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Previously we showed that, based only on charge conjugation and isospin invariance of strong
interactions, the difference cross sections of hadrons with opposite charge in semi-inclusive deep inelastic
scattering (SIDIS) eþ N → lþ hþ X are expressed solely in terms of the valence-quark densities and
certain nonsinglet combinations of fragmentation functions (FFs). This allowed us to determine these
quantities in a model-independent way. Now we extend this approach to processes when the transverse
momentum of the final hadron is measured as well. We show that the difference cross sections of
unpolarized SIDIS on proton and deuterium targets, dσh

þ−h−
N , dσπ

þ−π−
N and dσK

þ−K−

N , are expressed solely in
terms of the transverse momentum-dependent (TMD) unpolarized valence-quark densities and FFs, and
the valence-quark Boer-Mulders and Collins functions. This allows us to determine them separately
and study the flavor dependence of the quark transverse momentum. Measurements on the deuterium
target, dσh

þ−h−
d , dσπ

þ−π−
d and dσK

þ−K−

d , provide three independent measurements for the sum of the TMD
valence-quark densities and Boer-Mulders functions: ðu1;V þ d1;VÞ and ðh⊥1;uV þ h⊥1;dVÞ.

DOI: 10.1103/PhysRevD.90.054005 PACS numbers: 13.60.-r, 13.85.Ni, 13.88.+e

I. INTRODUCTION

Now it seems quite well established that the simple
collinear picture of the quark-parton model appears too
simple to explain existing experimental data. The measured
azimuthal asymmetries in the direction of the final hadrons
show that the transverse momentum of the quarks should
be necessarily taken into account. This leads to the following
three main differences as compared to the collinear parton
model: 1) the known parton distribution functions (PDFs)
and fragmentation functions (FFs) depend not only on the
longitudinal, but on the transverse momenta of the quarks
as well—we start to deal with transverse momentum-
dependent parton density functions (TMD PDFs) and
fragmentation functions (TMD FFs), 2) a new type of
TMD parton densities and FFs arise from correlations
among the transverse components of quark momentum or
spin, and the longitudinal components of the particles in the
process and 3) the TMD PDFs and TMD FFs always enter
the cross sections in convolutions over the quark transverse
momenta.
This makes the problem of extracting the transverse

momentum densities and FFs from experiment consider-
ably more complicated. In order to simplify analysis, a lot
of assumptions on the TMD functions, in addition to those
on the collinear PDFs and FFs, are made for the transverse
momentum dependence: it is factorized, it is flavor blind, it
is hadron blind, etc. Though sometimes quite reasonable,
these are ad hoc model assumptions, motivated mainly by

simplicity, and do not follow from QCD theory of strong
interactions and thus introduce uncontrolled uncertainties.
For these reasons it is important to find measurable

quantities, that would extract TMD functions without or
with fewer additional assumptions.
Previously this task was fulfilled for the collinear

polarized PDFs. We showed [1] that, based only on charge
conjugation (C) and isospin SU(2) invariance of strong
interactions, the so called “difference asymmetries” in
semi-inclusive deep inelastic scattering (SIDIS) of longi-
tudinally polarized leptons on longitudinally polarized
nucleons determine the polarized valence-quark PDFs in
a model-independent way. Such measurements were ful-
filled and the polarized valence-quark densities were
determined directly [2].
Later, the same approach was used for the collinear FFs.

We showed [3] that differences between the cross sections
for producing hadrons and their antiparticles in unpolarized
SIDIS allow us to determine nonsinglet combinations of the
collinear FFs in a model-independent way and test most of
the commonly used assumptions. Recently, this approach
was applied to HERMES data and the nonsinglet combi-
nation of the pion fragmentation functions was determined
with very good precision [4].
Now we extend this approach to the noncollinear picture

of the parton model, when parton densities and fragmen-
tation functions depend on the transverse momentum of the
quarks as well. Transverse momentum of the quarks plays a
crucial role when not only the energy, but the transverse
momentum of the final hadron is measured.
In this paper we consider unpolarized SIDIS and show

how, based only on the general symmetries of C and SU(2)*echristo@inrne.bas.bg
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invariance, information on certain combinations of the
TMD PDFs and TMD FFs can be obtained in a model-
independent way. The key experimental ingredients are
the differences between cross sections for producing
hadrons and producing their antiparticles, i.e. data on
dσh−h̄ ≡ dσh − dσh̄, for h ¼ h�; π�; K�.
The paper is organized as follows. In the next section we

recall the general expression of the cross section and
introduce the notation. In Secs. III, IV, and V we give
the difference cross sections for any charged hadrons, for
charged pions and charged kaons, respectively; Sec. Vends
up with a brief summary of the obtained results for charged
hadron production. In Sec. VI we present the difference
cross section for charged and neutral kaons. In all cases we
present the results for proton and deuterium targets. In
Sec. VII we discuss the standard parametrizations and those
appropriate to the considered approach and the possibilities
to study flavor and Q2 dependence in the quark transverse
momenta in the TMDs. We end up with our comments and
conclusions.

