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SUðNcÞ gauge theories containing matter fields may be invariant under transformations of some
subgroup of the ZNc

center; the maximum such subgroup is Zp, with p depending on Nc and the
representations of the various matter fields in the theory. Confining SUðNcÞ gauge theories in either 3þ 1

or 2þ 1 space-time dimensions and with matter fields in any representation have string tensions for

representation R given by σR ¼ σf
pRðp−pRÞgðpRðp−pRÞÞ

ðp−1Þgðp−1Þ with pR ¼ nRmodðpÞ, where σf is the string tension

for the fundamental representation, g is a positive finite function and nR is the n-ality of R. This implies that
a necessary condition for a theory in this class to have an area law is invariance of the theory under a
nontrivial subgroup of the center. Significantly, these results depend on p regardless of the value of Nc.
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The nature of confinement in QCD and related gauge
theories is quite subtle and remains a subject of consid-
erable interest [1]. QCD lacks an order parameter for
confinement. However, various cousins of QCD have
well-defined order parameters. In SUðNcÞ Yang-Mills
theory, the Polyakov loop in Euclidean space serves as
an order parameter [3]. It is connected to center symmetry:
the Euclidean action is invariant under center transforma-
tions while the Polyakov loop is not [2]. The presence of
quark fields in QCD spoils the invariance of QCD under
center transformations. Yang-Mills theory has another set
of indicators of confinement that are lacking in QCD,
namely area laws for Wilson loops [4] associated with the
various representations of the group. A Wilson loop for a
representation R, σR, is characterized by its string tension

σR ≡ lim
L→∞;T→∞

log ðhWRiÞ
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where W is the Wilson loop operator, C is a closed
rectangular path of length L in a spatial direction and T
in the temporal direction, P indicates path ordering, Ai is
the ith gluon field and TR

i is the ith generator in represen-
tation R. A nonzero string tension is the defining character-
istic of an area law for theWilson loop. Over the years, there
has been considerable interest in the dependence of the
string tension on representation for SUðNcÞ Yang-Mills
theory and related theories [5–17]. While, there has been
controversy as to the detailed form of the dependance on
the representation, with Casimir scaling or a sine law scaling
being two popular conjectures, that the ratio of string
tensions in different representations depends only on the

n-ality of R and Nc, and not on the representation itself
appears to be generally accepted. The belief is that the long
distance behavior is determined by the formation of a
“k-string” with k being the n-ality of the representation;
gluon screening allows all representations with the same
n-ality to connect to the same k-string. In QCD, quarks spoil
the area law, forcing all string tensions to zero: physically,
the area law breaks down in QCD because quark-antiquark
pairs can screen the color charges [2].
Center symmetry and an area law for the Wilson loop

have long been associated. ’t Hooft’s classic paper [18]
introducing the notion of center vortices, did so to explain
the area law. However, the connection between an area law
for the Wilson loop in a gauge theory and center symmetry
is subtle since a Wilson loop in an infinite space is neutral
under center transformations. This paper explores the
connection between the area law for the Wilson loop
and center symmetry, for SUðNcÞ gauge theories generally
i.e. beyond pure Yang-Mills.
To explore the connection, a large class of theories,

SUðNcÞ gauge theories in 3þ 1 or 2þ 1 space-time
dimensions with matter fields in all allowable representa-
tions, is considered. In 3þ 1 dimensions, theories with
matter fields in large representations are not ultraviolet
complete. However, in 2þ 1 dimensions, matter fields in
all representations are possible [19], greatly enlarging the
class. The connection is explored by studying relations
among the string tensions which characterized area laws for
various representations and relating these to center sym-
metry. This large class is interesting since it contains
theories where matter fields spoil some, but not all, of
the ZNc

center symmetry, retaining invariance under a Zp
subgroup of the center. These matter fields also affect
Wilson loops, properties of which that are sensitive only to
p, the amount of center symmetry that survives are of
interest. Recall that a hint of a deep connection between the
area law and center symmetry is the fact that in QCD, the*cohen@physics.umd.edu
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same thing which spoils center symmetry also spoils the
area law, namely the quarks. The issue explored here, is
whether matter fields that spoil only part of center sym-
metry have effects on area laws that are predictable solely
from the amount of center symmetry preserved. For
example: what properties of large Wilson loops are shared
by an SU(12) gauge theory in 2þ 1 space-time dimensions
with quarks in a three-index symmetric representation, an
SU(15) gauge theory in 2þ 1 dimensions with quarks
in both the 12-index antisymmetric representation and
9-index symmetric representation, and a pure Yang-Mills
theory for SU(3) in 3þ 1 dimension, all of which have a
maximum Z3 symmetry?
The principal result of this paper is that in any confining

