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Regular black strings solutions associated to a dynamical Friedmann-Robertson-Walker braneworld are
obtained as a particular case of a bulk metric in the context of a variable tension braneworld. By analyzing
the 5D Kretschmann invariants, we show that the variable brane tension is capable of attenuating the bulk
physical singularities along some eras of the evolution of the Universe. nIn particular, the black string is
analyzed for the McVittie metric on an Eötvös fluid braneworld, wherein the fluid dynamical brane tension
depends on the brane temperature. The whole bulk is shown to be regular for a universe dominated by
nonrelativistic matter or by relativistic matter/radiation, as the cosmological time elapses. In a particular
case, the black strings are shown to have finite extension along the extra dimension, which prominently
modify the higher-dimensional soft physical singularities. For a universe dominated by matter or radiation,
we show that the bulk is regular as the cosmological time elapses, as an effect of the variable brane tension.
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I. INTRODUCTION

Braneworld models with variable brane tension are
well-known probes for physical signatures arising from
high energy physics. Indeed, the drastic modification
of the temperature of the Universe along the cosmological
evolution can be described by a braneworld model with
variable tension, generalizing the original Randall-
Sundrum model [1,2], in order to allow Friedmann branes
[3–5]. The variable tension brane dynamics was addressed
in [6–9], where a brane tension with exponential depend-
ence in the scale factor [10] was investigated. Moreover,
black strings in Eötvös branes with variable tension were
studied in [11,12].
The field equations describing a brane containing any

type of matter with a cosmological constant in the bulk
were first studied in [4]. Some strategies for obtaining
solutions with stable black holes on the brane have been
extensively investigated [13]. Nevertheless, determining
the bulk geometry is an extremely difficult task [14].
Computational methods designed to study braneworld
relativistic stars and the exact solution of the collapse on

the brane [15], in the AdS/CFT correspondence framework
[16,17], are some tools to solve this question [13,18].
Motivated by the relationship between braneworld black

holes and the bulk metric [19,20], our main aim here is to
study the black string and the bulk metric associated to a
Schwarzschild black hole embedded in a Friedmann-
Robertson-Walker (FRW) variable tension braneworld.
This can be accomplished by the McVittie metric [21].
McVittie solutions [22] lead to black hole metrics or the
standard FRW cosmology in suitable limits, and are
physically relevant for describing true black hole models
[21,23–29]. We show, moreover, that the bulk can be
regular in a variable brane tension model.
In this paper we analyze the McVittie black string

warped horizon in a variable tension brane framework
[11], in the three stages of the evolution of the Universe. We
show that the black string may present finite extent along
the extra dimension. The singularity structure of the higher-
dimensional spacetime has great importance in deciding
whether a particular solution is physically acceptable.
Therefore, we show by analyzing the 5D Kretschmann
invariants that for a universe dominated by a cosmological
constant, the 5D soft physical singularities on the brane
remain in the bulk, where no further singularities are
formed. Furthermore, the black string warped horizon
vanishes in some point along the extra dimension when
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the Universe is dominated by matter or radiation. In this
way the 5D physical singularities are alleviated due to the
variable brane tension, leaving a regular 5D bulk.

II. BULK METRIC AND BLACK STRING FROM A
DYNAMICAL EÖTVÖS BRANEWORLD

Let us consider a braneworld, with a single extra
dimension of infinite extent, in a bulk endowed with a
metric g

̬
ABdxAdxB ¼ gμνðxα; yÞdxμdxν þ dy2. The brane

metric components gμν and the bulk metric are related
by g

̬
μν ¼ gμν þ nμnν, where the nσ are timelike vector

field components. Moreover, κ24 ¼ 1
6
λκ45 and Λ4 ¼

κ2
5

2
ðΛ5 þ 1

6
κ25λ

2Þ, where Λ4 is the effective brane cosmo-
logical constant, κ4 [κ5] denotes the 4D [5D] gravitational
coupling, and λ is the brane tension. The extrinsic curvature

Kμν ¼ −
1

2
κ25

�
Tμν þ

1

3
ðλ − TÞgμν

�
ð1Þ

is obtained by using the junction conditions. Tμν is the
energy-momentum tensor.
The field equations together with the 5D Einstein and

Bianchi equations [13,19,30,31] are used to compute the
bulk metric near the brane, and in particular the black string
warped horizon [3,32]. Such a procedure provides infor-
mation about the bulk metric components given by Eq. (10)
of Ref. [11], and in particular it yields the black string
warped horizon gθθðxα; yÞ. In a variable brane tension
scenario, the terms of polynomial order jyj and y2=2! in
Eq. (10) of Ref. [11] present no additional terms that could
arise from the derivatives of the variable tension.