II. THE CROSS SECTION: GENERAL
EXPRESSION

The cross section for SIDIS of unpolarized leptons l on
unpolarized nucleons N

lðlμÞ þ NðPμÞ → l0ðl0μÞ þ hðPμ
hÞ þ X ð1Þ

exhibits a characteristic cos 2ϕh and cosϕh azimuthal
dependence in the kinematic region of low PT ≃
ΛQCD ≪ Q; ϕh is the azimuthal angle of the produced
hadron h. The general expression for the cross section in
the TMD factorization scheme [5], in the one-photon
exchange approximation and in the LO of QCD reads [6,7]

d5σhp
dxBdQ2dzhd2PT

¼ 2πα2em
Q4

f½1þ ð1 − yÞ2�Fh
UU

þ 2ð1 − yÞ cos 2ϕhF
cos 2ϕ;h
UU

þ 2ð2 − yÞ
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
cosϕhF

cosϕh;h
UU g:

ð2Þ
Here PT is the transverse momentum of the final hadron in
the γ� − p c.m. frame, and xB; zh; Q2 and y are the usual
measurable SIDIS quantities:

xB ¼ Q2

2ðP · qÞ ; zh ¼
ðP · PhÞ
ðP · qÞ ; Q2 ¼ −q2;

y ¼ ðP · qÞ
ðP · lÞ ; q ¼ l − l0: ð3Þ

Throughout the paper we use the kinematic configura-
tion and the results of [7]. However, we write the FUU’s in a
slightly different form—we indicate explicitly the indices

of the quark flavors q ¼ u; ū; d; d̄; s; s̄ and the type of the
produced hadron h, and we single out the quantities that are
flavor and hadron-type independent. We have

Fh
UU¼

X
q

e2qf1q⊗Dh
1q;

Fcos2ϕ;h
UU ¼

X
q

e2q

�
h⊥1q⊗H⊥;h

1q ⊗w⊥
2 þ

2

Q2
f1q⊗Dh

1q⊗w2

�
;

Fcosϕ;h
UU ¼−

2

Q

X
q

e2q½h⊥1q⊗H⊥;h
1q ⊗w⊥

1 þf1q⊗Dh
1q⊗w1�;

ð4Þ

where the convolutions are defined as follows:

f ⊗ D ⊗ w ¼
Z

d2k⊥d2p⊥δ2ðPT − zhk⊥ − p⊥Þ

× fðxB; k⊥ÞDðzh; p⊥ÞwðPT;k⊥Þ: ð5Þ

Here k⊥ is the transverse momentum of the quark in the
target nucleon, k⊥ ¼ jk⊥j; p⊥ is the transverse momentum
of the final hadron with respect to the direction of the
fragmenting quark, p⊥ ¼ jp⊥j; at the order ðk⊥=QÞ, for the
measured transverse momentum of the final hadron, we
have PT ¼ zhk⊥ þ p⊥.
The functions wi and w⊥

i are flavor and hadron-type
independent, and contain only kinematic factors:

w1 ¼ ðP̂Tk⊥Þ;
w2 ¼ 2ðP̂Tk⊥Þ2 − k2⊥;

w⊥
1 ¼ k2⊥ðPT − zhðP̂Tk⊥ÞÞ

zhMhM
;

w⊥
2 ¼ ðPTk⊥Þ − 2zhðP̂Tk⊥Þ2 þ zhk2⊥

zhMhM
;

P̂T ¼ PT

jPT j
; PT ¼ jPT j: ð6Þ

The only dependence of wi and w⊥
i on the final hadron h is

through Mh. However, this is irrelevant for us, as we shall
consider the production of h and its antiparticle h̄, for
which Mh ¼ Mh̄.
In (4) f1qðx; k⊥Þ and Dh

1qðz; p⊥Þ are the unpolarized
TMD parton distribution and fragmentation functions,
respectively, h⊥1qðx; k⊥Þ are the Boer-Mulders distribution
functions [8] that describe the probability to find a trans-
versely polarized quark q in an unpolarized proton, and
H⊥;h

1;q ðz; p⊥Þ are the Collins fragmentation functions [9], that
describe the probability for a transversely polarized quark q
to produce an unpolarized hadron h with a fraction z of the
longitudinal momentum and transverse momentump⊥ with
respect to the momentum of the fragmenting quark.
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The first term in (2), with Fh
UU, describes the

ϕh-independent cross section; it is expressed through
f1qðx; k⊥Þ and Dh

1qðz; p⊥Þ.
Two mechanisms generate the azimuthal cosϕh and

cos 2ϕh dependence.
(1) The Cahn effect [10], which is a purely kinematic

effect, generated by the intrinsic transverse-quark
momenta. It is described by the unpolarized TMD
functions f1q and Dh

1;q, and is a subleading effect:

1=Q2 contribution to Fcos 2ϕh
UU and 1=Q contribution

to Fcosϕh
UU .

