∂Uk

∂ϕ2
þ 4ϕ2

∂2Uk

∂ðϕ2Þ2 ; ð6Þ

whereas the quark mass is directly related to the Yukawa
coupling g,

M2
q ¼ g2ϕ2: ð7Þ

Note that, strictly speaking, the quantitiesMπ ,Mσ, andMq
are the physical masses of the associated particles only if
evaluated in the ground state of the theory. The thermal
dynamics of the theory is controlled by the bosonic and
fermionic occupation numbers,

nBðEÞ ¼
1

eE=T − 1
; nFðE; μÞ ¼

1

eðE−μÞ=T þ 1
; ð8Þ

whereas the volume dependence is governed by the mode
counting functions Bl:

BlðkLÞ ¼
1

ðkLÞ3
X
~n∈Z3

θððkLÞ2 − ð2nþ δap;lÞ2π2Þ: ð9Þ

Here, ~n labels a three-dimensional vector of integers and
the label l refers to antiperiodic (ap) and periodic (p)
boundary conditions, respectively. Note that, due to our
choice for the regulator function, the spatial and thermal
contributions in the flow equation factorize, which facil-
itates the numerical evaluation [59].
From a phenomenological point of view, the mode

counting functions already reflect the fact that the dynamics
of the theory in the small-volume limit is only governed by
the spatial zero mode in the case of periodic boundary
conditions. For antiperiodic boundary conditions, on the
other hand, we observe that these functions tend to zero
for kL → 0. Thus, the fields effectively become static and
condensation of quark-antiquark pairs is suppressed. In the
infinite-volume limit (L → ∞), we find that these functions
approach a finite number which depends only on the
chosen regularization scheme. We recover the known flow
equation for the chiral order-parameter potential of the
quark-meson model in this limit [65,66].
The flow equation (4) for the order-parameter potential is

a partial differential equation in the RG scale k, where
0 ≤ k ≤ Λ, and the field variable ϕ. In the present study,
we solve it by discretizing the field variable ϕ; see, e.g.,
Ref. [66] for details. For a review on results from such a
direct numerical solution of this type of flow equation for
the potential and, in particular, for results concerning the
phase diagram of QCD low-energy models in the infinite-
volume limit, we refer the reader to Ref. [67].
For our numerical study of the phase diagram, we need

to fix the parameters of our model, namely mΛ, λΛ, the
Yukawa coupling g, the UV scale Λ, and the symmetry
breaking parameter c. As already mentioned above, we use
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these parameters to fit a given set of low-energy observ-
ables, namely the pion massmπ , the constituent quark mass
mq, and the pion decay constant fπ . Clearly, the set of
parameters determined in this way is by no means unique.
Loosely speaking, this parameter ambiguity leaves its trace
in the phase structure of the quark-meson model. As has
been pointed out in Ref. [6], the chiral CEP can be shifted
almost arbitrarily by varying the mass of the sigma meson.
Here, we therefore pursue the following strategy: we
choose a set of initial conditions such that we find a chiral
CEP at a certain position in the infinite-volume phase
diagram. Since we are not aiming at a quantitative deter-
mination of the position of the CEP, the absolute values
of its coordinates play only a secondary role. Once the
parameters have been fixed, we vary the box size and
follow the shift of the CEP. We have checked for various
sets of parameters that the qualitative behavior of the CEP
as a function of the volume size indeed appears to be
“universal.” To be specific, in the calculation presented
here, we have used Λ ¼ 1 GeV,mΛ ¼ 0.881 GeV, λΛ ¼ 0,
and c ¼ 5 × 10−4 GeV3 for the model parameters. At zero
temperature, this yields mq ¼ 318 MeV, mσ ¼ 461 MeV,
and mπ ¼ 75 MeV. From a phenomenological point of
view, the pion mass is clearly too small. Nevertheless, we
have chosen this value since it currently appears to be
the smallest accessible value for the pion mass in lattice
simulations [68] and we expect that the effect of the long-
range fluctuations in a finite volume is most pronounced for
small pion masses. While the results for a pion mass of
mπ ≈ 140 MeV are similar, this choice leads to a qualita-
tively clearer picture of the finite-volume effects.3