theory in this class, σR, the string tension in representation
R, is given by

σR ¼ σf
xRgðxRÞ

ðp − 1Þgðp − 1Þ with

xR ¼ pRðp − pRÞ where pR ¼ nRmodðpÞ ð2Þ

the maximum subgroup of the center under which the
theory is invariant,Zp determines p, gðxÞ is a positive finite
function on the domain 0 ≤ x < p2=4 that may depend on
the theory, nR is the n-ality of R and σf is the string tension
for the fundamental representation. The key point is that the
relation depends on p, the amount of center symmetry,
rather than Nc, the number of colors.
This result follows from two properties of SUðNcÞ gauge

theories. Consider a gauge theory with m fields (gluons
plus matter fields), with the first field carrying n-ality
n1, the second field carrying n-ality n2 etc. Property (i) is
that the maximum subgroup of the center under which the
theory is invariant is Zp with

p ¼ gcdðNc; n1; n2;…; nmÞ ð3Þ

where gcd is the greatest common divisor. Property (ii) is
that there exists a way to combine fields in the theory into
a composite in a representation R, if nR, the n-ality of
representation, is an integer multiple of p as given Eq. (3).
Significantly, the same value of p appears in both proper-
ties (i) and (ii). Ultimately this relates the amount of center
symmetry in a theory to the theory’s ability to screen color
charge in a given representation. After introducing a few
basic ideas, these properties will be proved and from them
the principal result and some corollaries derived.
The n-ality of a representation is the number of boxes in

the Young tableau specifying the representation—modulo
Nc [2]. Thus, the Clebsch-Gordan decomposition of the
product of operators in two representations with n-aility n1
and n2 contains only representations with n-anlity equal to
ðn1 þ n2Þ modðNcÞ. Any representation with fixed n-ality
can be obtained from any other representation with the
same n-ality by combining it with some number of adjoint

representations using appropriate Clebsch-Gordan coeffi-
cients. Thus by adding gluons to a combination of fields in
a given representation, a combination of fields in any
representation with the same n-ality can be obtained.
The center group associated with a Lie group contains

those elements of the Lie group which commute with
all elements of the group [20]. For SUðNcÞ, the center
isZNc

and containsNc elements given byCj ¼ zj1where 1

is the Nc × Nc identity matrix and zj ¼ expði 2πjNc
Þ with

j ¼ 0; 1; 2;…Nc − 1. Center invariance for a gauge theory
has a relative simple formulation on the lattice [2] but the
connection between that formulation and the continuum is
a bit subtle. Here the analysis is based on an equivalent
formulation [21] directly based on the continuum version of
the theory in Euclidean space. The formulation depends on
the space having a finite extent, β, in the temporal direction
and with periodic boundary conditions for bosons and
antiperiodic for fermions ones. This setup corresponds to
working at finite temperature [22]. Zero temperature
physics can be studied by taking the zero temperature
limit at the end of the problem. A center transformation on
the gauge field has the following form:

Aμ → A0
μ ≡ΩAμΩ† − gΩ∂μΩ† ð4Þ

with Ωð~x; β þ tÞ ¼ CΩð~x; tÞ ð5Þ

where Ω is an element of the gauge group at any point in
space-time, 1 is the identity element, g is the gauge
coupling and C is a nontrivial element of the center.
Equation (4) is of the form of a local gauge transformation
and leaves the Yang-Mills Lagrangian density invariant at
every space-time point. It is not a true gauge transformation
since in a gauge transformation Ω satisfies periodic boun-
dary conditions: Ωð~x; β þ tÞ ¼ Ωð~x; tÞ. However, while Ω
is not periodic, if Aμ satisfies periodic boundary conditions
with Aμð~x; 0Þ ¼ Aμð~x; βÞ then so does A0

