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In the framework of the color flux-tube model with a four-body confinement potential, the lowest
charged tetraquark states ½Qq�½Q̄0q̄0�ðQ ¼ c; b; q ¼ u; d; sÞ are studied by using the variational method, the
Gaussian expansion method. The results indicate that some compact resonance states with three-
dimensional spatial structures can be formed. These states cannot decay into two color singlet mesons
Qq̄0 and Q̄0q through the breakdown and recombination of color flux tubes but intoQQ̄0 and qq̄0. The four-
body confinement potential is a crucial dynamical mechanism for the formation of these compact resonance
states. The decay process is similar to that of a compound nucleus but due to the multibody color
confinement. The newly observed charged states Zcð3900Þ and Zcð4025Þ=Zcð4020Þ can be interpreted as
the S-wave tetraquark states ½cu�½c̄ d̄� with quantum numbers IJP ¼ 11þ and 12þ, respectively.
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I. INTRODUCTION

In the past decade many charmonium and bottomonium
(or charmoniumlike and bottomoniumlike) states, denoted
by X and Y particles, have been observed in different
experiments [1]. Some of these states cannot be well
accommodated in the QQ̄ quark model scheme. They have
been interpreted as exotic hadron states [1], such as loose
meson-meson molecules, compact tetraquark states, hybrid
quarkonia, and baryonia or hexaquark states q3q̄3. The
existence of exotic hadron states has been further strength-
ened by the observation of the charged Z particles [2,3],
because their minimum quark contents must go beyond the
conventional QQ̄ scheme. Very recently, the BESIII
Collaboration studied the process eþe− → πþπ−J=Ψ at a
center-of-mass energy of 4.26 GeV and observed a new
charged charmoniumlike structure in the π�J=Ψ invariant
spectrum, which is called Zcð3900Þ and has a mass of
3899.0� 3.6� 4.9 MeV and a width of 46� 10�
20 MeV [4]. Almost at the same time, the Belle
Collaboration observed a Zð3895Þ� state with a mass of
3894.5� 6.6� 4.5 MeV and a width of 63� 24�
26 MeV in the π�J=Ψ invariant mass spectrum, in the
process Yð4260Þ → πþπ−J=Ψ [5]. The state Zcð3900Þ has
been further confirmed by the CLEO-c Collaboration in the
decay ψð4160Þ → πþπ−J=Ψ with a mass of 3886� 4�
2 MeV and a width of 37� 4� 8 MeV [6]. The states
Zcð3900Þ and Zð3895Þ� have been observed by the BESIII

and Belle Collaborations independently, and their masses
and widths agree with each other within errors, which
indicates Zcð3900Þ and Zð3895Þ� might be the same state
[7]. Subsequently, the BESIII Collaboration studied the
process eþe− → π�ðD�D̄�Þ� at a center-of-mass energy of
4.26 GeV and reported a new charged charmoniumlike
structure, named Z�

c ð4025Þ, with a mass of 4026.3� 2.6�
3.7 MeV and a width of 24.8� 5.6� 7.7 MeV [8]. In
addition, the BESIII Collaboration also observed another
charged state Zcð4020Þ very close to the ðD�D̄�Þ� thresh-
old with a mass of 4022.9� 0.8� 2.7 MeV and a width
of 2.9� 2.7� 2.6 MeV in the π�hc invariant mass
spectrum [9].
Obviously, such charged states challenge the theoretical

description of meson states as QQ̄ and favor tetraquark
systems. A better understanding of the internal structure of
these and similar resonances may provide new insights to
the strong dynamics of multiquark systems and low-energy
QCD. As a consequence, intense theoretical attentions have
been paid to the internal structure of these charged states.
So far, the theoretical interpretations can be classified into
three categories. The first one is the meson-meson molecule
[10], two mesons are separated at distance larger than the
typical size of the mesons. The interaction between two
mesons is due to the exchange of the meson and gluon,
which is similar to nuclear force. Generally the interaction
is weak and the mass of the state is close to the threshold of
two mesons. The second one is the tetraquark states, where
the four quarks may be divided into two clusters and form
relatively tightly bound diquarks ½Qq� and antidiquarks
½Q̄0q̄0�, which interact through the color force due to gluon
exchange or the flavor-dependent force due to meson
exchange and decay through the rearrangement of the
color structure [11]. The last one is hadro-quarkonium,
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where the heavy QQ̄0 pair forms a tightly bound system
similar to the heavy quarkonium states. It is embedded in a
light meson cloud and interacts with it by color Van der
Waals force [12,13]. Which one is the true picture of these
charged states? More experimental and theoretical works
are needed.
The present work attempts to explore the properties

of the charged tetraquark states with quark contents
½Qq�½Q̄0q̄0� ðQ ¼ c; b; q ¼ u; d; sÞ from the perspective
of a phenomenological model, a color flux-tube model,
using the high-precision variational method, the Gaussian
expansion method (GEM). In this model, the color confine-
ment used is not the usual two-body interaction propor-
tional to a color charge λci · λ

c
j but a multibody one, which is

based on lattice QCD results and has been successfully
applied to study multiquark systems [14–18]. The calcu-
lation indicates that some compact tetraquark states can be
formed, in which the four-body confinement potential plays
a critical role, and the states cannot decay into two color
singlet mesons Qq̄0 and Q̄0q through the strong interaction
but into QQ̄0 and qq̄0 through the breakdown and rear-
rangement of color flux tubes. The newly observed charged
states Zcð3900Þ and Zcð4025Þ=Zcð4020Þ can be interpreted
as the S-wave tetraquark states ½cu�½c̄ d̄� or ½cd�½c̄ ū� with
quantum numbers IJP ¼ 11þ and 12þ, respectively, in the
color flux-tube model.
This paper is organized as follows: the color flux-tube

model and the corresponding Hamiltonian are given in
Sec. II. Section III is devoted to the construction of the
wave functions of tetraquark states. The numerical results
and discussions of the charged tetraquark states are
presented in Sec. IV. A brief summary is given in the last
section.

