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We study entanglement in thermofield double states of strongly coupled conformal field theories
by analyzing two-sided Reissner-Nordström solutions in anti–de Sitter space. The central object of study is
the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For
large regions the mutual information is positive and for small ones it vanishes; we compute the critical
length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the
butterfly effect of Shenker and Stanford [J. High Energy Phys. 03 (2014) 067] to a wide class of charged
black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a
time of order logE=δE in units of the temperature. We conjecture that the parametric form of this time scale
is universal.
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I. INTRODUCTION

The connection between geometry and entanglement is
exciting and deep. In particular, the recent ER ¼ EPR
framework introduced by Maldacena and Susskind [1]
suggests that, in a gravitational theory, we should always
associate entanglements with wormholes. As discussed in
Ref. [1], a classical wormhole requires not only a large
amount of entanglement but also a very detailed kind of
entanglement. They suggested that a “quantum” wormhole
could be associated to any kind of entanglement, though
there is no independent meaning to the quantum wormhole
as of yet. Here we discuss certain transitions between
situations with a large amount of well-ordered entangle-
ment (complete with classical wormhole) to situations
where the total entanglement remains large but becomes
unordered, and the classical wormhole begins to develop
pathologies.
The systems we study consist of two identical copies of

a large-N conformal field theory, CFTL × CFTR (called the
left and right CFTs, respectively), in a particular entangled
state jΨi ∈ HL ⊗ HR. The left and right CFTs are com-
pletely decoupled, meaning that it is impossible to send
signals between the two copies. They only know about each
other through their entanglement. We choose to place the
system in a thermofield double state with inverse temper-
ature β and chemical potential ϕ [associated to some
conserved global Uð1Þ symmetry]:

jΨi ¼ 1ffiffiffiffi
Z

p
X
n

e−
β
2
ðEn−ϕQnÞjniL ⊗ jniR: ð1Þ

In AdS/CFT, these types of states are dual to two-sided
eternal Reissner-Nordström black holes [2]. The two field

theories live on the two asymptotic boundaries, and the
Einstein-Rosen bridge connecting them is nontraversible as
a necessary consequence of the fact that the two field
theories are decoupled. This wormhole is a reflection of the
entanglement, and its classical nature shows that the
entanglement is highly ordered.
It has long been known that the Bekenstein-Hawking

entropy of a black hole, as measured by its area, corre-
sponds to the total entanglement entropy between the two
copies of the CFT. In other words, the cross-sectional area
of the wormhole is determined by the total amount of
entanglement of the two subsystems. The length of the
wormhole is naturally associated to another measurement
of entropy, the mutual information [1,3–5]. For two
disjoint regions A and B, the mutual information IðA; BÞ
is given by

IðA; BÞ ¼ SðAÞ þ SðBÞ − SðA∪BÞ; ð2Þ

where Sð·Þ is the von Neumann entropy of the reduced
density matrix associated to the given region, obtained by
tracing out everything outside of the region. In the case of
the eternal black hole, we wish to consider the mutual
information between a region A on the left boundary and a
region B on the right boundary. The amount of mutual
information between two such regions is related to the
length of the wormhole connecting them: if we manipulate
the state in a way that disrupts this mutual information, we
will see the wormhole geometry grow longer.
The computation of mutual information is made possible

by the Ryu-Takayanagi prescription for entanglement
entropy [6,7]. To a region A on the left asymptotic
boundary we associate a minimal surface in the bulk
whose boundary coincides with the boundary of A. The
area of this surface, divided by 4G, gives the leading*sleichen@theory.caltech.edu
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contribution to SðAÞ in the large-N limit.1 In all of the states
we consider, the minimal surface associated to A lies
outside of the black hole horizon. A similar procedure
gives SðBÞ. To the union A∪B there are two candidate
minimal surfaces which are both extremal, and we must
choose the one that actually has the smaller area. The first
candidate is the union of the A and B surfaces. This surface
consists of two disjoint pieces, and its area is clearly equal
to the sum of the areas of its two parts. Thus if this
represents the true minimal surface, then the mutual
information between A and B will be zero. The second
candidate surface stretches through the wormhole and
connects the two regions. If this surface has area less than
the sum of the two disjoint surface areas, then it is the
correct minimal surface and the mutual information will be
positive. For simplicity, we will focus on the case where the
region B on the right is the same as the region A on the left.
That is, if we consider the equivalent situation of two
uncoupled CFTs living on the same space, then the regions
A and B are identical.
We will consider two deformations of the thermofield