Notwithstanding, starting from the order jyj3=3!, those
additional terms play a fundamental role in the bulk metric.
The term that contributes to the derivatives of the variable
tension λ in the order jyj3=3! reads

−
2κ25
3

ðð∇α∇αλÞgμν − ð∇ðν∇μÞλÞÞ: ð2Þ

Additional terms of order y4=4!, arising from the variable
tension brane, are given by Eq. (12) in [11].
The McVittie solution in isotropic spherical coordinates

defined by r ¼ rð1þ 2GM
r Þ2 [21,22] reads

gμνdxμdxν ¼
�
μ − 1

μþ 1

�
2

dt2 þ ð1þ μÞ4a2ðtÞðdr2 þ r2dΩ2Þ;

ð3Þ

where aðtÞ is the cosmological scale factor and μ ¼ M
2aðtÞr.

The metric (3) is an exact solution of the Einstein field
equations when the scale factor solves the Friedmann
equation ρðtÞ ¼ 3_a2=8πGa2 for the energy density. The
McVittie solution is the unique solution describing a
spherically symmetric mass distribution in a spatially flat
asymptotically FRW cosmology [26].
In order to analyze the black string associated to the

McVittie metric, we focus on the term gθθðxα; yÞ, as it
represents the bulk metric near the brane and, in particular,
the black string warped horizon. Clearly, a time dependent
brane tension modifies the black string. By substituting the
McVittie metric (3) in Eq. (10) of Ref. [11], denoting by
HðtÞ the Hubble parameter and β ¼ 1−μ

1þμ, it yields

gθθðr; t; yÞ ¼ r2
�
1− κ25

�
3
_a2

a2
þ λ

3
þ

_H
β
þ 3_a2

2β6

�
jyj þ

�
3_a4

16a4

�ð2β− 1Þ2
6β4

þ 9β2

4
−
3β

2
þ 145

4ð1þ μÞ4a2 þ
�
3_a2

a2
þ 2 _H

β

�

×

�
4μ2þ μþ 3

ðμ− 1Þð1þ μÞ4
��

þ κ45
36

�
λþ 3_a2

2β2
ð1þ μÞ4þ 9_a2

2
þ 3 _H2

β

�
þ 3β

2ð1þ μÞ4a2þ
2λ

3
−
Λ5

6
ð1þ μÞ4a4

�
y2

2!
þ � � �

�
:

This expression is written up here in terms y2=2! for
conciseness, although the awkward expansion including
the term y4=4! was considered in [11], and shall be adopted
in Figs. 1–4 hereupon. When aðtÞ ¼ 1 the bulk metric
component is led to the Schwarzschild black string
horizon, when r corresponds to the coordinate singularity
[11,13,23,33,34].
A natural choice to implement a variable brane tension is

the fluid Eötvös brane [35], already used as a successful
fluid braneworld model [6–8]. We assume the brane tension
as an intrinsic property of the brane, just as an effective
model [6–10]. The brane tension is also supposed to be
smooth, to have a lower limit. Besides, the brane tension
fluctuations are evanescent, in the sense that they are
suppressed exponentially.

The huge variation of the temperature of the Universe in
expansion needs to be modeled by a variable tension
in the braneworld cosmology framework. The phenom-
enological Eötvös law [35] is therefore used, essentially,
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FIG. 1 (color online). Graphic of the black string warped
horizon gθθðt; r; yÞ, with terms due to the variable brane tension,
along y, as function of the time t. Here aðtÞ ¼ expðH0tÞ.
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asserting that the fluid membrane tension depends on the
temperature as

λ ¼ χðTc − TÞ; ð4Þ
where χ is a constant and Tc is a critical temperature above
which the membrane does not exist. The tension variation is
now expressed in terms of the (cosmic) time, instead of the
temperature. Indeed, the Universe cools down as it expands,
and a variation on the temperature corresponds to a time

variation. In the absence of stresses in the bulk there
is no exchange of energy-momentum between the brane
and the bulk [13]. As dQ ¼ dEþ pdV ¼ 0, by taking
into account photons from the cosmic microwave back-
ground, it is possible to use E ¼ σT4V and p ¼ E=3,
implying that dTT ¼ − 1

3
dV
V . Finally, by expressing the volume

VðtÞ ∝ a3ðtÞ it implies that TðtÞ ∝ 1=aðtÞ. This approach is
in full agreement with the standard cosmological model
[11]. Therefore Eq. (4) yields