II. COLOR FLUX-TUBE MODEL AND
HAMILTONIAN

Quantum chromodynamics (QCD) is nowadays widely
accepted as the fundamental theory to describe hadrons and
their interactions. Up to now, QCD can be evaluated
systematically only in a perturbation expansion. With
respect to hadrons and hadron-hadron interactions, such
an expansion is invalid because the quark and gluon
coupling constant varies from weak to strong. Lattice
QCD (LQCD) is the most promising nonperturbative
method but so time consuming that phenomenological
constituent quark models (CQM) based on QCD have
therefore been used extensively, such as Isgur-Karl model
and chiral quark model [19,20]. CQM is formulated under
the assumption that the hadrons are color singlet non-
relativistic bound states of constituent quarks with
phenomenological effective masses and interactions. The
effective interactions includes one-gluon-exchange (OGE),
one boson exchange (OBE) and a confinement potential.
The confinement potential is phenomenologically described

as the sum of two-body interactions proportional to the color
charges and rkij,

VC ¼ −ac
Xn
i>j

λi · λjrkij; ð1Þ

where rij is the distance between two interacting quarks qi
and qj and k usually takes 1 or 2. An objection could be that
although these models are successful phenomenologically
in ordinary hadrons (q3 baryon and qq̄ meson), their
generalization to the case of multiquarks is rather arbitrary.
Furthermore, the traditional models lead to power law Van
der Waals forces between color-singlet hadrons and the
anticonfinement in a color symmetrical quark or antiquark
pair [21,22]. The problems are related to the fact that the
traditional CQM do not respect local color gauge invari-
ance [23].
LQCD deals with the confinement phenomenon in a

nonperturbative framework and its calculations on qq̄, qqq,
tetraquark and pentaquark systems reveal flux-tube or
stringlike structures [24,25]. Such flux-tube-like structures
lead to a multibody confinement interaction which is
proportional to the minimum of the total length of flux
tubes [24,25]. Based on the traditional quark models and
LQCD picture, a color flux-tube model has been developed,
in which the confinement is a multibody interaction instead
of the sum of two-body one in the traditional model. In
order to simplify the numerical calculation the linear
multibody confinement is replaced by a harmonic one,
i.e., lengths of flux tubes are replaced by the square of
lengths [26,27]. This approximation is justified because of
the following two reasons: one is that the spatial variations
in separation of the quarks (lengths of the flux tube) in
different hadrons do not differ significantly, so the differ-
ence between the two functional forms is small and can be
absorbed in the adjustable parameter, the stiffness of a flux
tube. The other is that we are using a nonrelativistic
equation in the study. As was shown long time ago [28],
an interaction energy that varies linearly with separation
between fermions in a relativistic first order differential
equation has a wide region in which a harmonic approxi-
mation is valid for the second order (Feynman-Gell-Mann)
reduction of the equation. The comparative studies also
indicated that the difference between the quadratic confine-
ment potential and the linear one is very small [26,27]. The
color flux-tube model can avoid the color van der Waals
forces between color-singlet hadrons and the anticonfine-
ment in color symmetrical quark or antiquark pair in the
traditional models.
The color flux-tube structure of an ordinary hadron is

unique and trivial, the multibody quadratic confinement
potential is equivalent to the two-body color dependent
interactions [17]. In this sense, the color flux-tube model is
reduced to the traditional quark model for ordinary
hadrons. For multiquark hadrons the situation is changed
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because the systems have various color flux-tube structures
in the intermediate- and short-distance ranges and the
corresponding multibody confinement potential is no
longer equivalent to the two-body ones. The color flux-
tube structures of multiquark states can provide more low-
energy QCD information than ordinary hadrons, such as a
quark pair with symmetric color representations. The
previous research on the light tetraquark spectrum indicated
that a tetraquark system has at least four color flux-tube
structures [15]: meson-meson molecule ½qq̄�1½qq̄�1, hidden
color octet-antioctet ½½qq̄�8½qq̄�8̄�1, diquark-antidiquark
½½qq�3½q̄ q̄�3̄�1 or ½½qq�6½q̄ q̄�6̄�1, and ringlike ½qqq̄ q̄�1 (called
QCD cyclobutadiene in Ref. [15]). The states with these
flux-tube structures are similar to the molecules having the
same atomic content but different molecular bonds and can
be called QCD isomers. In general, a tetraquark state
should be a mixture of all of these QCD isomer states
[15]. In order to avoid too complicated numerical calcu-
lations, the diquark-antidiquark structure is considered in
the present work. The diquark-antidiquark structure has
been used in many model calculations [29] (but no sound
theoretical reason to neglect the other structures).
Within the color flux-tube model, the confinement

potential of the diquark-antidiquark structure can be
expressed as

VCONð4Þ ¼ Kððr1 − y12Þ2 þ ðr2 − y12Þ2 þ ðr3 − y34Þ2
þ ðr4 − y34Þ2 þ κdðy12 − y34Þ2Þ; ð2Þ

where r1 and r2 represent the two quarks’ positions, r3 and
r4 represent the two antiquarks’ positions, and the varia-
tional parameters y12 and y34 represent the two Y-shaped
junction positions where three flux tubes meet. The
parameter K is the stiffness of a three-dimensional flux-
tube, κdK is other compound color flux-tube stiffness. The
relative stiffness parameter κd [30] of the compound flux-
tube is