(2) The Boer-Mulders effect [8], which points to the
existence of nonzero transverse polarization of the
quarks and is described by the TMD functions with
transversely polarized quarks: h⊥1q and H⊥

1q. The
induced cos 2ϕh dependence is a leading (twist-2)
effect—the first term in Fcos 2ϕh

UU in Eq. (4), the cosϕh
dependence, is a subleading 1=Q effect.

Note that in (4) we have included the Cahn contribution
to the cos 2ϕh term, though it is of higher 1=Q2 order and
the other terms of the same order are not included. We think
this gives a more clear physical picture of the different
contributions to the cross sections, though it is irrelevant for
the discussions in the paper.

III. THE DIFFERENCE CROSS
SECTIONS WITH h�

Here we shall consider the difference of the cross
sections for producing a hadron h and its antiparticle h̄,
when the type of the hadrons is not specified and they are
distinguished only by their charge:

dσh−h̄N ≡ d5σhN
dxBdQ2dzhd2PT

−
d5σh̄N

dxBdQ2dzhd2PT
; ð7Þ

where N stands for a proton or a neutron target, N ¼ p; n.
Charge conjugation invariance of strong interactions

implies the following relations on the unpolarized TMD
and Collins FFs:

Dh
1;q ¼ Dh̄

1;q̄; Dh
1;q̄ ¼ Dh̄

1;q;

H⊥;h
1;q ¼ H⊥;h̄

1;q̄ ; H⊥;h
1;q̄ ¼ H⊥;h̄

1;q : ð8Þ

Using these relations, from (2) and (7), we obtain the
difference cross section dσh−h̄N . It is easily shown that the
azimuthal dependence in dσh−h̄N remains the same as in dσhN ,
but the expressions for Fh−h̄

UU considerably simplify. We
show that, based only on the general properties of charge
conjugation invariance of strong interactions, only the
contributions of the largest TMD valence-quark densities

survive in Fh−h̄
UU , Fcos 2ϕ;h−h̄

UU and Fcosϕ;h−h̄
UU . Below we give

the expressions for the Fh−h̄
UU ’s for proton and deuterium

targets separately.
As usual, subindex 1 indicates for a transverse momen-

tum dependence f1qðx; k⊥Þ≡ q1ðx; k⊥Þ and so on.

A. On proton target

The expression for the difference cross section on a
proton target dσh−h̄p is analogous to dσhp, (2), in which Fh

UU

are replaced by the corresponding Fh−h̄
UU as given below:

Fh−h̄
UU ¼ e2uu1;V ⊗ Dh

1;uV þ e2dd1;V ⊗ Dh
1;dV;

Fcos 2ϕh;h−h̄
UU ¼ ½e2uh⊥1;uV ⊗ H⊥h

1;uV þ e2dh
⊥
1;dV ⊗ H⊥h

1;dV � ⊗ w⊥
2 þ 2

Q2
½e2uu1;V ⊗ Dh

1;uV þ e2dd1;V ⊗ Dh
1;dV � ⊗ w2;

Fcosϕh;h−h̄
UU ¼ −

2

Q
f½e2uh⊥1;uV ⊗ H⊥h

1;uV þ e2dh
⊥
1;dV ⊗ H⊥h

1;dV � ⊗ w⊥
1 þ ½e2uu1;V ⊗ Dh

1;uV þ e2dd1;V ⊗ Dh
1;dV � ⊗ w1g: ð9Þ

In these expressions we have neglected terms propor-
tional to s1V ≡ s1 − s̄1, which are small being propor-
tional to s − s̄, on which a strong bound from neutrino
experiments exists, js − s̄j ≤ 0.025 [11]. We have also
neglected the terms proportional to h⊥sV ≡ h⊥1s − h⊥1s̄,
which are small due to the positivity condition
h⊥sV ≤ s1V .
In our approach, naturally the TMD densities of the

valence quarks qV ¼ q − q̄ appear. They fragment into the
final hadrons and the TMD valence-quark FFs appear:
Dh

qV ¼ Dh
q−q̄ ¼ Dh−h̄

q (not to be confused with favored
FFs!). We use the notation:

u1V ¼ u1 − ū1; d1V ¼ d1 − d̄1;

h⊥1;uV ¼ h⊥1;u − h⊥1;ū; h⊥1;dV ¼ h⊥1;d − h⊥
1;d̄
;

