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We consider all the dimension-six operators as well as some simple extensions of the standard model that
give new contributions to neutrino interactionswithmatter. Such interactions are usually parametrized by ϵαβ,
where α and β are neutrino flavor indices taking the values e, μ, and τ. In the simple models we consider the
ϵαβ’s are muchmore constrained than in the operator-basedmodel-independent approach. Typically the ϵαβ’s
are restricted to be smaller in magnitude than around 10−3. In some of the leptoquark models, a specific
pattern for the leptoquark Yukawa couplings allows the diagonal element ϵττ to be as large as∼0.1, or one of
ϵee, ϵμμ ∼ 0.01. We discuss the interplay between neutrino physics and leptoquark searches at the LHC.

DOI: 10.1103/PhysRevD.90.053005 PACS numbers: 14.60.St, 13.15.+g, 12.60.-i, 14.80.-j

I. INTRODUCTION

There are many unanswered questions with regard to
neutrinos. Are their masses Majorana or Dirac? What are
the hierarchy and absolute scale of their masses? Is there
significant CP violation in the neutrino sector? Some of the
experiments that relate to these questions are also sensitive
to nonstandard neutrino interactions with matter. Since the
left-handed neutrinos and the charged leptons are in
SUð2ÞL doublets, new interactions for the neutrinos are
very constrained by experiments, many of which do not
involve the neutrinos at all. In this paper we consider
nonstandard interactions of neutrinos with matter [1]. One
approach to beyond-the-standard-model physics that con-
tributes to neutrino interactions with matter is an operator
analysis [2–4]. This approach has the advantage of being
very general but can overlook correlations that occur in
models. There is value in using both the general operator
analysis approach and the simple model approach to assess
the likelihood that beyond-the-standard-model interactions
of neutrinos with matter can impact the future and present
neutrino experimental program.
In the standard model (SM) W boson exchange gives

rise to the following effective Hamiltonian for neutrino
interactions with ordinary matter,

HW ¼
ffiffiffi
2

p
GF½ν̄eγμPLνe�½ēγμeþ � � ��; ð1Þ

where PL ¼ ð1 − γ5Þ=2 is the left-handed projection oper-
ator. Here we have ignored other terms like the axial
couplings and the other leptons that do not play a role. For
neutrino interactions with matter that has a number density
of electrons ne, this becomes

HW ¼
ffiffiffi
2

p
GF½ν̄eγ0PLνe�ne: ð2Þ

Physics beyond the SM may contribute to the interactions
of neutrinos with ordinary matter—atoms composed of
protons and neutrons and electrons. Approximating
np ¼ nn ¼ ne ¼ n, these interactions have the form

HBSM ¼
ffiffiffi
2

p
GF

X
α;β¼e;μ;τ

ϵαβ½ν̄αγ0PLνβ�n: ð3Þ

The parameters ϵαβ ¼ ϵ�αβ can be related to the quark and
lepton level interactions,

HBSM ¼
X

α;β¼e;μ;τ

½ν̄αγμPLνβ�½aeαβēγμeþ auαβūγ
μu

þ adαβd̄γ
μdþ � � ��: ð4Þ

Using ūγ0u ¼ d̄γ0d ¼ 3n and ēγ0e ¼ n we have that

ϵαβ ¼
1ffiffiffi
2

p
GF

ðaeαβ þ 3auαβ þ 3adαβÞ: ð5Þ

The assumption np ¼ nn ¼ ne ¼ n is a good approxima-
tion when considering neutrino propagation in the earth.
Deviations from it are small and will be neglected through-
out this work.
Beyond the SM neutrino interactions can impact

production, propagation and detection [5–7] of neutrinos.
In this paper we focus on propagation effects.
The present and next generation experiments that involve

neutrino oscillations are sensitive to ϵαβ’s at the percent
level. The Super-Kamiokande I and II experiment [8] on
atmospheric neutrino oscillations has put constraints that
jϵμτj < 3.3 × 10−2, jϵμμ − ϵττj < 0.147, in terms of the
definition in (5). The IceCube data are expected to improve
these limits [9]. The proposed long baseline neutrino
oscillation experiment LBNE will be sensitive to ϵαβ’s in
the 0.1–0.01 range [10]. In the more distant future a
neutrino factory may be able to study matter effects that
correspond to ϵαβ’s at the 10−3 level.
For neutrinos interacting with light quarks, data from the

precision neutrino scattering NuTeVexperiment [3] provide
an important constraint. For example, if εμμ arises solely
from neutrino interacting with right-handed up quarks
then, −2.4 × 10−2 < εμμ < 0.9 × 10−2.
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In this paper we give the contributions of all dimension-
six operators to the ϵαβ’s under the assumption of equal
number densities for electrons, protons and neutrons. We
also work out the constraints on the ϵαβ’s in some very
simple extensions of the SM which contain additional
scalars or gauge bosons. The models and operator analysis
considered here have been discussed previously in the
literature in a variety of contexts. However, we have
explicitly expressed the ϵαβ’s in terms of the coefficients
of the effective operators, and presented a more complete
analysis of leptoquark models. We are focussing on ϵαβ’s
with magnitude great than about 10−3 and are particularly
interested in knowing if in any of the models some of the
ϵαβ’s can be larger than the one percent level. We show that
in two models with an SUð2ÞL doublet leptoquark one of
the diagonal elements of ϵ can be as large as 0.01–0.1. We
discuss an interplay and complementarity between neutrino
physics and leptoquark searches at hadron colliders.
Models with leptoquarks can give rise to baryon number

violation from dimension-four and -five operators [11]. In
this paper, we assume baryon number conservation.
The extensions of the SM we consider are not motivated

by the hierarchy problem or intended to be the correct
theory of nature. Rather they are meant to play a similar
role to simplified models for LHC studies. These models
help us assess the most likely values of the ϵαβ’s in more
realistic extensions of the SM.

II. EFFECTIVE OPERATOR ANALYSIS

In this section, we collect all gauge invariant effective
operators made of SM fields at dimension six, that can give
nonstandard interactions to neutrinos with matter.