double states which disrupt the mutual information while
leaving the total entanglement intact. The first one is an old
idea that we will make explicit: lowering the temperature
to zero. In this case the black hole becomes extremal, and in
that limit the wormhole becomes infinitely long while
retaining a finite area.2 Any extremal surface crossing the
wormhole will be stretched to infinite area, and so the
mutual information between any finite regions on the left
and right will necessarily drop to zero. Note that the density
operator of, say, CFTL, obtained from Eq. (1) by tracing out
the states of CFTR, approaches a projection operator onto
the “ground states" of the effective Hamiltonian Ĥ − ϕQ̂
in the β → ∞ limit. There are a great many of these states,
which is why the black hole entropy remains finite.
In Sec. III we analyze in detail the loss of mutual

information in the transition to an extremal black hole. The
state of Eq. (1) contains length scales determined by β and
ϕ. It is not surprising that for a region A on the left whose
size is much smaller than these length scales the mutual
information between it and its partner region on the right is
zero; these regions are too small to notice the entanglement.
For larger regions the mutual information is positive. There
is a critical linear size L of region A for which the transition

happens. We compute this critical size and see that it goes
to infinity as the temperature goes to zero.
A second way to disrupt the mutual information, while

leaving the temperature finite, is to make use of the
butterfly effect of Shenker and Stanford [12]. A small
perturbation is added to the left field theory, which we
model as a shift in the energy density. After an amount of
time t�, we will find that the mutual information between
the two sides is disrupted. This is interpreted as a
manifestation of the butterfly effect familiar from chaotic
dynamics: a small change in initial condition leads to a
large change at later times. Geometrically, this effect is
manifested by a shock wave which travels across the
horizon of the black hole. Any probe which crosses the
horizon, such as the minimal surfaces used to compute
SðA∪BÞ, will be affected by the shock. In Sec. IV we
generalize the analysis of this effect from the BTZ case
studied in Ref. [12] to a wide class of Reissner-Nordström
black holes. We find the apparently universal behavior

t� ∼
β

2π
log

E
δE

; ð3Þ

where E is the initial energy and δE is the energy of the
perturbation. Care must be taken in the near-extremal case.
There the energy E we use in this formula is not the total
energy of the black hole, but the energy in excess of the
extremal black hole with the same charge: E ¼ Etot − Eext,
which goes to zero in the extremal limit. This suggests that
only the degrees of freedom excited above the extremal
state participate in the chaotic dynamics. This lines up with
the fact that the mutual information between local regions
drops to zero in the extremal limit: it is only those same
excited degrees of freedom which contribute to the mutual
information.
It was noted in Ref. [12], in the context of the uncharged

BTZ black hole, that a natural smallest choice of δE is E=S,
the average energy per degree of freedom, for which t�
becomes the fast scrambling time

tsc ∼
β

2π
log S: ð4Þ

Black holes have been conjectured to be fast scramblers,
and the fast scrambling time scale has appeared in
numerous places in the study of black holes and quantum
circuits [13–15]. In the near-extremal case, this should be
modified to δEmin ∼ E=ΔS, where ΔS ¼ S − Sext is the
entropy in excess of the extremal entropy.

II. THE SETUP

We consider two copies of a field theory on R × Σ in a
thermofield double state, where Σ is either a sphere
ðk ¼ 1Þ, plane ðk ¼ 0Þ, or hyperboloid ðk ¼ −1Þ with line
element given by

1We will only be concerned with the leading behavior of
entropy and mutual information in the large-N limit. In this
approximation, “vanishing” mutual information only means that
the coefficient of N2 vanishes (i.e., the coefficient of 1=G). It is
possible that subleading terms could be accessed by considering
corrections to the Ryu-Takayanagi prescription [8,9].