Dh
1;uV ≡Dh

1;u −Dh
1;ū; Dh

1;dV ≡Dh
1;d −Dh

1;d̄
;

H⊥h
1;uV ≡H⊥h

1;u −H⊥h
1;ū; H⊥h

1;dV ≡H⊥h
1;d −H⊥h

1;d̄
: ð10Þ

Instead of the sum over all quark flavors q ¼ u; ū; d; d̄; s; s̄
in dσhp, in dσh−h̄p we have a sum over the two valence uV and
dV quarks only. The sea quarks do not contribute.
In addition, the FFs that survive Dh

1;uV , D
h
1;dV and Hh

1;uV ,
Hh

1;dV couple to the large valence-quark densities q1;V and
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h⊥1;qV . The strange-quark TMD FFs Dh
1;sV and Hh

1;sV are
suppressed by the small factor ðs − s̄Þ and we safely
neglect them.

B. On deuterium target

SU(2) invariance implies that the cross section on a
neutron target is obtained from (9) with the replacements of
the u and d parton densities:

u1V ↔ d1V; s1V → s1V;

h⊥1;uV ↔ h⊥1;dV; h⊥1;sV → h⊥1;sV: ð11Þ

Then, for the contributions to the cross section dσh−h̄d on a
deuterium target

dσh−h̄d ¼ dσh−h̄p þ dσh−h̄n ; ð12Þ
we obtain

Fh−h̄
UU ðd¼pþnÞ¼ ðu1;V þd1;VÞ⊗ ðe2uDh

1;uV þe2dD
h
1;dVÞ;

Fcos2ϕh;h−h̄
UU ðd¼pþnÞ¼ ðh⊥1;uV þh⊥1;dVÞ⊗ ðe2uHh⊥

1;uV þe2dH
h⊥
1;dVÞ⊗w⊥

2 þ 2

Q2
ðu1;V þd1;VÞ⊗ ðe2uDh

1;uV þe2dD
h
1;dVÞ⊗w2;

Fcosϕh;h−h̄
UU ðd¼pþnÞ¼−

2

Q
fðh⊥1;uV þh⊥1;dVÞ⊗ ðe2uHh⊥

1;uV þe2dH
h⊥
1;dVÞ⊗w⊥

1 þðu1;V þd1;VÞ⊗ ðe2uDh
1;uV þe2dD

h
1;dVÞ⊗w1g:

ð13Þ

Note that only two combinations of TMD valence-quark
densities ðu1;V þ d1;VÞ and ðh⊥1;uV þ h⊥1;dVÞ and only two
combinations of TMD FFs ðe2uDh

1;uV þ e2dD
h
1;dVÞ and

ðe2uHh⊥
1;uV þ e2dH

h⊥
1;dVÞ enter. In addition, TMD PDFs and

TMD FFs do not mix and each one can be parametrized
separately.
These expressions are further simplified when the final

hadrons are specified,whichwill be done in the next sections.

IV. THE DIFFERENCE CROSS
SECTIONS WITH π�

When the final hadrons are π�, SU(2) invariance of
strong interactions implies

Dπþ
1;uV ≡Dπþ

1;u −Dπþ
1;ū ¼ −Dπþ

1;dV ð14Þ
and similarly for the Collins FFs H⊥π�

1;q :

H⊥πþ
1;uV ¼ −H⊥πþ

1;dV: ð15Þ
Then from (9) and (13) we obtain the difference cross
sections dσπ

þ−π−
N . We present the expressions for proton and

deuterium targets separately.

A. On proton target

From (9), for the contributions to dσπ
þ−π−

p we obtain

Fπþ−π−
UU ¼ðe2uu1;V −e2dd1;VÞ⊗Dπþ

1;uV;

Fcos2ϕh;πþ−π−
UU ¼ðe2uh⊥1;uV −e2dh

⊥
1;dVÞ⊗H⊥πþ

1;uV ⊗w⊥
2

þ 2

Q2
ðe2uu1;V −e2dd1;VÞ⊗Dπþ

1;uV ⊗w2;

Fcosϕh;πþ−π−
UU ¼−

2

Q
fðe2uh⊥1;uV −e2dh

⊥
1;dVÞ⊗H⊥πþ

1;uV ⊗w⊥
1

þðe2uu1;V −e2dd1;VÞ⊗Dπþ
1;uV ⊗w1g: ð16Þ

B. On deuterium target

From (13) for the contributions to dσπ
þ−π−

d we obtain

Fπþ−π−
UU ¼ðe2u−e2dÞðu1;Vþd1;VÞ⊗Dπþ

1;uV;