H ¼
X9
i¼1

cαβi Oαβ
i þ

X18
i¼10

ciOi; ð6Þ

where α; β ¼ e; μ; τ, are lepton flavor indices, and the
Wilson coefficients satisfy cαβi ¼ ðcβαi Þ� They belong to
a subset of the operators in [12,13]. In this paper we work in
a basis where the charged leptons are mass eigenstates and
the PMNS matrix arises solely from diagonalizing the
neutrino mass matrix. The neutrinos are not mass eigen-
states but rather are the SUð2ÞL partners of the mass
eigenstate charged leptons; i.e., the neutrinos are weak
eigenstates. There are three classes of such operators—
those that give neutrino interactions with the charged
leptons, those with the light quarks, and those involving
the Higgs fields. Generally, we can write

ϵαβ ¼ ϵðlÞαβ þ ϵðqÞαβ þ ϵðhÞαβ ; ð7Þ

where ϵðl;q;hÞ are linear functions of the coefficients ci.
Gauge invariance of the effective Hamiltonian in Eq. (6)

is a powerful tool that connects new neutrino interactions to

a series of “low-energy” phenomena, such as lepton flavor
violation (LFV), charged-lepton, and meson decays as well
as LEP data. Therefore, the constraints obtained here are
substantially stronger than those obtained in Ref. [3], where
the charged lepton interactions are only induced at loop
level. When the cutoff scale is close to the electroweak
scale, higher-dimensional operators that contain insertions
of Higgs fields become equally important, and the con-
nection between charged and neutral lepton interactions
breaks down. In this case, the approach of [3] is more
appropriate. We will consider an example of this type in
Sec. III B.
In this work, we are mainly interested in neutrino

interactions with matter. Therefore, for effective operators
involving four leptonic fields, only those operators with at
least two with electron flavor are presented. This leaves out
low-energy lepton universality constraints, which require
assumptions on the operators with other flavor structures
not written down here. We will consider them in a specific
complete model in Sec. III A.
For the neutrino-quark operators we neglect the small

off-diagonal CKM matrix elements so that all the quark
fields can be chosen to be mass eigenstate fields. For
neutrino interactions with quarks we can also focus on
operators that contain just the first generation of u and d
quarks. This leaves out operators that have coefficients that
are strongly constrained by flavor changing processes like
Kþ → πþνν̄. We will consider such constraints when we
discuss explicit models in the following section.

A. Neutrino-electron interactions

At dimension six the gauge invariant operators relevant
for non-SM neutrino interactions with electrons are

Oαβ
1 ¼ ðLαγ

μPLLβÞðLeγμPLLeÞ; ð8Þ

Oαβ
2 ¼ ðLαγ

μPLLeÞðLeγμPLLβÞ; ð9Þ

Oαβ
3 ¼ ðLαγ

μPLLβÞðēγμPReÞ; ð10Þ

where the gauged SUð2ÞL indices are contracted to form a
singlet within each bracket. This is a redundant basis, the
operators O2 when α and/or β are equal to e, are equivalent
to O1. However, we will find it convenient to use this
redundant basis. In terms of the components of the SUð2ÞL
doublet fields,

H¼ðeαγμPLeβÞ½ðcαβ1 þcαβ2 ÞðēγμPLeÞþcαβ3 ðēγμPReÞ�
þcαβ1 ½ðναγμPLνβÞðēγμPLeÞþðνeγμPLνeÞðeαγμPLeβÞ�
þcαβ2 ½ðνeγμPLνβÞðeαγμPLeÞþðναγμPLνeÞðēγμPLeβÞ�
þcαβ3 ðναγμPLνβÞðēγμPReÞþ �� � ; ð11Þ

where the ellipses are four neutrino operators.
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The above interactions give the following contribution to
thenonstandardneutrino interactionmatrix defined inEq. (3),

ϵðlÞαβ ¼
1

2
ffiffiffi
2

p
GF

ðcαβ1 þ cee1 δαeδ
β
e þ ceβ2 δαe þ cαe2 δβe þ cαβ3 Þ:

ð12Þ

Neutrino-electron effective interactions can be con-
strained by the search for mono-photon events at LEP2
[14], similar to the dark matter search [15], in the limit
when dark matter mass approaches zero. This sets a general
upper limit on all elements

jϵðlÞαβ j < 0.31: ð13Þ

The four-charged-lepton operators in the first row of
Eq. (11) are strongly constrained by experiment. First, the
off-diagonal elements of (c1 þ c2), and c3 are constrained
by lepton flavor violating processes [16],

Brðμ → 3eÞ ¼ jceμ3 j2 þ 2jceμ1 þ ceμ2 j2
8G2

F
< 1.0 × 10−12; ð14Þ

Brðτ → 3eÞ
Brðτ → eντν̄eÞ

¼ jceτ3 j2 þ 2jceτ1 þ ceτ2 j2
8G2

F
< 2.0 × 10−7;

ð15Þ

Brðτ → μeþe−Þ
Brðτ → μντν̄μÞ

¼ jcμτ3 j2 þ 2jcμτ1 þ cμτ2 j2
8G2

F
< 1.6 × 10−7;

ð16Þ

which typically constrain the off-diagonal jϵðlÞαβ j to roughly
in the range 10−6 to a few × 10−4.
The diagonal elements, on the other hand, are all

constrained by the LEP2 bound on contact operators
[17]. From the eþe− → eþe− channel, we get

−3.8 × 10−3 <
cee1 þ cee2
2

ffiffiffi
2

p
GF

< 2.4 × 10−3; ð17Þ

−2.3 × 10−3 <
cee3

2
ffiffiffi
2

p
GF

< 1.9 × 10−3: ð18Þ

From the eþe− → μþμ−; τþτ− channels,

− 2.2 × 10−3 <
cμμ1 þ cμμ2
2

ffiffiffi
2

p
GF

;
cττ1 þ cττ2
2

ffiffiffi
2

p
GF

< 4.0 × 10−3;

ð19Þ

− 3.7 × 10−3 <
cμμ3

2
ffiffiffi
2

p
GF

;
cττ3

2
ffiffiffi
2

p
GF

< 5.1 × 10−3:

ð20Þ

Therefore, typically the LEP2 constrains the diagonal

magnitudes jϵðlÞααj to be less than a few × 10−3.
A special case is when cαβ1 ¼ −cαβ2 , cαβ3 ¼ 0 for all α and

β. In this case, the above constraints Eqs. (14)–(20) are
satisfied automatically. The flavor structure of Eq. (11)
immediately indicates that α ≠ e and β ≠ e, and,

ϵðlÞαβ ¼
cαβ1

2
ffiffiffi
2

p
GF

¼ −
cαβ2

2
ffiffiffi
2

p
GF

; ð21Þ

with α; β ¼ μ; τ. In fact, the interactions in this case
originate from a single effective operator [18,19]

ðLαiσ2PRLc
eÞðLc

βiσ2PLLeÞ ¼
1

2
ðOαβ

1 −Oαβ
2 Þ: ð22Þ

In this case, the LEP mono-photon constraints in
Eq. (13) still apply, implying all elements jϵαβj < 0.31.
We also notice the terms in the second and third lines of
Eq. (11) can make additional contributions to charged
lepton decays. They are μ → eνμν̄e and τ → eντν̄e, arising
from the cμμ2 and cττ2 terms, respectively. Their contribution
to the decay amplitudes are coherent with the SM weak
interaction, thus are strongly constrained, With the Fermi
constant determined by the electroweak observables at LEP
[20], they can be constrained by comparing the individual
weak decay rate measurements with SM predictions.
Setting c1 ¼ −c2 these constraints are,