λðtÞ ¼ 1 −
1

aðtÞ ; ð5Þ

where both the brane tension and the scale factor are
normalized.
By delving into the analysis on the influence of the brane

tension variation on the McVittie black string, two points
support our effective approach. Equation (5) is useful to
merge supersymmetry and inflationary cosmology since it
engenders a time variable 4D cosmological constant, which
starts from a negative value and converges to a small
positive one, as the Universe expands [7]. On the another
hand, Eq. (5) is appropriate from the experimental point of
view. The projection scheme of bulk gravitational quan-
tities [30] implies a linear dependence between the effec-
tive Newtonian constant and the brane tension, namely,
G ∼ λ. Hence, a time variation on the brane tension
means a time variable gravitational constant. The best
model on the fractional variation of G is provided
by the Lunar Laser Ranging [36], asserting that
_G=G < ð4.9� 5.7Þ × 10−13 yr−1. When the expression
(5) is taken into account, the following bound is obtained:

_λðtÞ
λðtÞ ¼

_aðtÞ
aðtÞ½aðtÞ − 1� ; ð6Þ

and all the inputs here analyzed lead to a fractional
variation of the brane tension.
Regarding the McVittie solution, the Einstein field

equations on the brane provide ρ ∝ a−3ð1þwÞ=β, where w ¼
p=ρ is the state parameter. When M ¼ 0 the scale factor
takes the well-known value for the scale factor of a
flat universe aðtÞ ∝ t2=3 (dominated by nonrelativistic
matter) or aðtÞ ∝ t1=2 (dominated by the radiation or
relativistic matter). In the case of a cosmological constant,
aðtÞ ∝ expðH0tÞ.
We now compare the McVittie black string profile in two

eras of evolution of our Universe and, in addition, in the
presence of a cosmological constant. The pure cosmologi-
cal constant braneworld scenario is displayed in Fig. 1,
approaching a realistic black string in a global asymptoti-
cally FRW braneworld. In this case, the scenario is
dominated by a cosmological constant as the scale factor
is given by aðtÞ ∝ expðH0tÞ. According to Eq. (5), the
brane tension is given by λðtÞ ¼ 1 − expð−H0tÞ. In the
figures below we adopt Λ5 ¼ κ5 ¼ 1. The case aðtÞ ∝ tβ=2,
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FIG. 2 (color online). Graphic of the black string warped
horizon gθθðt; r; yÞ, with extra terms due to the variable brane
tension along y, as function of the time t. Here aðtÞ ∝ tβ=2.

40

20

0

20

40

40 20 0 20 40

0.0
0.5

1.0
y

FIG. 3 (color online). Graphic of the black string for a
universe dominated by relativistic matter or radiation, where
aðtÞ ∝ expðH0tÞ.
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FIG. 4 (color online). Graphic of the black string for a universe
dominated by relativistic matter or radiation, where aðtÞ ∝ tβ=2.
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emulating a brane dominated by radiation, is also consid-
ered in Fig. 2, where Eq. (5) yields λðtÞ ¼ 1 − t−β=2.
There is a subtle and prominent difference between the

warped horizons, regarding the respective corresponding
eras. Figure 1 regards a brane dominated by a cosmological
constant, and the horizon of the McVittie black string
increases monotonically along the extra dimension.
Notwithstanding, Fig. 2 shows that once the extra terms
in Eq. (2) and Eq. (12) in [11] are taken into account, the
effects are drastic. For y≳ y1 ∼ 0.02 the square of the black
string horizon is negative, preventing the black string from
existing for values greater than y1.
The case of a matter-dominated FRW brane, where

aðtÞ ∝ t2β=3, is very similar to the one in Fig. 2. The only
difference is that the warped horizon decreases along y for
any value of t≲ 0.76, and that there is a value y ¼ y1 ∼
0.018 above which the black string horizon ceases to exist.
We illustrate below the McVittie black string, respectively
for Fig. 1 and Fig. 2: The graphic for aðtÞ ∝ t2β=3 is
completely similar to the case in Fig. 4. The variable brane
tension scenario brings drastic changes in the black string
profiles, as depicted in Fig. 3 and Fig. 4. In Fig. 3, the black
string warped horizon always increases, in full compliance
to Fig. 1. On the another hand, Fig. 4 shows that there is a
point along the extra dimension where the black string
horizon tends to zero, in accordance to Fig. 2. By analyzing
the 5D Kretschmann invariants, the vanishing of the black
string horizon shall be shown to correspond to a regular
solution in the bulk.