Fcos2ϕh;πþ−π−
UU ¼ðe2u−e2dÞfðh⊥1;uVþh⊥1;dVÞ⊗H⊥πþ

1;uV ⊗w⊥
2

þ 2

Q2
ðu1;Vþd1;VÞ⊗Dπþ

1;uV ⊗w2g;

Fcosϕh;πþ−π−
UU ¼−

2

Q
ðe2u−e2dÞfðh⊥1;uVþh⊥1;dVÞ⊗H⊥πþ

1;uV ⊗w⊥
1

þðu1;Vþd1;VÞ⊗Dπþ
1;uV ⊗w1g: ð17Þ

It is just one TMD FF for unpolarized Dπþ
1;uV and one for

polarized quarks H⊥πþ
1;uV that enter, which would allow us to

determine them independently of the behavior of the
other TMDs.

V. THE DIFFERENCE CROSS
SECTIONS WITH K�

If we consider only charged kaons, we cannot use SU(2)
invariance as it relates neutral to charged kaons. However,
in order to simplify analysis, the assumption made in all
analysis of kaon production is that the unfavored FFs of d
and d̄ quarks into Kþ are the same:

DKþ
dV ¼ H⊥Kþ

dV ¼ 0: ð18Þ

Below we present the functions FKþ−K−

UU that enter dσK
þ−K−

,
for proton and deuterium targets separately, using this
assumption.
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A. On proton target

From (9) for the terms FKþ−K−

UU in d5σK
þ−K−

p we obtain

FKþ−K−

UU ¼ e2uu1;V ⊗ DKþ
1;uV;

Fcos 2ϕh;Kþ−K−

UU ¼ e2u

�
h⊥1;uV ⊗ H⊥Kþ

1;uV ⊗ w⊥
2 þ 2

Q2
u1V ⊗ DKþ

1;uV ⊗ w2

�
;

Fcosϕh;Kþ−K−

UU ¼ −
2

Q
e2ufh⊥1;uV ⊗ H⊥Kþ

1;uV ⊗ w⊥
1 þ u1;V ⊗ DKþ

1;uV ⊗ w1g: ð19Þ

B. On deuterium target

From (13) for dσK
þ−K−

d we obtain

FKþ−K−

UU ¼ e2uðu1;V þ d1;VÞ ⊗ DKþ
1;uV;

Fcos 2ϕh;Kþ−K−

UU ¼ e2u

�
ðh⊥1;uV þ h⊥1;dVÞ ⊗ H⊥Kþ

1;uV ⊗ w⊥
2 þ 2

Q2
ðu1;V þ d1;VÞ ⊗ DKþ

1;uV ⊗ w2

�
;

Fcosϕh;Kþ−K−

UU ¼ −
2

Q
e2ufðh⊥1;uV þ h⊥1;dVÞ ⊗ H⊥Kþ

1;uV ⊗ w⊥
1 þ ðu1;V þ d1;VÞ ⊗ DKþ

1;uV ⊗ w1g: ð20Þ

Here we summarize some common features of the considered difference cross sections.

(1) On a deuterium target, both for h − h̄, πþ − π− and
Kþ − K−, always the same combinations of TMD
parton densities are measured: ðu1;V þ d1;VÞ and
ðh⊥1;uV þ h⊥1;dVÞ.

(2) On a deuterium target, it is always one combination
of unpolarized and one of polarized quark TMD FFs
that enter. This combination depends on the final
hadron—for charged hadrons it is ðe2uDh

1;uV þ
e2dD

h
1;dVÞ and ðe2uHh⊥

1;uV þ e2dH
h⊥
1;dVÞ, for π� it is

Dπþ
1;uV and H⊥πþ

1;uV , and for K� it is DKþ
1;uV and

H⊥Kþ
1;uV . However, the key point, that it is always

only one quantity, remains which allows us to extract
it irrespectively from the other TMD FFs.

(3) Both on proton and deuterium targets, only the
valence-quark TMD functions enter all difference
cross sections.

VI. THE CROSS SECTION FOR K ¼ Kþ þ K− − 2K0
s

Up to now we considered production of any charged
hadrons, h − h̄ and h ¼ π�; K�. Now we consider pro-
duction of kaons only.
If in addition to the charged K� also neutral kaons K0

s ¼
ðK0 þ K̄0Þ= ffiffiffi

2
p

are measured, SU(2) invariance of the
strong interactions implies that no new FFs are introduced
into the cross sections. We have

DKþþK−−2K0
s

1u ¼ −DKþþK−−2K0
s

1d ¼ ðD1u −D1dÞKþþK−
;

DKþþK−−2K0
s

1s ¼ DKþþK−−2K0
s

1c ¼ DKþþK−−2K0
s

1b ¼ 0; ð21Þ

and similarly for H⊥;h
1q .