−1.5 × 10−3 <
cμμ2

2
ffiffiffi
2

p
GF

< 2.8 × 10−3; ð23Þ

−3.9 × 10−3 <
cττ2

2
ffiffiffi
2

p
GF

< 4.6 × 10−3: ð24Þ

In Eq. (23) it is the error of GF that determines the range of
cμμ2 , while for cττ2 it is the combination of the errors in GF
and the rate to τ → eντν̄e.
There are also contributions to weak decay channels

τ → μνeν̄e, μ → eντν̄e and τ → eνμν̄e. However, these
are incoherent with the SM weak interaction amplitudes
and the constraints are much weaker than the one from
mono-photon.
The simplest UV complete model to obtain the operator

Eq. (22) from renormalizable couplings is to integrate out
an SUð2ÞL singlet scalar with hypercharge equal to unity,
that couples to a pair of lepton doublets—a bilepton
(see [18,19,21,22] and references therein). In Sec. III A,
we will discuss in detail this simple UV complete theory,
and derive more model-dependent constraints there.

B. Neutrino-light-quark interactions

The dimension-six gauge invariant operators relevant for
non-SM neutrino interactions with quarks are
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Oαβ
4 ¼ ðLαγ

μPLLβÞðQ1γμPLQ1Þ; ð25Þ

Oαβ
5 ¼ ðLαγ

μPLQ1ÞðQ1γμPLLβÞ; ð26Þ

Oαβ
6 ¼ ðLαγ

μPLLβÞðūγμPRuÞ; ð27Þ

Oαβ
7 ¼ ðLαγ

μPLLβÞðd̄γμPRdÞ: ð28Þ

Again the gauged SUð2ÞL indices are contracted to form a
singlet within each bracket. In terms of the components of
the SUð2ÞL doublet fields,

H¼ðναγμPLνβÞ½ðcαβ4 þcαβ5 ÞðūγμPLuÞþcαβ6 ðūγμPRuÞ
þcαβ4 ðd̄γμPLdÞþcαβ7 ðd̄γμPRdÞ�
þðeαγμPLeβÞ½ðcαβ4 þcαβ5 Þðd̄γμPLdÞþcαβ7 ðd̄γμPRdÞ
þcαβ4 ðūγμPLuÞþcαβ6 ðūγμPRuÞ�
þcαβ5 ðναγμPLeβÞðd̄γμPLuÞþcαβ5 ðeαγμPLνβÞðūγμPLdÞ:

ð29Þ

The contribution of the quark operators to the ϵ matrix
for neutrino nonstandard interactions is,

ϵðqÞαβ ¼ 3

2
ffiffiffi
2

p
GF

ð2cαβ4 þ cαβ5 þ cαβ6 þ cαβ7 Þ: ð30Þ

Because these Wilson coefficients also appear in front of
the operators that involve charged leptons in Eq. (29), the
neutrino interactions are correlated with other phenomena
at low energy.
First, the element ϵeμ is connected to μ → e conversion

in the presence of a nucleus. The constraint on isospin
singlet part requires [23]

jϵðqÞeμ j≲ 10−7: ð31Þ

Second, the elements ϵeτ and ϵμτ may also be constrained
by the LFV τ → eρ, τ → μρ decay rates [24]

Brðτ → μρ0Þ
Brðτ → ντρ

−Þ ¼
jcμτ5 þ cμτ7 − cμτ6 j2

16G2
F

≲ 10−7: ð32Þ

A similar constraint holds when the muon is replaced by the
electron. Here the constraint is set on a different combi-
nation of ci from those in ϵ, because ρ mesons belong to an
isospin triplet. However, if only one of the effective
operators in Eq. (25)–(28) exists, which is the case when
we study specific models in the next section, then this
directly constrains ϵ.
Third, if c5 is a significant operator in the effective

theory, the last row of Eq. (29) modifies the strength of the
weak interactions. It allows the diagonal elements of ϵ to be
constrained by the lepton universality. Namely,

Γðπ → μν̄μÞ
Γðπ → eν̄eÞ

¼ j2 ffiffiffi
2

p
GF þ cμμ5 j2

j2 ffiffiffi
2

p
GF þ cee5 j2 ;

Γðτ → πντÞ
Γðπ → μν̄μÞ

¼ j2 ffiffiffi
2

p
GF þ cττ5 j2

j2 ffiffiffi
2

p
GF þ cμμ5 j2 : ð33Þ

The current limits [25–27] then require, at leading order, at
90% C.L.,

−1.6 × 10−3 <
3

2
ffiffiffi
2

p
GF

ðcμμ5 − cee5 Þ

< 1.4 × 10−2;−2.5 × 10−2

<
3

2
ffiffiffi
2

p
GF

ðcττ5 − cμμ5 Þ < 1.9 × 10−3: ð34Þ

There are also LEP2 bounds on contact operators for
eþe−qq̄ interactions [17], which only constrain the ee
element,

− 3.2 × 10−2 <
3ðcee4 þ cee5 Þ
2

ffiffiffi
2

p
GF

;
3cee4

2
ffiffiffi
2

p
GF

< 8.4 × 10−2;

ð35Þ

− 6.2 × 10−2 <
3cee6

2
ffiffiffi
2

p
GF

;
3cee7

2
ffiffiffi
2

p
GF

< 4.4 × 10−2:

ð36Þ

In the next section, we study a few simple UV complete
models which extend the SM by a leptoquark. In particular,
the operator in Eq. (26) can be obtained by integrating
out a SUð2ÞL singlet leptoquark at tree level, and Eq. (27)
and (28) by integrating out a SUð2ÞL doublet lepto-
quark. We will summarize the model-dependent constraints
in each model, and point out an interesting interplay
between neutrino physics and leptoquark phenomenology
at high-energy colliders.