κd ¼
Cd

C3

; ð3Þ

where Cd is the eigenvalue of the Casimir operator
associated with the SUð3Þ color representation d at either
end of the color flux-tube, namely, C3 ¼ 4

3
, C6 ¼ 10

3
,

and C8 ¼ 3.
For given quark (antiquark) positions ri, the junctions

y12 and y34 can be fixed by minimizing the confinement
potential. It is understood here that the gluon field readjusts
immediately to its minimal configuration. By introducing
the following set of canonical coordinates Ri,

R1 ¼
1ffiffiffi
2

p ðr1 − r2Þ; R2 ¼
1ffiffiffi
2

p ðr3 − r4Þ;

R3 ¼
1ffiffiffi
4

p ðr1 þ r2 − r3 − r4Þ;

R4 ¼
1ffiffiffi
4

p ðr1 þ r2 þ r3 þ r4Þ; ð4Þ

the minimum VCON
min ð4Þ of the confinement potential

reduces to the sum of three independent harmonic oscil-
lators,

VCON
min ð4Þ ¼ K

�
R2

1 þR2
2 þ

κd
1þ κd

R2
3

�
: ð5Þ

Clearly, the confinement VCON
min ð4Þ is a four-body interac-

tion and cannot be reduced to the sum of six pairs two-body
interactions. For a two-body system, an ordinary meson,
the confinement potential can be written as

VCON
min ð2Þ ¼ Kr2; ð6Þ

where the r is the separation of the quark and antiquark of
a meson.
In addition to the color confinement, there are other

interactions, one-boson-exchange and one-gluon-exchange
potentials between quarks (antiquarks). Here we only write
down their forms; the details can be found in many papers,
for example Ref. [20],

VB
ij ¼ Vπ

ij

X3
k¼1

Fk
iF

k
j þ VK

ij

X7
k¼4

Fk
iF

k
j

þ Vη
ijðF8

iF
8
j cos θP − F0

iF
0
j sin θPÞ; ð7Þ

Vχ
ij ¼

g2ch
4π

m3
χ

12mimj

Λ2
χ

Λ2
χ −m2

χ
σi · σj

×

�
YðmχrijÞ −

Λ3
χ

m3
χ
YðΛχrijÞ

�
; χ ¼ π; K; η

Vσ
ij ¼ −

g2ch
4π

Λ2
σ

Λ2
σ −m2

σ
mσ

�
YðmσrijÞ −

Λσ

mσ
YðΛσrijÞ

�
;

VG
ij ¼

1

4
αsλci · λcj

�
1

rij
−
2πδðrijÞσi · σj

3mimj

�
; ð8Þ

where YðxÞ is standard Yukawa potential, YðxÞ ¼ e−x=x.
The symbols F, λ and σ are the flavor SUð3Þ, color SU(3)
Gell-Mann and spin SUð2Þ Pauli matrices, respectively. θP
is the mixing angle between η1 and η8 to give the physical η
meson. mi is the mass of the ith quark. g2ch=4π is the chiral
coupling constant. αs is the running strong coupling
constant and takes the following form [31],
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αsðμijÞ ¼
α0

ln ððμ2ij þ μ20Þ=Λ2
0Þ
; ð9Þ

where μij is the reduced mass of two interacting quarks qi
and qj. Λ0, α0 and μ0 are model parameters. The function
δðrijÞ in VG

ij should be regularized [32],

δðrijÞ ¼
1

4πrijr20ðμijÞ
e−rij=r0ðμijÞ; ð10Þ

with r0ðμijÞ ¼ r̂0=μij, where r̂0 is a model parameter.
To sum up, the total Hamiltonian Hf in the color flux-

tube model can be expressed as follows:

Hf ¼
Xf
i¼1

�
mi þ

p2
i

2mi

�
− TC þ

Xf
i>j

Vij þ VC
minðfÞ;

Vij ¼ VB
ij þ Vσ

ij þ VG
ij: ð11Þ

In the above expression of Hf, f ¼ 2 or 4, Tc is the center-
of-mass kinetic energy, and pi is the momentum of the ith
quark. The tensor and spin-orbit forces between quarks are
omitted in the present calculation because, for the lowest
energy states which we are interested in here, their
contributions are small or zero. The present study involves
up, down, strange, charm and bottom quarks, and the
details of the interactions are listed in the following,

Vij ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

VG
ij þ Vπ

ij þ Vη
ij þ Vσ

ij qiqj ¼ nn

VG
ij þ VK

ij þ Vη
ij þ Vσ

ij qiqj ¼ ns

VG
ij þ Vη

ij þ Vσ
ij qiqj ¼ ss

VG
ij qiqj ¼ Qn

VG
ij qiqj ¼ Qs

VG
ij qiqj ¼ QQ

; ð12Þ

where n stands for the nonstrange light quarks, u and d, and
Q represents a charm or bottom quark. As far as ordinary
mesons are concerned, the Hamiltonian H2 in the color
flux-tube model is almost the same as that in the chiral
quark model [31]. However, if the color flux-tube model is
applied to multiquark states, the multibody confinement
potential instead of a color dependent two-body one is used
so that it can overcome the shortcomings of traditional
quark models. In fact, the color flux-tube model based on
traditional quark models and LQCD picture merely modi-
fies the two-body confinement potential to describe multi-
quark states with multibody interactions.