μ. For pure Yang-
Mills theory, the only fields are the gluons whose boundary
conditions are preserved by all center transformations.
The transformations are thus allowable within the theory
and leave the action invariant; Yang-Mills theory is center
invariant.
For theories containing matter fields, the matter trans-

forms under center transformations in the same way as
under gauge transformations: quarks in the fundamental
representation q → q0 ≡Ωq while quarks in the adjoint
representation transform according to qadj → q0adj ≡
ΩqadjΩ†, etc. If such a transformation is allowable given
the boundary conditions, it leaves the action invariant as it
is of the form of a gauge transformation. However, it need
not be allowable. Consider a theory containing a field ψ
with n-ality nψ. Under center transformations associated
with a particular element of the center Zj ¼ zj1 in which
ψ → ψ 0, the following identity must hold:
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ψð~x; tÞ
ψð~x; tþ βÞ ¼ z

nψ
j

ψ 0ð~x; tÞ
ψ 0ð~x; tþ βÞ : ð6Þ

From the boundary conditions, ψnð~x; tÞ=ψnð~x; tþ βÞ is
fixed to be �1 depending on whether the field is a bosonic
or fermionic. If ψ satisfies the boundary conditions, then ψ 0
only satisfies the boundary conditions if

z
nψ
j ¼ ei

2πjnψ
Nc ¼ 1: ð7Þ

Unless Eq. (7) holds for all fields in the theory, the center
transformation is not allowable. If nψ ¼ 0 for all matter
fields, as happens if they are in the adjoint representation,
then Eq. (7) is always satisfied; the theory is center
symmetric. If the theory contains a field with nψ ¼ 1, as
happens in a theory with quarks in the fundamental
representation, then Eq. (7) is never satisfied except for
j ¼ 0, which is trivial since the “transformation” is just the
identity. Such theories are not center symmetric.
If the theory has matter fields with n-ality different from

zero or one, the situation is more interesting. First consider
a theory with one type of matter field with n-ality, nψ . If nψ
and Nc are relatively prime, then no values of j other than
zero satisfy Eq. (7). Conversely, if nψ and Nc are not
relatively prime, then Eq. (7) is satisfied if, and only if,
j ¼ lNc=p, where p ¼ gcdðNc; nψÞ and l is a non-negative
integer less than p: transformations associated with the Zp

subgroup of theZNc
center group are allowable. In the most

general case, there are multiple fields in the theory, gluons
and some number of matter fields. The first matter field
carries n-ality n1; the second field carries n-ality n2; etc. For
a would-be center transformation to be allowable; it must
separately preserve the boundary conditions for all of the
matter fields as well as for the gluons. Thus the set of
allowable transformations is for the group whose elements
are simultaneously elements ofZp1

;Zp2
;… up throughZpm

with pi ¼ gcdðNc; niÞ. This group is Zp with p given
by Eq. (3).
Having established property (i), consider property (ii).

Even if a theory has no matter field in representation R, it
may still contain matter in that representation. Multiple
fields in a theory can combine into a configuration in
representation R. For example, in Yang-Mills theory for the
exceptional groupG2, three gluon fields (in the adjoint) can
combine into the fundamental [23]. An SUðNcÞ gauge
theory in 3þ 1 or 2þ 1 space-time dimensions will have
matter in representation R if, and only if, matter fields can
be combined to yield a representation with n-ality nR.
Consider, the most general SUðNcÞ theory which has m
fields carrying n-ality n1; n2;…nm and ask whether fields
in the theory can be combined into representation R. The
issue amounts to whether fields can be combined into nR
where the n-alities add when fields are combine together.
Thus, the possible n-alities are n ¼ P

m
i¼0 lini modðNcÞ

where li are integers. This implies that a sufficient con-
dition for fields to combine into representation R is that
there exists a set of integer li which satisfy the equation

Xm
i¼0

linimodðNcÞ ¼ nR: ð8Þ

However, an elementary result from number theory, a
generalization of Bézout’s identity [24], implies that if

r × gcdðn1; n2;…; nm; NcÞ ¼ nR ð9Þ

where r is a positive integer, then there exists a set of
integers l1; l2;…; lm; L such that LNc þ

P
m
i¼0 limi ¼ nR

which is equivalent to Eq. (8). Thus, fields in the theory can
be combined into representation R if nR ¼ rp for some
positive integer r where p is given by Eq. (3), establishing
property (ii). Superficially properties (i) and (ii) deal with
quite different things: the amount of center symmetry and
the representations of matter which the theory possesses.
However, they are connected in that they both depend on
p as given by Eq. (3); the connection is number theoretic
in origin.
The physical picture for area laws in various represen-

tations in Yang-Mills theory is the k-string [2,5–17]. This is
the lowest lying flux tube configuration for a color source
carrying n-ality k. Only the n-ality, k, matters as gluon
screening can shift the representation of the color charge to
one with the same n-ality, allowing the system to relax to
the lowest energy flux tube with n-ality k. (Note, that the
argument that only n-ality matters is valid in 3þ 1 and
2þ 1 space-time dimensions but not in 1þ 1 dimension
where there are no dynamical gluons. However, it applies to
theories in 1þ 1 dimensions which have matter fields in
the adjoint.) Moreover, the string tension for representa-
tions with n-ality k and those with Nc − k are identical
since Nc − k is equivalent to −k and simply amounts to
switching all color charges to their conjugates (e.g. the
fundamental to the antifundamental) which clearly couple
to the same k-string. The string tension for n-ality zero
representations vanishes since in these cases the color
charge can be fully screened.
One expects the k-string picture to be valid beyond