III. VARIABLE BRANE TENSION: REMOVING
5D PHYSICAL SINGULARITIES

One of the natural ways to envisage the physical content
of the bulk metric and of the black string is via the 4D and
5D Kretschmann invariants. Furthermore, we shall prove
that for some eras of the evolution of the Universe, the bulk
becomes regular as the cosmological time elapses, due to
the variable brane tension.
Actually, in the case where at late times the cosmology is

dominated by a positive cosmological constant, the metric
(3) on the brane is regular everywhere on and outside the
associated black hole horizon, and has asymptotically the
Schwarzschild-de Sitter geometry [37]. When the cosmo-
logical constant equals zero, our results about the black
hole horizons are led to the same results as the ones in [34].
When M ¼ 0, the solution is led to a homogeneous and
isotropic FRW cosmology on the brane. For HðtÞ ¼ H0,
the classical black string [11,13,34] or a Schwarzschild-de
Sitter black string [37] is obtained.
An alternative radial coordinate is defined [26] as

r ¼ ð1þ μÞ2aðtÞr, and the McVittie metric (3) reads

ds2 ¼ −gdt2 − 2Hrf−1=2drdtþ f−1dr2 þ r2dΩ2;

where f ¼ 1 − 2M=r. On the brane, a null apparent horizon
is placed at r ¼ r−, which is the smaller positive root of

gðrÞ¼ 1−2M=r−H2r2¼ 0. When r ¼ 2M and t is finite,
the McVittie solution has a curvature singularity at μ ¼ 1.
The invariant

ξ ¼ ð∇μ∇νRϕψρσÞð∇μ∇νRϕψρσÞ

(here ∇μ denotes the covariant derivative on the brane) is
very soft, since it involves at least two derivatives
of the curvature. It can be related to its 5D counterpart,
as the 5D and the 4D Riemann tensors are related by the
Gauss equation as ð5ÞRϕκρσ ¼ Rϕκρσ − KϕρKκσ þ KϕσKκρ.
Consequently, the 5D version of the invariant ξ reads

ð5Þξ ¼ ðDaDb
ð5ÞRϕκζσÞðDaDbð5ÞRϕκζσÞ; ð7Þ

whereDa denotes the 5D covariant derivative. Equation (7)
diverges at the black string warped horizon as well as in the
McVittie black string singularity [23], agreeing to the limit
aðtÞ ¼ 1, corresponding to the classical black string.
The 4D Kretschmann scalar ξ for the McVittie solution

(3) encodes the existence of two physical soft singularities
on the brane, at r ¼ 0 and r ¼ 2M. The singularity at
r ¼ 2M is a null naked singularity when t → ∞ in a FRW
brane if HðtÞ goes to zero at latter times [21], which is the
case when aðtÞ ∝ tβ=2 and aðtÞ ∝ t2β=3.
Equation (7) is a cumbersome expression for the

McVittie solution, and we opt to depict it in the graphics
in what follows. The figure for the scale factor aðtÞ ∝ t2β=3

is completely similar to Fig. 6. Moreover, Fig. 5 evinces
that two physical singularities on the brane at r ¼ 0 and
r ¼ 2M remain in the bulk and there is no additional
singularity in the bulk, in a universe dominated by a
cosmological constant. On the another hand, the vanishing
of the black string warped horizon, for a universe domi-
nated by matter or radiation (see Fig. 4) is accompanied by
the attenuation of the soft physical singularities in the bulk.
In fact, Fig. 6 shows that the 5D soft physical singularities
in the bulk are alleviated as time elapses, providing a
regular 5D bulk solution, as the 5D Kretschmann invariants
do not diverge.
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FIG. 5 (color online). Plot of the 5D Kretschmann scalar ð5Þξ as
a function of time and r, for the scale factor aðtÞ ∝ expðH0tÞ.
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IV. CONCLUDING REMARKS

The black string associated to the McVittie solution of
the Einstein field equations is shown to be drastically
modified by the terms due to the Universe expansion, in a
variable tension braneworld scenario. When the variable
brane tension is taken into account, the black string can
cease to exist along the extra dimension for some range
of time, as Fig. 4 illustrates. The black string warped
horizon provides immediate information on the black string

stability under small perturbations, as the black string
Gregory-Laflamme instability [38]. Indeed, the horizon
can collapse to zero before the perturbation takes part, as
illustrated in Fig. 4.
By analyzing the 4D and 5D Kretschmann invariants, we

have shown that the black string warped horizon vanishes
along the extra dimension for a universe dominated by
matter or radiation. It yields a regular bulk solution as the
cosmological time elapses, due to the variable brane
tension. The analysis of the bulk physical singularities
relies on an exact method provided by the Gauss equation
and by Eq. (7).
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