III. WAVE FUNCTIONS OF CHARGED
TETRAQUARK STATES

In the diquark-antidiquark configuration, the wave func-
tion of a tetraquark state ½Qq�½Q̄0q̄0� can be written as a sum

of the following direct products of color, isospin, spin and
spatial terms [33,34],

Φ½Qq�½Q̄0q̄0�
IMIJMJ

¼
X
α

ξα½½½ϕG
lama

ðrÞχsa �½Qq�
ja

× ½ψG
lbmb

ðRÞχsb �½Q̄
0q̄0�

jb
�½Qq�½Q̄0q̄0�
Jab

FLMðXÞ�½Qq�½Q̄0q̄0�
JMJ

× ½η½Qq�
Ia

η½Q̄
0q̄0�

Ib
�½Qq�½Q̄0q̄0�
IMI

½χ½Qq�
ca χ½Q̄

0q̄0�
cb �½Qq�½Q̄0q̄0�

CWC
: ð13Þ

The codes of the quarksQ and q, and the antiquarks Q̄0 and
q̄0 are assumed to be 1 and 2, and 3 and 4, respectively.
In the frame of center of mass, three relative motion
coordinates, r, R, and X, can be expressed as

r ¼ r1 − r2; R ¼ r3 − r4;

X ¼ m1r1 þm2r2
m1 þm2

−
m3r3 þm4r4
m3 þm4

: ð14Þ

The total kinetic energy T of the state ½Qq�½Q̄0q̄0� in the
frame of center of mass can therefore be written as

T ¼
X4
i¼1

p2
i

2mi
− Tc ¼

p2
r

2μr
þ p2

R

2μR
þ p2

X

2μX
; ð15Þ

where μr, μR, and μX are the corresponding reduced masses
[35], la, lb, and L are the orbital angular momenta
associated with the relative motions r, R, and X, respec-
tively, and J is the total angular momentum. Ia; Ib are the
isospins of the clusters ½Qq� and ½Q̄0q̄0�, respectively, and I
is the total isospin. α represents all possible intermediate
quantum numbers, α ¼ flk; sk; jk; Jab; L; Ikg, k ¼ a; b. χsk ,
ηIk , and χck stand for spin, flavor, and color wave functions
of the diquark ½Qq� or the antidiquark ½Q̄0q̄0�, respectively.
[ ]’s denote Clebsh-Gordan coefficient coupling. The
overall color singlet can be constructed in two possible
ways: χ1c ¼ 3̄12 ⊗ 334 and χ2c ¼ 612 ⊗ 6̄34. The so-called
“good” diquark (ca ¼ 3̄ and jPa ¼ 0þ, cb ¼ 3 and
jPb ¼ 0þ), the “bad” diquark (ca ¼ 3̄ and jPa ¼ 1þ, cb¼3

and jPb ¼ 1þ), and the “worse" diquark (others) are all
included. The Jaffe’s terminology of the diquark is used
here. The first two and the last one were also formerly
called “true” and “mock” diquarks, respectively [29,36].
The coefficient ξα is determined by diagonalizing the
Hamiltonian.
The diquark ½Qq� (antidiquark ½Q̄0q̄0�) can be considered

as a new compound object Q̄ (Q0) with no internal orbital
excitations, and the excitations are assumed to occur only
between Q0 and Q̄ in the present numerical calculations,
such a tetraquark state has lower energy than the states with
additional internal orbital excitation. The orbital angular
momenta la and lb are therefore assumed to be zero in the
present work. Under these assumptions, sa ¼ ja, sb ¼ jb,
S ¼ sa þ sb ¼ ja þ jb ¼ Jab, and J ¼ Lþ S, where S can
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take the value 0, 1, and 2. The parity of a tetraquark with
these diquark-antidiquark structures is simply related to L
as P ¼ ð−1ÞL.
To obtain a reliable numerical solution of a few-body

problem, a high-precision method is indispensable. The
GEM [37], which has been proven to be rather powerful in
solving few-body problems, is used to study four-body
systems in the flux-tube model. In the GEM, three relative
motion wave functions can be expanded as

ϕG
lama

ðrÞ ¼
Xna×max

na¼1

cnaNnalar
lae−νna r

2

Ylama
ðr̂Þ;

ψG
lbmb

ðRÞ ¼
Xnb×max

nb¼1

cnbNnblbR
lbe−νnbR

2

Ylbmb
ðR̂Þ;

FG
LMðXÞ ¼

Xnc×max

nc¼1

cncNncLX
Le−νncX

2

YLMðX̂Þ; ð16Þ

where Nnala , Nnblb , and NncL are normalization constants.
Gaussian size parameters are taken as the following
geometric progression numbers:

νn ¼
1

r2n
; rn ¼ r1xn−1; x ¼

�
rnmax

r1

� 1
nmax−1

: ð17Þ

The geometric progression leads to that νn is denser at
intermediate and short ranges than at long ranges, so that
it is suited to describe the dynamics mediated by
intermediate- and short-range interactions.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A lot of research has been devoted to studying the meson
spectrum in different quark models [31,38,39]. The heavy
mesons, such as charmonium, are properly described by
nonrelativistic potential models incorporating both the
Coulomb and confinement forces [38]. The mesons from
the π to ϒ can be described in a relativized quark model
with a universal one-gluon exchange plus a linear confining
potential motivated by QCD [39]. In the same way, the
spectrum from the light-pseudoscalar and vector mesons to
bottomonium are also investigated in a nonrelativistic
quark model with one gluon exchange potential, a
screened confinement, and one boson exchange [31].
The meson spectrum is the starting point of the studies
of tetraquark states in our color-flux tube model, and all
the model parameters are fixed by meson spectrum. The
model parameters are determined as follows. The mass
parameters mπ , mK , and mη in the interaction VB

ij take
their experimental values, namely, mπ ¼ 0.7 fm−1,
mK ¼ 2.51 fm−1, mη ¼ 2.77 fm−1. The mass parameter
mσ in the interaction Vσ

ij is determined through the
PCAC relation m2

σ ∼m2
π þ 4m2

u;d [40], mu;d ¼ 280 MeV,

mσ ¼ 2.92 fm−1. The cutoff parameters take the values,
Λπ ¼ Λσ ¼ 4.20 fm−1 and ΛK ¼ Λη ¼ 5.20 fm−1 fixed in
[31,41], where the mixing angle θP ¼ −π=12 [31]. The
chiral coupling constant gch is determined from the πNN
coupling constant through

g2ch
4π

¼
�
3

5

�
2 g2πNN

4π

m2
u;d

m2
N

¼ 0.43: ð18Þ

The other adjustable parameters and their errors are fixed
by fitting the masses of mesons using Minuit program. The
mass spectrum of the ground states of mesons from π to ϒ
can be obtained by solving the two-body Schrödinger
equation