We show that, in the difference of charged and neutral
kaon production in SIDIS, dσK:

dσK ¼ dσK
þþK−−2K0

s ≡ dσK
þ þ dσK

− − 2dσK
0
s ; ð22Þ

only one combination of unpolarized TMD FFs
ðD1u −D1dÞKþþK−

and one combination of Collins func-
tions ðH1u −H1dÞ⊥;KþþK−

enter, both for proton and
deuterium targets. This result is obtained under the only
assumption of SU(2) invariance. We give the expressions
for dσK on proton and deuterium targets.

A. On proton target

Using (21) for dσKp we obtain

FK
UU¼½e2uðu1þ ū1Þ−e2dðd1þ d̄1Þ�⊗DKþþK−

1;u−d ;

Fcos2ϕh;K
UU ¼½e2uðh⊥1;uþh⊥1;ūÞ−e2dðh⊥dþh⊥̄

d
Þ�⊗H⊥;KþþK−

1;u−d ⊗w⊥
2

þ 2

Q2
½e2uðu1þ ū1Þ−e2dðd1þ d̄1Þ�⊗DKþþK−

1;u−d ⊗w2;

Fcosϕh;K
UU ¼−

2

Q
f½e2uðh⊥1;uþh⊥1;ūÞ−e2dðh⊥1;dþh⊥

1;d̄
Þ�

⊗H⊥;KþþK−

1;u−d ⊗w⊥
1 þ½e2uðu1þ ū1Þ

−e2dðd1þ d̄1Þ�⊗DKþþK−

1;u−d ⊗w1g: ð23Þ

Here we have used the brief notation:

DKþþK−

1;u−d ¼ ðD1u −D1dÞKþþK−
;

H⊥;KþþK−

1;u−d ¼ ðH1u −H1dÞ⊥;KþþK−
: ð24Þ
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B. On deuterium target

Using (21) for dσKd we obtain

FK
UU ¼ ðe2u − e2dÞðu1 þ ū1 þ d1 þ d̄1Þ ⊗ DKþþK−

1;u−d ;

Fcos 2ϕh;K
UU ¼ ðe2u − e2dÞ

�
ðh⊥1;u þ h⊥1;ū þ h⊥1;d þ h⊥

1;d̄
Þ ⊗ H⊥;KþþK−

1;u−d ⊗ w⊥
2 þ 2

Q2
ðu1 þ ū1 þ d1 þ d̄1Þ ⊗ DKþþK−

1;u−d ⊗ w2

�
;

Fcosϕh;K
UU ¼ −

2

Q
ðe2u − e2dÞfðh⊥1;u þ h⊥1;ū þ h⊥1;d þ h⊥

1;d̄
Þ ⊗ H⊥;KþþK−

1;u−d ⊗ w⊥
1 þ ðu1 þ ū1 þ d1 þ d̄1Þ ⊗ DKþþK−

1;u−d ⊗ w1g:

ð25Þ

Note that the analogous combinations for pions
dσπ

þþπ−−2π0 , both for proton and deuteron targets, will
be identically 0, if the usually used relation for the collinear
FFs Dπþþπ−

q ¼ 2Dπ0
q that follows from the quark model

holds for the TMD FFs D1q and H⊥
1q as well.

Common for all differences is that TMD parton densities
factorize from FFs.

VII. PARAMETRIZATIONS AND COMMENTS

Up to now all considerations were general, based only on
C and SU(2) invariance of strong interactions, with no
assumptions on the parametrizations of the TMD PDFs and
the TMD FFs. Here we shall summarize the conventionally
used parametrizations and suggest how they modify when
applied to the considered approach.
There are four types of TMDs for each quark flavor

q ¼ u; ū; d; d̄; s; s̄, that enter the differential cross sections
dσhN of unpolarized SIDIS—the unpolarized quark den-
sities q1 that couple unpolarized FFs Dh

1;q, and the
transversely polarized quark densities h⊥1;q that couple to
the transversely polarized FFsH⊥

1;q. This makes, in total, 24
independent quantities for each type of hadrons, that have
to be determined.
In the difference cross sections that we consider, the four

types of TMDs are only for the two valence quarks
qV ¼ uV; dV—the unpolarized valence-quark densities
q1V that couple unpolarized valence-quark FFs Dh

1;qV
, and

the transversely polarized valence-quark densities h⊥1qV that
couple to the transversely polarized valence-quark FFs
H⊥

1;qV . The independent unknown quantities are reduced
from 24 in total, to at most eight.
Many simplifying assumptions are made in the performed

conventional analysis of dσhN : the x and k⊥ ðz andp⊥Þ
dependence is factorized with a Gaussian dependence on
the transverse momenta, no flavor, no Q2, no x and no z
dependencies in the transverse-dependent parts; the Q2

evolution is only in the collinear PDFs and FFs according
to the Dokshitzer-Gribov-Lipatov-Altarelly-Parisi (DGLAP)
equations. Here we present the standard parametrizations

for the TMD quark densities and FFs for all quark flavors,
and discuss how they can be modified for the TMD valence
quarks. We comment on the advantages of the considered
approach. We consider the unpolarized and the transversely
polarized quark TMD functions separately.