C. Operators involving the Higgs field

There are also dimension-six operators with derivatives
that could affect neutrino interactions. Explicitly,

Oαβ
8 ¼ ðH†iD

↔

μHÞðLαγ
μPLLβÞ; ð37Þ

Oαβ
9 ¼ ðH†iD

↔a
μHÞðLατ

aγμPLLβÞ; ð38Þ

where τa are the generators acting on SUð2ÞL indices,

and H†D
↔

μH¼H†DμH−ðDμHÞ†H, H†D
↔a

μH¼H†τaDμH−
ðDμHÞ†τaH. At low energy, these operators directly modify
the interaction between the W;Z bosons and fermions.
They can lead to nonunitarity effects in the lepton mixing
PMNS matrices. At leading order, their contribution to the
matrix ϵ is
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ϵðhÞαβ ¼ −
1

2
ffiffiffi
2

p
GF

½ðcαβ8 − cαβ9 Þ þ 2ðcαe9 δβe þ ceβ9 δαeÞ�; ð39Þ

where inside the bracket the terms come from the new
neutral (Zν̄ανβ) and charged (Wþν̄αe or W−ēνβ) currents,
respectively. The new charged current interaction could
also affect the experimental detection of neutrinos. We have
dropped a term proportional to the unit matrix from the
modified Zēe interaction.
The operators O8; O9 are closely related to and show up

as part of the operators,

ðL̄αHÞi∂ðH†LβÞ; ðL̄ατ
aHÞi∂ðH†τaLβÞ; ð40Þ

which can be obtained by integrating out SUð2ÞL singlet or
triplet heavy fermions in the Seesaw mechanisms [28–30]
for generating Majorana neutrino masses. Their effects
on the matrix ϵ have already been tightly constrained to be
less than ≲10−3 [19]. We will not consider complete
models for these operators in this paper. However, we
would like to point out that these kinetic operators may
have an interesting connection to cosmology. During the
electroweak phase transition, the Higgs field has non-
vanishing time derivative. These operators result in chemi-
cal potential terms for lepton number, ∼∂μðH†HÞðL̄αγ

μLβÞ.
In the presence of sphaleron and/or other B and L violating
processes these kinetic operators could provide an explan-
ation for the baryon asymmetry in the Universe. This would
require a strong first electroweak phase transition in order
to obtain a sufficient large time derivative and baryon
number.
For completeness, we also list the operators that do not

directly involve neutrino fields (see Table 2 of [12]),

O10 ¼ ðH†iD
↔

μHÞðēγμPReÞ;
O11 ¼ ðH†iD

↔

μHÞðQ1γ
μPLQ1Þ;

O12 ¼ ðH†iD
↔a

μHÞðQ1τ
aγμPLQ1Þ;

O13 ¼ ðH†iD
↔

μHÞðūγμPRuÞ;
O14 ¼ ðH†iD

↔

μHÞðd̄γμPRdÞ;
O15 ¼ ðH†DμHÞ�ðH†DμHÞ;
O16 ¼ ðH†HÞWa

μνWaμν;

O17 ¼ ðH†HÞBμνBμν;

O18 ¼ ðH†τaHÞWa
μνBμν:

They can modify the neutral current interactions mediated
by the Z boson on the source side of the matter potential,
thus the contributions to ϵ is proportional to a unit matrix.
As a result, these effects will not be measured by neutrino
oscillation experiments, but can be tested in the other
precision measurements.

D. d ¼ 8 operators

At dimension eight the connection between charged
lepton and neutrino interactions can be broken [14,31–33]
by inserting Higgs fields. Hence the constraints on neutrino
matter interactions from dimension-eight operators are
weaker. However, it seems difficult to get dimension-
eight operators without generating at least some of the
dimension-six operators [19].

III. SIMPLE RENORMALIZABLE MODELS

In this section, we will go through several simple
extensions of the SM that have nonstandard neutrino
interactions. They can be viewed as UV completions of
the effective Hamiltonian discussed above. As we will
show, in addition to the generic bounds derived in the
effective theory, often there are additional model-dependent
constraints. A survey of some simple models allows us to
get a better and more realistic sense of of the values the
elements of the matrix ϵ will take in extensions of the SM.
In all the simple models we consider that involve an

additional scalar representation of the gauge group, the
ϵαβ’s are not all independent but rather satisfy the following
relations:

jϵeμj2 ¼ ϵeeϵμμ; jϵμτj2 ¼ ϵμμϵττ; jϵeτj2 ¼ ϵeeϵττ:

ð41Þ

For some of the models, their impact on neutrino oscil-
lations have been studied previously in the literature. We
include them for completeness. For the leptoquark models,
we present a more complete analysis of their impact on
neutrino physics than was done in the previous literature.

A. SUð2ÞL singlet bilepton [18,19]

The simplest model with nonstandard neutrino inter-
actions has an additional SUð2ÞL singlet scalar S, which
couples to lepton doublets,

L ¼ λαβLc
αðiσ2ÞPLLβSþ H:c: ð42Þ

Here S has electric charge þ1, and PL ¼ ð1 − γ5Þ=2 is the
left-handed projection operator. The indices α; β must be
antisymmetric, λαβ ¼ −λβα. In general there are only three
independent complex couplings, and the above Lagrangian
can be decomposed in the flavor space as

L ¼ 2λeμðν̄cePLμ − ν̄cμPLeÞSþ 2λμτðν̄cμPLτ − ν̄cτPLμÞS
þ 2λτeðν̄cτPLe − ν̄cePLτÞSþ H:c: ð43Þ

Then the couplings of relevance to the matter effects in
neutrino oscillations are λeμ and λτe. Integrating out the
bilepton S and matching on to the operator analysis, we find
that
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cαβ1 ¼ −cαβ2 ¼ 2λeαλ
�
eβ

m2
S

; ð44Þ

and the other ci ¼ 0, which implies

ϵαβ ¼
λeαλ

�
eβffiffiffi

2
p

GFm2
S

; ðα; β ¼ μ; τÞ; ð45Þ

and εee ¼ εeμ ¼ εeτ ¼ 0, and the relation Eq. (41) holds.
Note that in this model ϵμμ and ϵττ are positive but ϵμτ can
be complex.
As mentioned in the previous section, because of the

property cαβ1 ¼ −cαβ2 , cαβ3 ¼ 0, and therefore, none of the
model-independent constraints in Eqs. (14)–(20) apply.
There are important constraints on the Yukawa couplings

of S from experimental limits on charged lepton flavor
violation.

Brðμ → eγÞ ¼ α

48π

1

G2
Fm

4
S
jλτeλμτj2 < 1.2 × 10−11; ð46Þ

Brðτ → eγÞ ¼ α

48π

1

G2
Fm

4
S
jλeμλμτj2 < 3.3 × 10−8; ð47Þ

Brðτ → μγÞ ¼ α

48π

1

G2
Fm

4
S
jλeμλτej2 ¼

α

24π
jϵμτj2

< 4.4 × 10−8: ð48Þ

The limit on the branching ratio for the charge lepton flavor
violating decay τ → μγ gives the constraint, jϵμτj < 0.021.
The experimental limit on the branching ratio muon

radiative decay is quite strong. However, the rate for μ →
eγ vanishes as λμτ → 0 and in this does not restrict the
values of the neutrino matter interaction parameters. When
λμτ ¼ 0 the Yukawa couplings of S have the continuous
global symmetry: ðLe; eRÞ → e−2iαðLe; eRÞ; ðLμ; μRÞ →
eiαðLμ; μRÞ; ðLτ; τRÞ → eiαðLτ; τRÞ; S → eiαS. This global
symmetry cannot be exact but it is only broken by very
small neutrino mass terms. The presence of this symmetry
ensures that even if the Yukawa couplings of S are large
radiative corrections will not induce a significant value for
λμτ. Henceforth we neglect the coupling λμτ.
Integrating out S at tree level gives a new contribution to

the effective Hamiltonian for the weak decays of charged
leptons,

Heff ¼ 2
ffiffiffi
2

p
GFϵμμðēLγαPLνeÞðν̄μγαPLμÞ

þ 2
ffiffiffi
2

p
GFϵττðēLγαPLνeÞðν̄τγαPLτÞ þ H:c:; ð49Þ

where the correction to τ → μντν̄μ decay has been
suppressed due to the assumed smallness of λμτ.
The most important constraints arise from lepton

universality. For example, the ratio of the weak decay
rates is related to the epsilons,