ðH2 − EIJÞΦqq̄
IJ ¼ 0 ð19Þ

with Rayleigh-Ritz variational principle in the color
flux-tube model. The converged numerical results can be
reached by setting r1 ¼ 0.1 fm, rnmax

¼ 2.0 fm and
nmax ¼ 7. The benchmark identifying whether the varia-
tional results are convergent or not is that the results are
stable against the varying of the number of Gaussians nmax.
Table I shows that the stability of our results against the
number of Gaussians, where the mesonD� and the charged
tetraquark states Zc which will be discussed in the
following part of this section are taken as examples. The
adjustable parameters and their errors are shown in Table II
and the fitted meson spectra and their errors are given in
Table III. The larger errors of π and K mesons come from
the stronger interactions in π andK mesons. From Table III,
one can find that the heavy mesons, D�, D�, D�

s , D�
s , B0,

B�, B0
s and B�

s , involved in the tetraquark calculations are
preferentially taken into account. For comparison, the
results of the other two models are also listed in the
Table III. Generally speaking, other two models can

TABLE I. The stabilities of calculated results against the
number of Gaussians, units in MeV.

nmax 2 3 4 5 6 7 8

D� 6805.8 3142.7 2128.0 1882.2 1867.2 1867.1 1867.1
Zc 4588.9 4091.1 4006.2 4000.6 4000.5 4000.5 4000.5

TABLE II. The adjustable parameters and their errors in the
color flux-tube model. (units: ms, mc, mb, μ0, Λ, MeV; K,
MeV · fm−2; r0, MeV · fm; α0, dimensionless)

Parameters Values Errors Parameters Values Errors

ms 511.78 0.228 α0 4.554 0.018
mc 1601.7 0.441 Λ0 9.173 0.175
mb 4936.2 0.451 μ0 0.0004 0.540
K 217.50 0.230 r0 35.06 0.156
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describe the meson spectra a little better than our model.
However, the number of the free parameters in our model is
two less than those in the model of Ref [31].
The color flux-tube model with the parameters listed in

Table II is used to investigate the charge tetraquark states
½Qq�½Q̄0q̄0�. It should be emphasized that no any new
parameters or assumptions are introduced in the course
of the calculation. We focus our attentions on the lowest
charged states ½Qq�½Q̄0q̄0�, and therefore the orbital angular
momentum between two clusters is set to be 0, then parity
P ¼ þ, isospin I ¼ 1

2
or 1, and the total angular momentum

J ¼ 0, 1 and 2. In order to observe the underlying
phenomenological features, a systematical calculations
on the charged tetraquark states ½Qq�½Q̄0q̄0� are carried
out. The energies of the tetraquark states ½Qq�½Q̄0q̄0� can be
obtained by solving the four-body Schrödinger equation,

ðH4 − EIJÞΦ½Qq�½Q̄0q̄0�
IMIJMJ

¼ 0: ð20Þ

The converged numerical results can be obtained by setting
na×max ¼ 6, nb×max ¼ 6 and nc×max ¼ 6 (see Table I). The
minimum and maximum ranges of the bases are 0.3 fm and
2.0 fm for the coordinates r, R, and X, respectively.
The lowest energiesEIJ and their errorsΔEIJ are given in

Table IV, where the errors are around 10 MeV. The stability
of these states can be identified by the binding energies
corresponding to the meson-meson thresholds TM1M2

¼
M1ðQq̄0Þ þM2ðQ̄0qÞ and TM0

1
M0

2
¼ M1ðQQ̄0Þ þM2ðqq̄0Þ,

where the binding energies are defined asEB ¼EIJ−TM1M2

and E0
B ¼ EIJ − TM0

1
M0

2
. If EB; E0

B < 0, then the states

½Qq�½Q̄0q̄0� are bound states and cannot decay into two
corresponding color singlet mesons Qq̄0 and Q̄0q, QQ̄0 and
qq̄0 under the strong interaction. While if EB > 0 and (or)
E0
B > 0, the states ½Qq�½Q̄0q̄0� may be resonances and can

decay into two corresponding color singlet mesons through
the rupture and rearrangement of the color flux tubes. The
errors ΔEB and ΔEB

0 of the binding energies EB and EB
0,

respectively, are calculated and listed in Table IV. One can
find that the errors ΔEB are small and less than 3 MeV
because of the error cancellation in the expressions of the
binding energies EB. However, the errors ΔEB

0 of the states
with J ¼ 0 and 1 are around 10 MeV because of the big
errors of π and K mesons in the errors ΔEB

0.
It can be seen from Table IV that the energies EIJ of all of

these states are higher than the corresponding threshold
TM0

1
M0

2
, due to the large binding energies of the light

mesons, π, ρ, K, and K�, which originate from the stronger
interactions between two light quarks q and q̄0. The binding
energies E0

B of the low-spin (S ¼ 0 or 1) tetraquark states
½Qq�½Q̄0q̄0� are several hundreds of MeV higher, while E0