III. CRITICAL END POINT AND
FINITE-VOLUME EFFECTS

Let us now discuss effects of a finite volume on the
location of the chiral CEP. The CEP is associated with a
residual Zð2Þ symmetry. For finite pion masses, it is
uniquely defined in the infinite-volume limit by a diverging
(longitudinal) susceptibility χσ ∼ ∂σ0=∂c, where σ0 is the
order parameter for chiral symmetry breaking4 and c is a
measure for the explicit symmetry breaking; see Eq. (1).
In our model study, χσ assumes a simple form; see, e.g.,
Refs. [33,69]:

χσ ¼
1

M2
σ
; ð10Þ

where M2
σ is defined in Eq. (6). The corresponding trans-

versal susceptibility associated with the Goldstone modes,
i.e. pion modes, does not provide us with new information
for the present study, since it is directly related to the chiral
order parameter.
With the parameter set given in the previous section, we

find a diverging (longitudinal) susceptibility associated
with a chiral CEP at
	
μð∞Þ
CEP; T

ð∞Þ
CEP



≈ ð298.6� 1 MeV; 35.0� 1 MeVÞ; ð11Þ

see also the top left panel of Fig. 1. The errors arise from an
uncertainty in our numerical determination of the coordi-
nates of the CEP and are identical for both our infinite
volume study and our finite-volume studies. These errors
do not account for systematic errors associated with, e.g.,
our truncation for the effective action. In particular, we
would like to stress again that the results for the location
of the CEP in quark-meson- or Nambu–Jona-Lasinio-
type (NJL) models in general suffer from a parameter
ambiguity [6]. However, this ambiguity affects the present
study very little, since we are only interested in the shift
of the position of the CEP in a finite volume relative to its
infinite-volume coordinates.
As we have already indicated above, the fluctuations of

the meson fields play a prominent role in studies of the
chiral critical behavior in a finite volume. This is a
consequence of the appearance of the pions as the light
Goldstone modes in the breakdown of the chiral symmetry.
In absence of an explicit symmetry breaking term, these
fluctuations restore the chiral symmetry in a finite volume
in the long-range (infrared) limit [40]. A further compli-
cation related to the finite volume in a study of critical
behavior is to find a proper definition of a CEP which is
in the infinite-volume limit associated with a diverging
susceptibility. In a finite volume, the susceptibilities are
expected to be bounded from above. To be more precise,
the magnitude of the susceptibility is assumed to scale with
the volume size like

χσ ∼ L2 ∼ V
2
3: ð12Þ

This already follows from a simple dimensional analysis.5

Thus, the susceptibilities are necessarily finite in a finite
volume. In order to study the volume dependence of the
position of the CEP, we therefore first require a definition of

3Note that, if we tune the parameters such that the pion
mass eventually approaches its phenomenological value, mπ ≈
140 MeV for vanishing temperature and chemical potential, we
find that the CEP in infinite volume is already shifted to very
small values of the temperatures. For finite volumes, we find that
the CEP is then shifted in the same way as for smaller pion
masses, see our discussion below. However, the fact that this
takes place at very low temperatures makes a numerical study
presently very cumbersome.

4Note that σ0 can be identified with the pion decay constant in
our quark-meson model. Moreover, we have σ0 ∼ hψ̄ψi.