Γðτ → μντν̄μÞ
Γðτ → eντν̄eÞ

¼ 1

ð1þ ϵττÞ2
: ð50Þ

The experimental constraint on such ratio (see the table 2 in
Ref. [25]) requires, at 90% C.L. (1.65 σ),

ϵττ < 2.5 × 10−4: ð51Þ

Similarly, experimental constraints on the other ratios
Γðτ → eντν̄eÞ=Γðμ → eνμν̄eÞ;Γðτ → μντν̄μÞ=Γðμ→ eνμν̄eÞ
requires, at 90%C.L.,

2.5 × 10−3 < ϵττ − ϵμμ < 6.8 × 10−4;

ϵμμ ≪ 10−4: ð52Þ

Here the experimental significance is high for the second
ratio to be positive, leaving very little room for ϵμμ to
contribute. We notice the epsilons can also be constrained
with the individual decay rate, as discussed in Eq. (23) and
(24). We find they give weaker constraints on the epsilons
than above.
Using the limits in Eqs. (51) and (52) the relation in

Eq. (41) implies that jϵμτj is also tiny, ≪ 10−4. Note that
this is stronger than the limit from τ → μγ.
Finally we note that there is a new one-loop contribution

to the anomalous magnetic moment of the muon (setting
λμτ ¼ 0),

δ

�
g − 2

2

�
μ

¼ −
m2

μ

12π2m2
S
jλeμj2 ¼ −1.6 × 10−9ϵμμ: ð53Þ

Experimentally, ðg − 2Þμ=2 ¼ ð11659208.0� 6.3Þ × 1010

[34]. There is a 3σ deviation from the SM prediction. This
new contribution is in the opposite direction from the
observed discrepancy. In any case, themuondecay constraint
in Eq. (52) means it is too small to impact measurements of
the anomalous magnetic moment of the muon.
To summarize, in the bilepton model, the only non-

vanishing elements of epsilon are ϵμμ, ϵμτ, and ϵττ, and the
present experimental limits already constrain them to be no
larger than a few × 10−4.

B. Leptophilic SUð2ÞL doublet scalar

The second model we consider contains a scalar doublet
S ¼ ðHþ; H0ÞT , carrying the same quantum numbers as the
SM Higgs doublet. Here we assume it has no VEV, so all
the components are physical. Its Yukawa couplings with
leptons take the form

L ¼ λijLiPRejSþ H:c:

¼ λijðνiPRejHþ þ eiPRejH0Þ þ H:c: ð54Þ

The direct search at the LEP2 experiment constrains the
charged scalar Hþ to be heavier than 103 GeV. If Hþ
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mainly decays into a electron (or muon) and a neutrino, the
LHC constraint on slepton NLSP [35] can be applied to
Hþ, which requires it to be heavier than 290 GeV.
Moreover, precision electroweak physics implies that
jmH0 −mHþj≲ 107 GeV at 2 σ [36].
We first neglect the mass difference between the charged

and neutral components of S. Integrating out S and
matching on to the operator analysis yields

cαβ3 ¼ 2λαeλ
�
βe

m2
S

; ð55Þ

and the other ci ¼ 0, which implies

ϵαβ ¼ −
λαeλ

�
βe

4
ffiffiffi
2

p
GFm2

S

; ðα; β ¼ e; μ; τÞ: ð56Þ

In this model all the diagonal elements ϵαα are negative.
Here the model-independent constraints Eqs. (14)–(20)
apply. All the off-diagonal epsilon elements constrained
to be less than 10−4. The direct constraints on the diagonal
elements allow them to be as as large as a few × 10−3, but
in this model Eq. (41) further forces all but one to be less
than 10−4.
However, if the mass scale mS is not far above the

electroweak scale, which is allowed by the LEP2 con-
straints, the mass splitting betweenHþ andH0 could have a
significant effect. Namely, the cutoff scale in the effective
theory language is no longer gauge invariant. In this general
case, the effective Hamiltonian takes the form

H ¼ cαβ3

�
ðναγμPLνβÞðeγμPReÞ

þm2
Hþ

m2
H0

ðeαγμPLeβÞðeγμPReÞ
�
; ð57Þ

where cαβ3 ¼ 2λαeλ
�
βe=m

2
Hþ . Therefore, if mHþ < mH0 , all

the constraints on cαβ3 in Eqs. (14)–(20) can be relaxed by a
factor of ðmH0=mHþÞ2. In the most optimistic case, choos-
ing mHþ equal to the current collider limits and taking
account of relations in Eq. (41), we find one of the diagonal
elements of the ϵ matrix can be as larger as the one percent
level,

ϵττ < 1.5 × 10−2;

ϵee < 0.43 × 10−2;

ϵμμ < 0.69 × 10−2: ð58Þ

We note this case is accompanied by the prediction of a
light (∼100 GeV) charged scalar Hþ decaying into a
charged lepton and neutrino, which could be probed with
future colliders.

C. SUð2ÞL singlet leptoquark

The simplest leptoquark model that gives neutrino
nonstandard interaction is

L ¼ λijLc
i ðiσ2ÞPLQjSþ λ0iju

c
i PRejSþ H:c:

¼ λijðνci PLdj − eci PLujÞSþ λ0iju
c
i PRejSþ H:c:; ð59Þ

where S is a SUð2Þ singlet leptoquark with hypercharge
2=3.
Since we are interested in neutrino interactions in the

flavor basis, we choose to work in the basis where the down
type quark mass matrices are diagonal. In the language of
effective operators discussed in Eq. (29), the singlet
leptoquark model gives

cαβ4 ¼ −cαβ5 ¼ λα1λ
�
β1

2m2
S
; ð60Þ

for all the α; β ¼ e; μ; τ and the other ci ¼ 0. The non-
standard neutrino matter interaction parameters are related
to the Yukawa couplings by