B
of the high-spin (S ¼ 2) states are only several tens of MeV
higher, than the corresponding threshold TM0

1
M0

2
. The

difference is due to the smaller masses of pseudoscalar
mesons in the decay products of the low-spin states. So the
charged states ½Qq�½Q̄0q̄0� are hard to form bound tetraquark
states and can finally decay into two mesons QQ̄0 and qq̄,
which is in agreement with the conclusions of the work
[33,42]. On the contrary, the states ½QQ�½q̄ q̄� are easier to
form stable tetraquark states due to that they can only decay
into two Qq̄ mesons in the quark model [33,43].
The energies EIJ of the states ½Qq�½Q̄0q̄0� are also

compared with the threshold TM1M2
. From Table IV, it

can be found that the energies of many states lie below the
thresholds TM1M2

, i.e., EB < 0. Let us first pay attention to
the charged states ½cu�½c̄ d̄�. The energies EIJ with IJ ¼ 11

and 12 are lower than the thresholds of D�D̄ or DD̄� and
D�D̄� by 11 and 3 MeV, respectively. So these two states
cannot decay into D�D̄ or DD̄� and D�D̄� through strong
interactions. After taking the meson mass differences
between the calculated one and the experimental one into
account (see Table III), the energies EIJ of the states with
IJ ¼ 11 and 12 should be about 3865 and 4011 MeV,
respectively, which are very close to the results of Ref. [44],
where the heavy tetraquark states are considered as the
bound states of a heavy-light diquark and antidiquark in the
framework of the relativistic quark model. The color flux-
tube model energies of the charged states ½cu�½c̄ d̄� with
IJ ¼ 11 and 12 are in good agreement with the masses of
the observed Zcð3900Þ and Zcð4025Þ=Zcð4020Þ, respec-
tively [4–9]. The dominant component of the charged sates
Zcð3900Þ and Zcð4025Þ=Zcð4020Þ might therefore be the
hidden color tetraquark states ½cu�½c̄ d̄� with IJP ¼ 11þ and
12þ, respectively. This identification of the charged Zc

TABLE III. The ground state meson spectra and their errors,
units in MeV.

Mesons IJP EIJ ΔEIJ Ref. [38] Ref. [31] PDG

π 10− 142 26 150 139 139
K 1

2
0− 492 20 470 496 496

ρ 11− 826 4 770 772 775
ω 01− 780 4 780 690 783
K� 1

2
1− 974 4 900 910 892

ϕ 01− 1112 4 1020 1020 1020
D� 1

2
0− 1867 8 1880 1883 1869

D� 1
2
1− 2002 4 2040 2010 2007

D�
s 00− 1972 9 1980 1981 1968

D�
s 01− 2140 4 2130 2112 2112

ηc 00− 2912 5 2970 2990 2980
J=Ψ 01− 3102 4 3100 3097 3097
B0 1

2
0− 5259 5 5310 5281 5280

B� 1
2
1− 5301 4 5370 5321 5325

B0
s 00− 5377 5 5390 5355 5366

B�
s 01− 5430 4 5450 5400 5416

Bc 00− 6261 7 6270 6277 6277
B�
c 01− 6357 4 6340 � � � � � �

ηb 00− 9441 8 9400 9454 9391
ϒð1SÞ 01− 9546 5 9460 9505 9460
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states as tetraquark states is in agreement with previous
ones [11]. As for the state ½cu�½c̄ d̄� with IJP ¼ 10þ, the
energy is about 3786 MeV and very close to the results of
hadro-quarkonium model [13], where the state ½cu�½c̄ d̄�
with IGJP ¼ 1−0þ was called Wc.
Next, let us turn to the charged tetraquark states of

hidden charm and open strangeness, namely the state
½cu�½c̄ s̄� or ½cs�½c̄ ū�. Table IV shows that the energies of
the states with IJ ¼ 1

2
0 and 1

2
1 are much higher than the

thresholds D̄sD and D̄sD�, respectively. While the energies
of the states ½cu�½c̄ s̄� with IJ ¼ 1

2
1 and 1

2
2 are close to the

thresholds D̄�
sD and D̄�

sD�, respectively. Taking into
account the meson mass differences between the calculated
and the experimental ones again, the predicted ½cu�½c̄ s̄�
with IJ ¼ 1

2
1 and 1

2
2 energies are about 4039 and

4139 MeV, respectively. The masses of these states
obtained by the initial single chiral particle emission model
are also near the thresholds of D̄�

sD=D̄sD� and
D̄�

sD�=D�
sD̄� [45]. So we suggest to study these charged

charmoniumlike states with hidden-charm and open-
strangeness further. The hidden-beauty partners of the
charged hidden charm states have rather strong binding
in the color flux-tube model, see Table IV. Their masses in

the model are much lower than experimental ones of the
charged states Zbð10610Þ and Zbð10650Þ [3]. Therefore,
the main components of these two states are hard to be
described as charged tetraquark states ½bu�½b̄ d̄� in the color
flux-tube model. However the chiral quark model calcu-
lation showed that they are [46]. For the other open-charm
and open-beauty charged states ½cu�½b̄ d̄�, ½bu�½c̄ s̄� and
½cu�½b̄ s̄�, the energies are very close to the corresponding
thresholds, which we also suggest to search in the future.
In addition, one can, from Table IV, find that the bigger

the mass ratios MQ=mq and MQ̄0=mq̄0 in the different
charged states ½Qq�½Q̄0q̄0� but with the same IJ, the bigger
the corresponding binding energies EB. Taking the states
with IJ ¼ 11 as an example, we have EB ¼ −11 MeV for
½cu�½c̄ d̄�, −46= − 139 MeV for ½cu�½b̄ d̄� and −218 or
½bu�½b̄ d̄�. In order to clarify the origin of this tendency,
the contributions of various parts of the Hamiltonian to the
binding energies EB of the charged states with IJ ¼ 11 and
12 are calculated and given in Table V. One can find that the
contributions to the binding energy, ΔVCON, ΔVCM (color-
magnetic), ΔVσ, ΔVB, and ΔT, do not have big variation
with the mass ratios MQ=mq and MQ̄0=mq̄0 in the group