A. The ϕh-independent terms

(1) The TMD parton densities and fragmentation func-
tions with unpolarized quarks are [12],
q ¼ u; ū; d; d̄; s; s̄:

q1ðx; k⊥; Q2Þ ¼ qðx;Q2Þ e
−k2⊥=hk2⊥i

πhk2⊥i
;

Dh
1;qðz; p⊥; Q2Þ ¼ Dh

qðz;Q2Þ e
−p2⊥=hp2⊥i

πhp2⊥i
; ð26Þ

where qðxÞ and Dh
d are the collinear PDFs and FFs.

The fitting parameters hk2⊥i and hp2⊥i are assumed
flavor independent. This leads to a Gaussian-type
dependence on P2

T , with a zh-dependent width hP2
Ti:

hP2
Ti ¼ hp2⊥i þ zhhk2⊥i: ð27Þ

In a very recent analysis [13], from a separate fit to
multiplicities in the unpolarized SIDIS data of
COMPASS (with charged unidentified hadron h�

on a deuteron) and HERMES (with π� and K� on
proton and deuterium targets), hk2⊥i and hp2⊥i were
determined with good precision.

(2) In the discussed differences only the two valence-
quark TMD parton densities u1;V and d1;V , and the
two valence-quark TDM FFs Dh

1;uV and Dh
1;dV enter.

They can be parametrized analogously, qV ¼ uV; dV :

q1;Vðx; k⊥; Q2Þ ¼ qVðx;Q2Þ e
−k2⊥=hk2⊥iqV

πhk2⊥iqV
; ð28Þ

Dh
1;qV

ðz; p⊥; Q2Þ ¼ Dh
qV ðz;Q2Þ e

−p2⊥=hp2⊥iqV

πhp2⊥iqV
; ð29Þ
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where qV andDh
qV are the collinear valence PDFs and

FFs. As multiplicities on proton and deuterium
targets provide two independent measurements,
one could relax the assumption of flavor independ-
ence and fit data with flavor-dependent parameters
hk2⊥iqV and hp2⊥iqV , qV ¼ uV; dV . This implies that
the P2

T dependence will no longer be a simple
Gaussian distribution. Recently, the first studies on
flavor dependence of the partonic transverse momen-
tum in unpolarized TMD functions were done and
interesting results were obtained [14]. We hope this
will help such investigations.

(3) Measurements on the deuterium target with h − h̄,
πþ − π− and Kþ − K− final hadrons provide three
independent measurements for the sum of the
valence-quark TMD: u1;V þ u1;V .

(4) Measurements on the deuterium target always
measure only one combination of the unpolarized
valence-quark TMD FFs, which allows us to deter-
mine it without additional assumptions, independ-
ently from the other TMD FFs. The combination
depends on the final hadronh−h̄,πþ−π− orKþ−K−.

B. The ϕh-dependent terms

(1) Using the ansatz of Refs. [15–17], the Boer-Mulders
and Collins functions, h⊥1;q and H⊥;h

1;q , are most
generally proportional to the unpolarized TMD
PDFs and FFs, respectively:

h⊥1;qðx; k⊥; Q2Þ ¼ ρqðxÞηðk⊥Þf1;qðx; k⊥; Q2Þ;
H⊥;h

1;q ðz; p⊥; Q2Þ ¼ ρCq ðzÞηCðp⊥ÞDh
1;qðz; p⊥; Q2Þ;

ð30Þ

where ρqðxÞ and ρCq ðzÞ, ηðk⊥Þ and ηCðp⊥Þ are new
fitting functions. Usually the transverse-dependent
functions η and ηC are assumed flavor independent.