ϵαβ ¼
3

4

λα1λ
�
β1ffiffiffi

2
p

GFm2
S

; ðα; β ¼ e; μ; τÞ: ð61Þ

The flavor diagonal elements ϵee, ϵμμ and ϵττ are real and
positive, while the flavor-changing ones are complex in
general.
The model-independent constraints in Sec. II B apply

here. Again the key point is SUð2ÞL gauge invariance
relates neutrino interactions with quarks to those of the
charged leptons. We summarize these constraints here,

jϵeμj < 10−7; jϵμτj < 9.2 × 10−4;

jϵeτj < 1.1 × 10−3;−1.6 × 10−3 < ϵμμ − ϵee

< 1.4 × 10−2;−2.5 × 10−2 < ϵττ − ϵμμ < 1.9 × 10−3;

ð62Þ

where they arise from LFV decays and lepton universality.
The LEP2 contact operator bounds for eþLe

−
L → uLūL,

require jϵeej < 8.4 × 10−2. The LHC search for leptoquark
pair production puts a constraint on the mass of S to be
larger than 780 GeV [37]. If the couplings λ are equal to
unity, this implies all the ϵαβ’s can be most a few percent.
Combining these limits with the relations in Eq. (41), we

can also get constraints on each of the diagonal elements,

ϵee; ϵμμ < 2.6 × 10−3; ϵττ < 4.5 × 10−3: ð63Þ

Now, we turn to the constraints from experimental results
on flavor changing effects in the quark sector.
Equation (59) can be rewritten in terms of the mass
eigenstate quarks fields and the CKM matrix elements,
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L ¼ −ðλα1 − λα2 sin θCÞecαPLuS − λα1ν
c
αPLdS

− ðλα1 sin θC þ λα2ÞecαPLcS − λα2ν
c
αPLsS

þ…þ H:c:; ð64Þ

where θC is the Cabibbo angle. A very strong bound
on λα2 comes from the measured branching ratio
BrðKþ → πþνν̄Þ ¼ ð1.7� 1.1Þ × 10−10. The contribution
to this decay rate from leptoquark exchange alone is (there
is an interference piece with the SM contribution we have
neglected)

ΓðKþ → πþνν̄Þ ¼ m5
K

24576π3m4
S
ðλ†λÞ11ðλ†λÞ22: ð65Þ

Demanding that this contribution is less than the measured
branching ratio requires

�
3

4

ðλ†λÞ11ffiffiffi
2

p
GFm2

S

��
3

4

ðλ†λÞ22ffiffiffi
2

p
GFm2

S

�
< 4.9 × 10−10: ð66Þ

The first bracket is nothing but the trace of the epsilon
matrix ðϵee þ ϵμμ þ ϵττÞ. For neutrino experimental pros-
pects, we are focussing on the case where at least one of the
ϵαβ is of order 10−3 and because of the relationship between
the off-diagonal and diagonal epsilons in this model that
implies that one of the diagonal ϵαα is of order 10−3. Since
all the ϵαα’s (for α ¼ e; μ; τ) are positive, the above
constraint implies that ðλ†λÞ22 ≪ 10−3ðλ†λÞ11.
Next, we consider the bound coming from the D − D̄

mixing. Integrating out S in the box diagram yields the
Δc ¼ 2 interaction,

HΔc¼2 ¼
½ðλ†λÞ11 sin θC�2

128π2m2
S

ðc̄LγμuLÞðc̄LγμuLÞ; ð67Þ

where we have neglected the terms involving λα2 in light
of the above Kþ → πþνν̄ decay bound. Using this
Hamiltonian, we obtain the relation between the ϵαβ’s
and the new contribution to D meson mass difference,

δðmD0
1
−mD0

2
Þ ¼ G2

Fm
2
Sf

2
DmD

54π2
sin2θCjϵee þ ϵμμ þ ϵττj2:

ð68Þ

We require this new contribution does not exceed the
experimentally measured mass difference, which implies

ϵee þ ϵμμ þ ϵττ < 3.1 × 10−3
�
1 TeV
mS

�
: ð69Þ

There are several interesting implications from this bound.
First, because all diagonal epsilons in this model are the
positive, Eq. (69) also sets the upper bound on the
individual ϵαα. Second, as the future collider limit pushes

the leptoquark mass to higher scale, it improves the bound
on the diagonal elements of the matrix ϵ at the same time.
To summarize, we surveyed the present experimental

constraints from the present LHC and low energy experi-
ments, and found in the singlet leptoquark model, all the
epsilon elements are constrained to be less than a
few × 10−3.

D. SUð2ÞL doublet leptoquark

Next we consider a model with a scalar leptoquark that is
a doublet under SUð2ÞL and has hypercharge −7=3.
The Yukawa couplings of S to the quarks and leptons
are given by

L ¼ λijLiPRujSþ λ0ijQiPRej ~Sþ H:c:

¼ λijðνiPRujX þ eiPRujYÞ
þ λ0ijðuiPRejY� − diPRejX�Þ þ H:c: ð70Þ

In terms of their components, S and ~S are

S ¼
�
X

Y

�
; ~S ¼

�
Y�

−X�

�
: ð71Þ

Precision electroweak physics implies that jmX −mY j ≲
62 GeV [38]. Therefore we neglect the splitting between
the X and Y scalars setting mX ¼ mY ¼ mS. Since λ0 does
not affect neutrino physics, we set it to zero. Note this
removes possible lepton universality constraints.
In Eq. (70) we choose to be in the basis where the up-

type quark and charged lepton mass matrices are diagonal.
In the effective language, integrating out S yields

cαβ6 ¼ −
λα1λ

�
β1

2m2
S
; ð72Þ

with the other ci ¼ 0. Then the neutrino matter interaction
parameters are related to the Yukawa couplings by

ϵαβ ¼ −
3

4

λα1λ
�
β1ffiffiffi

2
p

GFm2
S

; ðα; β ¼ e; μ; τÞ; ð73Þ

where the elements ϵee, ϵμμ, and ϵττ are real and negative,
while the flavor-changing ones are complex in general.
Like the singlet leptoquark case, the SUð2ÞL invariance

again implies that the generic LFV decay constraints apply,
and we have

jϵeμj < 10−7; jϵμτj < 9.2 × 10−4;

jϵeτj < 1.1 × 10−3:
ð74Þ

The element ϵee can also be constrained by LEP2 contact
operators bound for eþLe

−
L → uRūR, which requires

jϵeej < 6.2 × 10−2.
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Concerning the LHC data constraints on leptoquark pair
production, if the leptoquark couples only to the light
quarks and charged leptons then mY ≳ 1 TeV [37]. Here
the LHC constraint is stronger compared singlet leptoquark
case, because the branching ratio to a charged lepton and a
jet is larger. For couplings λ equal to unity, LHC data
constrain the magnitude of the ϵαβ’s to be at most a few
percent.
Taking account of the relations in Eq. (41), we find a

simple way to satisfy all of these constraints is to have only
one of ϵee, ϵμμ, and ϵττ be sizable. In terms of the Yukawa
couplings λ that can occur if all them are very small except
one of λe1, λμ1, and λτ1.
There are also constraints from say D − D̄ mixing on