½cu�½c̄ d̄�-½cu�½b̄ d̄�-½bu�½b̄ d̄� for IJ ¼ 12. However, the

TABLE IV. The energies EIJ , binding energies EB and E0
B and their errors ΔEIJ , ΔEB and ΔE0

B (unit in MeV) of the charge tetraquark
states ½Qu�½Q̄0d̄� and ½Qu�½Q̄0s̄� in the S-wave ðL ¼ 0Þ, and the rms hr2i12, hR2i12 and hX2i12 (unit in fm) of the clusters ½Qq�, ½Q̄0q̄0� and
½Qq�-½Q̄0q̄0�, respectively.
States ½cu�½c̄ d̄� ½bu�½b̄ d̄� ½cu�½b̄ d̄�
IJP 10þ 11þ 12þ 10þ 11þ 12þ 10þ 11þ 12þ

EIJ 3782 3858 4001 10317 10342 10484 7084 7122 7266
ΔEIJ 12 10 7 11 10 8 11 10 8
TM1M2

DD̄ DD̄�=D�D̄ D�D̄� BB̄ BB̄�=B�B̄ B�B̄� DB̄ DB̄�=D�B̄ D�B̄�

EB 48 −11 −3 −201 −218 −118 −42 −46=−139 −37
ΔEB 2 1 1 1 1 1 1 1/1 1
TM0

1
M0

2
πηc πJ=Ψ=ρηc ρJ=Ψ πηb πϒð1SÞ=ρηb ρϒð1SÞ πB̄c πB̄�

c=ρB̄c ρB̄�
c

EB
0 728 614=120 73 734 654=75 112 681 623=35 83

ΔE0
B 12 10=2 1 12 11=1 1 11 10=1 1

hr2i12 0.85 0.90 1.03 0.85 0.86 1.01 0.86 0.89 1.01

hR2i12 0.85 0.90 1.03 0.85 0.86 1.01 0.84 0.86 1.01

hX2i12 0.42 0.48 0.57 0.27 0.28 0.29 0.36 0.39 0.45

States ½cu�½c̄ s̄� ½bu�½b̄ s̄� ½bu�½c̄ s̄� ½cu�½b̄ s̄�
IJP 1

2
0þ 1

2
1þ 1

2
2þ 1

2
0þ 1

2
1þ 1

2
2þ 1

2
0þ 1

2
1þ 1

2
2þ 1

2
0þ 1

2
1þ 1

2
2þ

EIJ 3998 4065 4162 10529 10552 10645 7302 7334 7432 7293 7328 7423
ΔEIJ 11 9 7 10 10 8 10 9 7 10 9 7
TM1M2

DsD̄ DsD̄�=D�
sD̄ D�

sD̄� BsB̄ BsB̄�=B�
s B̄ B�

s B̄� D̄Bs D̄B�
s=D̄�Bs D̄�B�

s DsB̄ DsB̄�=D�
sB̄ D�

s B̄�

EB 159 91=58 20 −107 −126=−137 −86 58 37=−45 −1 62 55=−71 −18
ΔEB 3 2=1 1 1 1=1 1 2 1=1 1 2 2=1 1
TM0

1
M0

2
Kηc KJ=Ψ=K�ηc K�J=Ψ Kηb Kϒð1SÞ=K�ηb K�ϒð1SÞ KBc KB�

c=K�Bc K�B�
c KB̄c KB̄�

c=K�B̄c K�B̄�
c

EB
0 594 471=179 86 596 514=137 125 549 485=99 101 540 479=93 92

ΔE0
B 10 7/3 1 9 8/2 1 8 8/1 1 8 7/1 1

hr2i12 0.85 0.90 1.01 0.86 0.87 0.99 0.75 0.76 0.87 0.87 0.75 1.00

hR2i12 0.74 0.80 0.88 0.74 0.75 0.84 0.84 0.86 0.99 0.73 0.90 0.85

hX2i12 0.43 0.59 0.56 0.27 0.28 0.29 0.37 0.40 0.45 0.37 0.40 0.44
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contribution from the color Coulomb interaction ΔVCOU

has a big variation with the mass ratios. For the group
½cu�½c̄ d̄�-½cu�½b̄ d̄�-½bu�½b̄ d̄� with IJ ¼ 11, although ΔT is
proportional to the mass ratios, the color Coulomb inter-
action is still the main origin of this tendency [36,47]. The
calculated binding energies of charged tetraquark states
½bu�½b̄ d̄� might be over estimated in comparison to the
charged states Zbð10610Þ and Zbð10650Þ in the color flux-
tube model.
In order to obtain the spatial structure picture of the

charged states, the rms hr2i12, hR2i12 and hX2i12, which stand
for the sizes of the diquark ½Qq�, the antidiquark ½Q̄0q̄0� and
the distance between the two clusters, respectively, are
calculated and also shown in Table VI. One can find that the
hX2i12 is inversely proportional to the masses of the diquark
½Qq� and antidiquark ½Q̄0q̄0� and much smaller than the hr2i12
and hR2i12. So one expects the charged states ½Qq�½Q̄0q̄0� are
compact tetraquark states because the diquark ½Qq� and the
antidiquark ½Q̄0q̄0� have a large overlap. To show the spatial
structure of these tetraquark states more clear, the average
distances hr2iji12 between the ith particle and the jth particle
in the states ½cu�½c̄ d̄� with IJ ¼ 10, 11, and 12 are
calculated and listed in Table VI, in which the order
numbers 1, 2, 3, and 4, respectively, stand for the quarks
(antiquarks) c, u, c̄ and d̄. From Table VI one can find that
hr212i