5The relation between the maximal value of the susceptibility
and the box size χσ ∼ Lγ=ν may receive corrections, depending
on the values of the critical exponents. In particular, since
γ=ν ¼ 2 − η, simple dimensional analysis gives the correct result
only in the absence of an anomalous dimension. This holds in our
present approximation.
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the CEP in a finite volume. For a given finite volume
V ¼ L3, our discussion suggests that the CEP can be
defined as the point in the ðμ; TÞ plane with the coordinates
ðμmax

CEP; T
max
CEPÞ where the maximum value of the susceptibil-

ity χmax
σ . is attained:

χmax
σ ðμmax

CEPðLÞ; Tmax
CEPðLÞÞ ¼ max

ðμ;TÞ
χσðμ; T; LÞ: ð13Þ

In the large-volume limit, we then have

lim
L→∞

ðμmax
CEPðLÞ; Tmax

CEPðLÞÞ ¼ ðμð∞Þ
CEP; T

ð∞Þ
CEPÞ; ð14Þ

as it should be. In the following we shall use the
coordinates ðμmax

CEP; T
max
CEPÞ to locate the CEP in a finite

volume, with the additional constraint that the
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FIG. 1 (color online). Chiral (longitudinal) susceptibilities χσ ¼ 1
M2

σ
as a function of the quark chemical potential μ for various

temperatures and volume sizes ranging from L → ∞ from the top left panel to L ¼ 4 fm in the bottom right panel as obtained for
periodic boundary conditions for the quark fields in spatial directions.
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so-determined CEP has to be continuously connected to
the infinite-volume CEP, and thus to the chiral crossover,
under a change of the volume size, as also shown in Fig. 2.
This requirement becomes necessary for volume sizes
of L≲ 5 fm and periodic boundary conditions where we
observe that a second CEP develops in the phase diagram at
smaller chemical potential and temperatures, with values of
the susceptibility that may exceed those of the CEP at larger
chemical potential.6

In Fig. 1, we show our results for the longitudinal
susceptibility χσ for various temperatures T and volume
sizes (ranging from L → ∞ from the top left panel to
L ¼ 4 fm in the bottom right panel) as a function of the
quark chemical potential μ. In the infinite-volume limit, we
indeed observe that the susceptibility along the crossover
line increases when we increase the quark chemical
potential until it diverges at the CEP. Comparing the panels
for the various box sizes, we also find that the maximum
values of the susceptibilities decrease with smaller box size,
in accordance with the expectations. In the first panel of
Fig. 1, we show the susceptibility for L → ∞ close but not
exactly at the CEP. The maximum value is limited by
χmax
σ ∼ 1

k2IR
since, for technical reasons, the RG flow is

evaluated only for k → kIR with a small but finite value
kIR ≈ 20 MeV. Most importantly, however, we observe
that the position of the CEP is, within the errors, shifted
towards smaller values of the temperature and larger values

of the chemical potential for decreasing box size.7

To be specific, the CEP is shifted from ðμð∞Þ
CEP; T

ð∞Þ
CEPÞ≈

ð298.6� 1 MeV; 35.0� 1 MeVÞ for L → ∞ to
ðμmax

CEP;T
max
CEPÞ¼ð335.6�1MeV;9.0�1MeVÞ for L¼4 fm.

In other words, μmax
CEP. increases by about 10%, whereas

Tmax
CEP. decreases by about 75% in the considered range

of volume sizes; see also Table I for values of the relative
shift of the CEP for several other volume sizes. Thus, the
temperature coordinate of the CEP appears to be affected
more strongly by the finite volume than the one associated
with the quark chemical potential. In Fig. 2, we illustrate
the results for the shift of the coordinates of the CEP in
our model study. For L≲ 4 fm, we do not find a CEP any
more, at least none compatible with our definition. In any
case, we have checked that the direction of the finite-
volume shift of the CEP does not depend on our choice for
the model parameters. The latter affects our results only on
a quantitative level.
Our results show that the position of the CEP depends

strongly on the box size. The fact that the position of the
CEP is shifted towards larger values of the chemical
potential and lower values of the temperature might be
considered helpful from the point of view of lattice QCD
simulations. If the observed shift of the CEP in our model
study carries over to lattice QCD simulations, then it
implies that, in a finite volume, the CEP is pushed into
a domain of the phase diagram which is very difficult to
access with such simulations.
Our results also indicate that comparatively large volume

sizes are required to effectively resolve the position of the
CEP in the infinite-volume limit. To be specific, we find
that the position of the CEP in the infinite-volume limit is
only reached for L≳ 10 fm. However, this statement