ðλ†λÞ21. They are satisfied if all elements of λ other than the
first column are negligibly small. The couplings λ0 are
constrained by flavor-changing processes like K − K̄ mix-
ing, and since they do not impact neutrino physics we also
take them to be very small.
Given our ignorance of the origin of flavor it is

conceivable that such relations could hold at some higher
scale. However, the various couplings mix under renorm-
alization, and so even if we impose these constraints at a
high scale, we should check they are still satisfied at low
energies. The renormalization group flow of the couplings
is restricted by the transformation properties of the
Yukawa couplings under the flavor group GF ¼ SUð3ÞQ×
SUð3Þu × SUð3Þd × SUð3ÞL × SUð3Þe. The representa-
tions of coupling constant spurions are

SUð3ÞQ SUð3Þu SUð3Þd SUð3ÞL SUð3Þe
Yu 3 3̄ 1 1 1
Yd 3 1 3̄ 1 1
Ye 1 1 1 3 3̄
λ 1 3̄ 1 3 1
λ0 3 1 1 1 3̄

where we define the standard model Yukawa couplings
as

LY ¼ ðYuÞijQiðiτ2ÞH�PRuj þ ðYdÞijQiHPRdj

þ ðYeÞijLiHPRejX þ H:c: ð75Þ

The one-loop beta functions are

16π2
dYu

d ln μ
¼ 3

2
ðYuY

†
u − YdY

†
dÞYu þ 2λ0Y†

eλ

þ 1

2
λ0λ0†Yu þ Yuλ

†λþ…; ð76Þ

16π2
dYd

d ln μ
¼ −

3

2
ðYuY

†
u − YdY

†
dÞYd

þ 1

2
λ0λ0†Yd þ…; ð77Þ

16π2
dYe

d ln μ
¼ −

3

2
ðYeY

†
e þ λλ†ÞYe − 6λY†

uλ0

þ 3Yeλ
0†λ0 þ…; ð78Þ

16π2
dλ

d ln μ
¼ 2Yeλ

0†Yu þ λY†
uYu þ

1

2
YeY

†
eλ

þ 5

2
λλ†λþ…; ð79Þ

16π2
dλ0

d ln μ
¼ 2Yuλ

†Ye þ
1

2
ðYuY

†
u þ YdY

†
dÞλ0

þ λ0Y†
eYe þ

7

2
λ0λ0†λ0 þ…; ð80Þ

where the ellipses represent those radiative corrections
proportional to gauge couplings or the trace of Yukawa
matrices; i.e., they do not modify the flavor structure of the
matrices.
For illustration, we take an ansatz for the structure of the

Yukawa matrices at the cutoff scale Λ discussed previously,

YuðΛÞ ¼
ffiffiffi
2

p

v

0
B@

mu 0 0

0 mc 0

0 0 mt

1
CA;

λðΛÞ ¼

0
B@

λe1 0 0

λμ1 0 0

λτ1 0 0

1
CA;

YdðΛÞ ¼
ffiffiffi
2

p

v
V

0
B@

md 0 0

0 ms 0

0 0 mb

1
CAV†;

λ0ðΛÞ ¼ 0; ð81Þ

where V is the CKM matrix, and only one of the couplings
λe1, λμ1, λτ1, is nonzero. It is possible to define global
symmetries only broken by first generation SM Yukawa
couplings that enforces this structure.
Our ansatz for the structure of the S Yukawa couplings at

the scale Λ in Eq. (81) is not consistent with a diagonal up
quark mass matrix and the couplings λ0 being zero. At a low
scale μ, the up quark Yukawa will get off-diagonal elements
due to the RG running (here we present just the perturbative
single leading logarithm),

δYu ∼
3

32π2
ln

�
Λ
μ

�
YdY

†
dYuðΛÞ: ð82Þ

When we go to the mass eigenstate basis by diagonalizing
YuðΛÞ þ δYu, this will affect the structure of the λ matrix,
which again leads to flavor violation in the up sector, such
as D − D̄ mixing. Similarly, the RG running can also
generate nonzero λ0, which yields flavor violation in the

EFFECTIVE THEORY AND SIMPLE COMPLETIONS FOR … PHYSICAL REVIEW D 90, 053005 (2014)

053005-9



down sector. Fortunately, the relevant couplings are sup-
pressed by both down type Yukawa couplings and the loop
factor. Even for a very large Λ of order the Planck scale we
do not find any additional relevant constraints with the
above ansatz for the flavor structure at the scale Λ.
Because one of the diagonal elements of the ϵmatrix can

still be large, we explore here how LHC data can also be
used to constrain ϵee and ϵμμ. We find that it can already put
a competitive constraint on these diagonal ϵ’s to those from
the LEP2 and NuTeV experiments. For ϵττ the Super-K
experiment provides the most important constraint.
The processes we study are charged-lepton pair produc-

tion rates at high invariant mass at LHC, which can happen
via a t-channel leptoquark exchange. The parton level
process is uū → eþe− or μþμ−. For ϵαα larger than one
percent and for Yukawa couplings no larger than 1, the
leptoquark cannot be much heavier than a TeV. Therefore,
the contact interaction analysis [39] may not directly apply,
and the bound in our case will be weaker.
We generate eþe− (and μþμ−) events in the leptoquark

model using FEYNRULES [40] and MADGRAPH [41] and
compare them with the 8 TeV, 20.6 fb−1 LHC data given in
[42,43]. Nonobservation of excess beyond the SM back-
ground at the LHC can be translated into upper bounds on
ϵee and ϵμμ, which are shown as the red curves in the first

row of Fig. 1. In the same plot, the blue region is the LHC
exclusion on the mass of the leptoquark from its pair
production and decays. The yellow region is excluded by
NuTeV neutrino scattering experiment. The orange region
is excluded by the Super-K experiment as mentioned in the
Introduction. The LEP2 exclusion on jϵeej from eþe− →
uū channel is the green region. The magenta region is the
nonperturbative regime when the leptoquark coupling
jλαij >

ffiffiffiffiffiffi
4π

p
; ðα ¼ e; μ; i ¼ u; dÞ. As we can read from

the plot, LHC data already set a strong limit implying that
jϵeej; jϵμμj should be less than a few percent. For the jϵeej
case, it is a stronger constraint than LEP2 and NuTeV. The
LHC also already does better HERA [44] in the search for
leptoquarks. Future running of LHC will further improve
the bound.
Note also that the production of single leptoquark and a

lepton at LHC may provide relevant constraints [45,46],
especially when the leptoquark Yukawa coupling is large.
To summarize, given the present experimental con-