1
2 ¼ hr234i

1
2 ≈ hr214i

1
2 ¼ hr223i

1
2 in the same state, thus r13

is approximately perpendicular to r24. The relation

ðhr212i − hr2
13
i

4
Þ
1
2 approximatively represents the distance from

the u or d̄ to the middle point of the cc̄. The expression

2ðhr212i − hr2
13
i

4
Þ
1
2 > hr224i

1
2 indicates the charged states

½cu�½c̄ d̄� in the color flux-tube model must not be planar
structures but three-dimensional spatial ones, as shown in
Fig. 1, the red dot lines represent color flux tubes which
connect four particles to form compact tetraquark states.
The situations of other charged states are similar to the
states ½cu�½c̄ d̄� and also have three-dimensional spatial
structures. Such a spatial tetrahedral structure comes from
the dynamics of the systems: the color flux tubes shrink the
distance between any two connected particles to as short a
distance as possible to minimize the confinement potential
energy, while the kinetic motion expands the distance
between any two quarks to as long a distance as possible
to minimize the kinetic energy: the tetrahedral structures
meet these requirements better than a planar one does. The
four-body confinement potential in the color flux-tube
model plays a crucial role in the formation of the three-
dimensional compact tetraquark states ½Qq�½Q̄0q̄0�. Lattice
QCD calculations on tetraquark states also show that a
tetrahedral structure is favored because a tetrahedral struc-
ture is more stable than a planar one [25]. The multiquark
states will be similar to the stereo-chemistry. The color
flux-tube model expects a color-stereo chemistry with color
isomer.
Due to higher energies of the tetraquark states, they

should eventually decay into several color singlet mesons.
In the course of the decay, the color flux-tube structure
breaks down first which leads to the collapses of the
tetrahedral structure, and then through the recombination of
the color flux tubes the particles of decay products formed.
The decay widths of the charged states ½Qq�½Q̄0q̄0� are
determined by the transition probability of the breakdown
and recombination of color flux tubes. This decay mecha-
nism is similar to compound nucleus decay and therefore
should induce a resonance, which we called it as “color
confined, multiquark resonance” state before [48]. It is
different from all of those microscopic resonances dis-
cussed by S.Weinberg [49]. How to form a multiquark state

TABLE V. The contributions of the various parts of the
Hamiltonian in the color flux-tube model to the binding energies
EB of the states with IJ ¼ 11 and 12, unit in MeV.

IJ 11 12

States ½cu�½c̄ d̄� ½cu�½b̄ d̄� ½bu�½b̄ d̄� ½cu�½c̄ d̄� ½cu�½b̄ d̄� ½bu�½b̄ d̄�
TM1M2

DD̄� DB̄�=D�B̄ BB̄� D�D̄� D�B̄� B�B̄�

ΔVCON −45 −48=−78 −76 −26 −29 −27
ΔVCM 24 26=−108 −96 −8 1 11
ΔVCOU 121 77=−4 −85 96 54 −47
ΔVB −14 −15=−15 −15 3 3 3
ΔVσ −14 −15=−15 −15 −10 −10 −9
ΔT −83 −71/81 69 −58 −56 −49
EB −11 −46=−139 −218 −3 −37 −118

FIG. 1 (color online). The tetrahedral structure of the states
½cu�½c̄ d̄�.

TABLE VI. The average distances hr2iji
1
2 between the ith

particle and the jth particle in the states ½cu�½c̄ d̄� with
IJ ¼ 10, 11 and 12, unit in fm.

Distances hr212i
1
2 hr234i

1
2 hr224i

1
2 hr213i

1
2 hr214i

1
2 hr223i

1
2

IJ ¼ 10 0.85 0.85 1.11 0.46 0.85 0.85
IJ ¼ 11 0.91 0.91 1.20 0.52 0.93 0.93
IJ ¼ 12 1.04 1.04 1.38 0.61 1.07 1.07
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with flux-tube structure and then decay is an interesting
topic for low-energy QCD.

V. SUMMARY

The lowest charged tetraquark states ½Qq�½Q̄0q̄0�
ðQ ¼ c; b; q ¼ u; d; sÞ are studied using the variational
method GEM in the color flux-tube model with a four-body
confinement potential instead of the usual additive two-
body confinement. The numerical results indicate that some
compact resonance states can be formed, in which the four-
body confinement potential is crucial, and they have
tetrahedral structures and cannot decay into two color
singlet mesons Qq̄0 and Q̄0q but into QQ̄0 and qq̄0 by
means of the breakdown and recombination of the flux
tubes. Their decay mechanism is similar to compound
nucleus and therefore should induce a so-called “color
confined, multiquark resonance" state in the color flux-tube
model. The newly observed charged states Zcð3900Þ and
Zcð4025Þ=Zcð4020Þ can be accommodated in the color

flux-tube model and can be interpreted as the S-wave
tetraquark states ½cu�½c̄ d̄� with quantum numbers IJP ¼
11þ and 12þ, respectively. The hidden charm and open
strangeness charged states are worth the experimental
search, while the formation and decay of the exotic quark
system with color flux-tube stereo structure is an interesting
topic for low-energy QCD. A color stereo chemistry with
color isomer world might exist and we might just get into
this world.
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