(2) Only two valence-quark Boer-Mulders densities
h1;uV and h1;dV , and two valence-quark Collins
functions Hh

1;uV and Hh
1;dV enter the difference cross

sections. They can be parametrized analogously:

h⊥1qVðx;k⊥;Q2Þ¼ρqVðxÞηqVðk⊥Þq1;Vðx;k⊥;Q2Þ

¼ρqVðxÞηqVðk⊥ÞqVðx;Q2Þe
−k2⊥=hk2⊥i

πhk2⊥i
;

ð31Þ

H⊥;h
1qVðz; p⊥; Q2Þ
¼ ρCqVðzÞηCqVðp⊥ÞDh

1;qVðz; p⊥; Q2Þ

¼ ρCqVðzÞηCqVðp⊥ÞDh
qVðz;Q2Þ e

−p2⊥=hp2⊥i

πhp2⊥i
; ð32Þ

where, given the simplicity of the approach, the
TMD functions ηqVðk⊥Þ and ηCqVðp⊥Þ can be con-
sidered flavor dependent. Measurements of the
cos 2ϕh (and cosϕh) asymmetry on proton and
deuterium targets provide two independent measure-
ments that would allow us, in principle, to determine
them separately.

(3) Measurements on the deuterium target with h − h̄,
πþ − π− and Kþ − K− provide three independent
measurements for the sum of the valence-quark
Boer-Mulders functions: h⊥1;uV þ h⊥1;dV .

(4) Measurements on the deuterium target always
measure only one combination of valence-quark
Collins functions. This allows us to determine it
independently from the other TMD FFs. The com-
bination depends on the final hadron h − h̄, πþ − π−

or Kþ − K−.
(5) Following the same path of arguments, the para-

metrizations for DKþþK−

1;u−d and HKþþK−

1;u−d are

DKþþK−

1;u−d ðz; p⊥; Q2Þ ¼ DKþþK−

u−d ðz;Q2Þ e
−p2⊥=hp2⊥iu−d

πhp2⊥iu−d
;

HKþþK−

1;u−d ðz; p⊥; Q2Þ ¼ ρCu−dðzÞηCu−dðp⊥ÞDKþþK−

1;u−d

× ðz; p⊥; Q2Þ: ð33Þ

Measurements on proton and deuterium targets
could determine hp2⊥iu−d and ηCu−dðp⊥Þ independ-
ently, without any relations between them and to
other TMD fragmentation functions. Note that the
collinear FFsDKþþK−

u−d ðzÞ that enter are known solely
from the inclusive eþe− annihilation process:
eþe− → K� þ X; without the assumptions of fa-
vored and unfavored FFs, they evolve in Q2 as
nonsinglets according to the DGLAP equations.

C. Common for all differences

(1) All differences rely, as known quantities, on the
collinear valence-quark PDFs uV and dV , which
are the best known parton densities (with 2%–3%
accuracy at x≲ 0.7), and on the collinear valence
FFs Dh;πþ;Kþ

uV . Very recently, Dπþ
uV were determined

with a very good precision, directly in a model-
independent analysis of the HERMES data [4].

(2) The Q2 dependence of the nonsinglets qV and Dh
qV ,

that enter the valence-quark parametrizations, is
relatively simple. This would make it easier to
investigate the Q2 dependence in the transverse
momentum-dependent part. Recently it was found
[13] that a logarithmic Q2 dependence in hP2

Ti
improves description of the data.
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VIII. CONCLUSIONS

We have presented an alternative, simpler approach for
extracting the TMD parton densities and FFs that enter the
cross section of unpolarized SIDIS.
Based only on factorization, C invariance and SU(2)

invariance of strong interactions, without any assumptions
about PDFs and FFs, we show that the difference cross
sections of unpolarized SIDIS dσh

þ
N − dσh

−

N , dσπ
þ

N − dσπ
−

N

and dσK
þ

N − dσK
−

N are expressed solely in terms of the
valence-quark TMD unpolarized densities q1;V and Boer-
Mulders functions h⊥1;qV , and the valence-quark TMD
unpolarized fragmentation Dh

1;qV and Collins H⊥
1;qV func-

tions. If measurements on proton and deuterium targets are
fulfilled, model-independent information about these quan-
tities can be obtained. Measurements on a deuterium target,
both for hþ − h−, πþ − π− and Kþ − K− production,
provide information about the sum of the valence-quark
TMD densities ðu1;V þ d1;VÞ and ðh⊥1;uV þ h⊥1;dVÞ.
If in addition to charged kaons K�, also the neutral K0

s
can be measured, then SU(2) invariance implies that the
difference of the produced charged and neutral kaons,

dσK
þþK−

N − dσ−K
0
s

N , both on proton and deuterium targets, is
expressed in terms of only one combination of the TMD
FFs ðD1;u −D1;dÞKþþK−

and one combination of Collins

functions ðH⊥
1;u −H⊥

1;dÞK
þþK−

.
The suggested measurements of the difference cross

sections provide information only about the TMD valence-
quark densities and FFs, but they allow us to determine
them separately, without imposing any relations among
them or to other TMDs. They present a sort of sum rules,
based on C and SU(2) invariance, which reduce the
contribution of all TMD functions in the cross section,
to a contribution only of the valence-quark TMD functions
in the difference cross sections.
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