straints from the LHC and charged lepton flavor physics,
we find the doublet leptoquark model allows an interesting
pattern for the flavor structure of the epsilon matrix. All the
off- diagonal elements of the ϵ matrix are constrained to be
less than about 10−3, but ϵee or ϵμμ can be at the 10−2 level,
while ϵττ can be at the 0.1 level. Future improvement of the
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FIG. 1 (color online). Red curves: upper bounds on jϵμμj (left) and jϵeej (right) from LHC data on μþμ−, eþe− pair production rates, in
L̄uS (first row) and L̄dS (second row) leptoquark models. The blue region is the LHC exclusion of the mass of leptoquark from its pair
production and decays. The yellow region is excluded by NuTeV experiment on neutrino-quark scatterings. The orange region is
excluded by the Super-K experiment as mentioned in the introduction. The LEP2 exclusion on jϵeej from eþe− → uū channel is the
green region. The magenta region is nonperturbative regime when the leptoquark coupling jλαij >

ffiffiffiffiffi
4π

p
; ðα ¼ e; μ; i ¼ u; dÞ. All shaded

regions are excluded.
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limits at LHC are capable of constraining ϵee; ϵμμ to the
10−3 level.

E. Another SUð2ÞL doublet leptoquark model

Before closing this section, we consider briefly another
model with an SUð2ÞL doublet leptoquark with hyper-
charge −1=3. The Yukawa couplings of S to the quarks and
leptons are given by,

L ¼ λijLiPRdjSþ H:c::

¼ λijðνiPRdjX þ eiPRdjYÞ þ H:c: ð83Þ

The only difference from the model in Eq. (70) is that now
neutrinos have new interactions with the down quark. In the
effective Hamiltonian language, integrating out S yields
c7 ≠ 0 and other coefficients vanishing in Eq. (29).
In Fig. 1, we have also shown the constraints on jϵeej and

jϵμμj. The LHC limit in dd̄ → eþe−, or μþμ− channels.
Because of the relatively lower down quark PDF, the
current LHC limit on jϵeej is of comparable order as the
LEP2 and NuTeV limits, but we expect the future running
of LHC will substantially improve the bound. As in the
previous model, all the off-diagonal elements of the ϵ
matrix are constrained to be less than about 10−3, but jϵeej
or jϵμμj can be at the 10−2 level, while jϵττj can be at the
0.1 level.

F. Gauged Uð1Þ models

Here we briefly discuss two models with an additional
Uð1Þ gauged. One with the new gauge group Uð1ÞB−L and
the other with the new gauge group Uð1ÞLe−Lμ

. In both
model, a right-handed neutrino has to be introduced for
each family of SM fermions to cancel anomalies.
At leading order in perturbation theory, gauging B − L

gives the matching conditions

cαβ1 ¼ g2

M2
V
ðδαβ − δαeδ

β
e=2Þ;

cαβ3 ¼ g2

M2
V
δαβ;

cαβ4 ¼ cαβ6 ¼ cαβ7 ¼ −
g2

3M2
V
δαβ; ð84Þ

where we choose cαβ2 ¼ 0 to remove the redundancy,
and the other ci are zero. Here g is the gauge coupling
andMV is the vector boson mass. From Eqs. (12) and (30),
we get

ϵee ¼ ϵμμ ¼ ϵττ ¼ −
g2ffiffiffi

2
p

GFM2
V

; ð85Þ

where the ϵ’s not explicitly given are zero.

On the other hand, gauging Le − Lμ lepton number gives

cαβ1 ¼ g2

M2
V
ðδαeδβe=2 − δαμδ

β
μÞ;

cαβ3 ¼ g2

M2
V
ðδαeδβe − δαμδ

β
μÞ; ð86Þ

and again we set cαβ2 ¼ 0 to remove the redundancy. This
yields

ϵee ¼ −ϵμμ ¼
g2ffiffiffi

2
p

GFM2
V

: ð87Þ

In both models, we find the LEP2 bound on contact
interactions [17,47] implies that jϵμμj < 0.8 × 10−3.

IV. CONCLUDING REMARKS

In this paper we have considered several models and an
operator analysis of new physics that contributes to
neutrino interactions with matter. These interactions are
characterized by the parameters ϵαβ, where α; β ¼ e; μ; τ.
We listed the set of relevant operators at dimension six

and gave constraints on the Wilson coefficients from

110 110 210 310 410 510 610 7

Leptophilic Higgs doublet

Singlet leptoquark

Doublet leptoquark

FIG. 2 (color online). Summary of constraints on jϵαβj in
various simple renormalizable BSM models for nonstandard
neutrino interactions. Shaded bands represent excluded values
of epsilons for different models. We would like to highlight that
for the doublet leptoquark model one of the diagonal elements ϵαα
can still be “large,” i.e., ∼10−2 for ϵee, ϵμμ, and ∼10−1 for ϵττ.
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present data. Since the left-handed neutrinos are in a
doublet with the charged leptons, there are constraints
from precision flavor physics and collider physics on the
Wilson coefficients. Making the simplifying assumption
that the matter was neutral (ne ¼ np) and had equal
numbers of protons and neutrons (np ¼ nn) we expressed
the elements of the matrix ϵ (that can be measured in future
neutrino oscillation experiments, i.e., the off-diagonal
elements and the difference between diagonal ones) in
terms of the Wilson coefficients of the operators.
We also analyzedwhat values of the elements of thematrix

ϵ are allowed, given current experimental constraints, in
various simple extensions of the SM that contain a new U(1)
gauge boson or a new scalar representation of the SM gauge
group. Our analysis of these extensions are meant to give the
reader a sense what is the plausible range for the ϵαβ’s given
present experimental constraints. The model-dependent
results of our analysis are summarized in the Fig. 2, and
are in a format that can easily be compared with the
sensitivity of the proposed LBNE experiment (see
Figs. 4–33 in Ref. [10]). Models we discussed where the
allowed values of the ϵαβ’s were all restricted to be no larger
than about 10−4 are not presented in Fig. 2. If non-SM
neutrino interactions were discovered in the future, the
hierarchy amongst the ϵ’s would help to differentiate

amongst new physics models. In particular, in some of the
leptoquark models we find that one of the diagonal elements
ϵττ can be as large as ∼0.1, or one of ϵee, ϵμμ ∼ 0.01.
In all of the scalar models Eq. (41) was satisfied. It

relates the magnitude of the diagonal ϵ’s to the off-diagonal
ones. However, this relationship was not satisfied by the
models with an additional Uð1Þ gauge group.
Some the work done here has been discussed previously

in the literature. However, there are a few novel aspects in
our presentation of the operator analysis. Furthermore, our
discussion of the phenomenological aspects of the lepto-
quark models for neutrino oscillation physics is more
complete than the previous literature. In particular, we
studied how t-channel leptoquark exchange gives rise to
pp → ll̄þ X at the LHC and puts strong restrictions on
neutrino interactions.
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