FIG. 2 (color online). Contour plot of the magnitude of the
chiral order parameter σ0 ¼ fπ in the plane spanned by temper-
ature and quark chemical potential for L towards infinity: The
order parameter decreases from dark to light shading. The inlaid
(red) dots show the behavior of the CEP [associated with a Z(2)
symmetry] as a function of the volume size for periodic boundary
conditions for the quark fields in spatial directions. We observe
that the CEP is shifted towards larger values of the chemical
potential but smaller values of the temperature for smaller
volumes.

TABLE I. Relative shifts ΔμCEP¼ðμmax
CEP=μ

ð∞Þ
CEP−1Þ and

ΔTCEP¼ðTmax
CEP=T

ð∞Þ
CEP−1Þ of the CEP coordinates ðμmax

CEP; T
max
CEPÞ

in a finite volume V ¼ L3 compared to its position ðμð∞Þ
CEP; T

ð∞Þ
CEPÞ

in the infinite-volume limit. Here, we have chosenmπ ¼ 75 MeV
which refers to the pion mass in the infinite volume limit for
ðμ; TÞ ¼ ð0; 0Þ. For the quantum fields, we have chosen periodic
boundary conditions in spatial directions. The errors arise from
the uncertainty in determining the position of the maximum value
of the susceptibility; see main text for details.

L (fm) mπL ΔμCEP ΔTCEP

10 3.75 0.00(1) −0.06ð6Þ
8 3.00 0.00(1) 0.00(6)
6 2.25 0.02(1) −0.26ð5Þ
5 1.88 0.04(1) −0.49ð4Þ
4 1.50 0.12(1) −0.74ð4Þ

6This second CEP has been studied and analyzed in, e.g.,
Ref. [66] but is not at the heart of the present study.

7Note that we have cross-checked our results for the location
of the CEP as obtained from an analysis of the susceptibility
by directly studying the shape of the chiral order-parameter
potential.
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depends on our choice for the model parameters which
ultimately determines the position of the CEP in the
continuum. The scale L is in a broad sense in competition
with the two other scales T and μ which appear also in the
quark propagator. All three scales can be considered as
cutoff scales for the low-momentum modes of the quark
fields. If therefore

1=L ≪ Mmin; ð15Þ
where

Mmin ¼ minðμð∞Þ
CEP; T

ð∞Þ
CEPÞ; ð16Þ

then we expect that the position of the CEP remains
effectively unchanged, since L does not impose an addi-
tional cutoff.8 If, on the other hand, 1=L is of the order
of Mmin,

1=L ∼OðMminÞ; ð17Þ
then we expect finite-volume effects on the CEP to become
important. Since the actual position of the CEP depends on
our choice for the parameter set, the smallest value of L, for
which a significant shift of the position of the CEP is found,
is clearly parameter dependent. From the point of view of
lattice QCD simulations, these considerations imply that
the shift of the CEP due to the presence of a finite volume is
only relevant for small box sizes, if the possibly existing
CEP in the QCD phase diagram is located at smaller values
of the chemical potential and larger values of the temper-
ature. In other words, we expect that in this case the
infinite-volume position of the CEP can be reached already
for small box sizes.
Let us finally speculate about phenomenological impli-

cations of our results. The role of finite-size effects in the
search for the CEP in heavy-ion collision experiments
has been previously discussed in, e.g., Refs. [34–37]. Here,
we would like to simply comment on how the boundary
conditions for the quark fields in spatial directions affect
our results. In addition to periodic boundary conditions, we
have also studied the shift of the CEP in a finite volume in
the presence of antiperiodic boundary conditions for the
quarks. We also find in this case that the CEP is shifted to
lower temperatures but larger values of the chemical
potential and eventually disappears for L≲ 4 fm.
Although we expect neither periodic nor antiperiodic
boundary conditions to be at work in the expanding fireball
in a heavy-ion collision experiment and although we also
do not claim that the observed direction of the shift of the
CEP in a finite volume holds for general boundary

conditions and general geometries of the volume, the
observed finite-volume shift of the CEP may at least be
considered as a possible scenario that could take place in
the experiments. Depending on the experimental setup,
traces of the CEP in the experimental data may therefore be
found at different coordinates ðμ; TÞ.