Yang-Mills and to hold for confining theories in the large
class of theories considered here. Clearly in this larger
class, σR ¼ 0 if nR ¼ 0 since in this case, the color charge
can be fully screened, just as in pure Yang-Mills. The
principal physics difference between this larger class and
Yang-Mills is that matter fields can also screen color
sources. As a consequence:

(i) σR, the string tension of representation depends only
on nRmodðpÞ where p is given in Eq. (3). This
follows from property (ii) which means that screen-
ing can change the n-ality by an integral multiple on
p. Representations whose n-ality differs by an
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integral multiple of p couple to the same k-string
and have the same string tension.

(ii) σR ¼ σR0 if pR ¼ ðp − p0
RÞ. This follows from the

fact that Nc is an integer multiple of p, the fact that
string tension only depends on the nRmodðpÞ and
from charge conjugationwhich implies that the string
tension for representations with n-ality k andNc − k.

These facts are fully encoded in Eq. (2) provided gðxÞ is
positive and finite and p is given by Eq. (3). Since, property
(i) implies that Zp is the maximum subgroup of the center
for the theory, where p is also given in Eq. (2), the principal
result of this paper relating the maximum subgroup of the
center to properties of the string tension has been estab-
lished. It is important to stress that Eq. (2) depends on the
“p-ality,” i.e. the n-ality modðpÞ. In effect, things depend on
p regardless of Nc: the center group under which the theory
is invariant, rather than Nc, determines which string
tensions are identical.
Four significant corollaries follow from this result:
(1) For theories with a maximum subgroup of Z2 or Z3,

all representations which have the a nonzero string
tension have the same string tension. This follows
from the structure of xR; for p ¼ 2 all representa-
tions have either xR ¼ 0 or xR ¼ 1, while for p ¼ 3,
xR ¼ 0 or xR ¼ 2.

(2) A necessary condition for any theory in the class to
have a nonzero string tension for representation R
is for nR not to be an integer multiple of p. This
follows from the fact that x ¼ 0 whenever nR is an
integer multiple of p.

(3) A necessary condition for a theory in the class to
have an area law for Wilson loops for the funda-
mental representation is for the theory to be invariant
under a nontrivial subgroup of the center. This
follows since the trivial subgroup has p ¼ 1 which
implies that xR ¼ 0, and hence a vanishing string
tension, for all representations.

(4) A necessary condition for any theory in the class to
have an area law for Wilson loops for all represen-
tations with nonzero n-ality is for the theory to be
invariant under the full ZNc

center group. This
follows directly from corollary 2.

Again, it should be stressed that all of these corollaries
depend the size of the center group rather than Nc.
Corollary 3 is particularly significant. It indicates that the
connection between area laws and center symmetry is
profound—invariance under some nontrivial center trans-
formations is necessary for area laws to exist in this large
class of gauge theories. While this is in accord with the
prevailing “folklore” of the field, it is gratifying to see
formally both that it holds quite generally, and why.
Corollary 1 shows that theories with Z2 or Z3 as the

maximum subgroup of the center have the ratio of the string
tension in any representation to that of the fundamental
fixed to be unity or zero. Remarkably this is regardless of
any other details of the theory including Nc, the dimension
of space-time or the precise matter content of the theory. It
is interesting to speculate on whether theories with p > 3
also have universal behavior with σR=σf, fixed entirely by
pR and p independently of all other details. If true, the
dependence of the ratio on pR and p must be the same as
the dependence on nR and Nc respectively as in super
Yang-Mills theory, since that is in the class. This would
imply a sine law as SYM is known to have this behavior [2]

and would fix g to be gðxÞ ¼ A cosðπ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p2

q
Þ where A is

an arbitrary constant. However, at present one does not
know whether gðxRÞ is universal. Perhaps, future numerical
lattice studies can shed light on the issue.
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