IV. CONCLUSIONS AND OUTLOOK

Using nonperturbative functional RG techniques, we
have computed the shift of the CEP of a quark-meson
model in a finite volume for periodic as well as antiperiodic
boundary conditions for the quark fields in spatial direc-
tions. In our study, we have also included fluctuations of
the meson fields by means of a derivative expansion of the
effective action. The effect of these fluctuations has not
been taken into account in recent mean-field studies
[34–38]. However, they play an important role in finite-
volume systems, as they tend to restore the chiral symmetry
in a finite volume in the limit of small quark masses.
The model underlying our studies does not contain

gluonic degrees of freedom and it is not confining.
However, it can be considered as an effective low-energy
model for dynamical chiral symmetry breaking which
allows us to analyze the effects of a finite volume on the
chiral dynamics in simple terms. We have found that the
CEP in a finite volume is shifted towards smaller temper-
atures and larger values of the chemical potential when the
volume is decreased, in accordance with earlier mean-field
NJL model studies [34–37]. The volume size below which
the CEP is significantly shifted depends on the actual
position of the CEP in the infinite-volume limit. The same
holds for the volume size below which the CEP disappears.
Interestingly, we have found that these qualitative aspects
are present independent of our choice for the spatial
boundary conditions (periodic or antiperiodic) for the quark
fields. The fact that the shift of the CEP towards lower
temperatures and larger chemical potentials may already set
in for comparatively large volume sizes (depending on the
coordinates of the CEP in the infinite-volume limit) could
be a hint towards a further complication in the search for
the CEP with lattice QCD simulations.
While our present work focuses on chiral aspects of the

QCD phase diagram, the inclusion of dynamical gauge
degrees of freedom in this RG study following Ref. [70]
(see Refs. [71,72] for reviews) would represent an inter-
esting extension. This opens the possibility to study the
interplay of chiral and confining dynamics in a finite
volume. A considerable volume dependence is indeed also
expected in the gauge sector of the theory; see, e.g.,
Refs. [73,74]. However, the extension of the present
low-energy model to a so-called Polyakov-loop extended
low-energy model (see, e.g., Refs. [75–89]) appears to be a
first natural step towards a fully dynamical RG study of the
QCD phase diagram in a finite volume. For a first mean-
field study of finite-volume effects with a Polyakov-loop

8Note that the pion mass scale and the scale associated with the
pion decay constant have been implicitly taken into account in
this analysis as these quantities are parameters of the model
which essentially determine the location of the CEP in the infinite
volume limit.
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extended low-energy QCD model, we refer the reader to
Ref. [38]. The corresponding RG flow equation, which also
takes effects of meson fluctuations into account, can be
found in Ref. [29]. In addition to the inclusion of confine-
ment effects, it might be worthwhile to study the effect of
further bosonic composites, such as diquarks, on the finite-
volume shift of the CEP since it has been found in infinite-
volume studies that they may affect the structure of the
phase diagram and the location of the CEP significantly;
see, e.g., Refs. [81,90,91].
In summary, our present investigation already shows

that there is a qualitative effect of a finite volume on the
structure of the chiral phase diagram, which can be
measured in terms of the coordinates of the CEP. The
observed shift of the CEP in a finite volume could be useful
to further guide present and future studies of the QCD

phase diagram with lattice simulations as well as the
experimental search for the CEP, and therefore it may help
us to better understand the dynamics underlying strongly
interacting matter.
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