2For black holes with compact horizons, when we lower the
temperature we risk crossing the Hawking-Page phase transition
to a state without a black hole [10]. While this may be a good
example of the loss of a classical wormhole, we are not going to
study it here. By having a large enough chemical potential, we
can avoid this transition [11].
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dΣ2
d−1 ¼ l2

�
dξ2

1þ kξ2
þ ξ2dΩ2

d−2

�
: ð5Þ

By construction, the density operator in either CFT is
given by the grand canonical density operator, ρ̂ ¼
exp½−βðĤ − ϕQ̂Þ�=Z. The anti–de Sitter (AdS) dual of
the thermofield double state is a two-sided eternal Reissner-
Nordström black hole with metric

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2

l2
dΣ2

d−1; ð6Þ

fðrÞ ¼ k −
μ

rd−2
þ q2

r2d−4
þ r2

l2
: ð7Þ

The outer horizon is located at r ¼ R, the largest root of
fðRÞ ¼ 0, and the inverse temperature is β ¼ 4π=f0ðRÞ.
The chemical potential is given by a rescaled version of the
electric potential difference between the horizon and
infinity, ϕ ¼ −q=Rd−2. The details of the thermodynamics
of these solutions is reviewed in Appendix A, but here we
record the results for the energy and entropy densities:

ϵ≡ hĤi
VolðΣÞ ¼

d − 1

16πGld−1 ðμ − μ0Þ;

s≡ h− log ρ̂i
VolðΣÞ ¼ 1

4G

�
R
l

�
d−1

: ð8Þ

The zero-point energy μ0 is equal to zero for k ¼ 0; 1 but
equal to a finite negative value for k ¼ −1. This is because
vacuum AdS is not the lowest energy solution when
k ¼ −1, and we refer to Appendix A for details.3 As we
will see, it is natural in the present context to measure
energies relative to the μ ¼ μ0 state. Even though we
calculate these quantities using holography, they have
interpretations purely in the field theory. If we like, we
can think of these as the defining equations for the
gravitational parameters G and R.

III. TEMPERATURE DEPENDENCE OF MUTUAL
INFORMATION

Our objective is to compute the mutual information of a
region A ⊂ Σ on the left asymptotic boundary and its
partner B ⊂ Σ on the right asymptotic boundary, where B is
defined so that A ¼ B when the left and right boundaries
are identified. In this section we will focus on the simplest
case where Σ has zero spatial curvature, Σ ¼ Rd−1, and the
region A is an interval bounded by two hyperplanes. This is
so explicit calculations can be performed, though the

lessons we learn should extend to other cases. For now
we will assume that we have a nonextremal black hole,
f0ðRÞ ≠ 0, and eventually we will be interested in taking
the extremal limit where f0ðRÞ → 0. This corresponds to
the zero temperature limit, where the mutual information
between any pair of partnered left and right regions
vanishes.
Let y be a distinguished cartesian coordinate on Rd−1,

and let A be the region 0 < y < L. The two boundaries of
the region are the hyperplanes y ¼ 0 and y ¼ L. A minimal
bulk surface which shares this boundary is found by
extremizing the area functional

Aread−1 ¼
Vd−2

ld−2

Z
drrd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f−1 þ r2y02=l2

q
: ð9Þ

Here we have used the notation Vd−2 to denote the volume
of a y ¼ const hyperplane. Though infinite, we can
formally keep track of how it appears in all expressions.
Treating this functional as an action, there is a conserved
quantity associated with translations in y:

γ ¼ rdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f−1 þ r2y02=l2

p y0 ¼ rd−1minl; ð10Þ

where rmin is the turning point of the surface where
dr=dy ¼ ðy0Þ−1 ¼ 0. rmin is implicitly a function of L,
as determined by the constraint

L ¼
Z

dy ¼ 2l
Z

∞

rmin

dr
r

ffiffiffi
f

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=rminÞ2d−2 − 1

p : ð11Þ

The area of the surface is then

Aread−1 ¼
2Vd−2

ld−2

Z
∞

rmin

dr
rd−2ffiffiffi
f

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðrmin=rÞ2d−2

p : ð12Þ

Notice that this area diverges as rmin → R. Dividing by 4G,
this gives us the entropy SðAÞ. There is an identical
contribution from SðBÞ on the other side of the geometry.
We are left to compute SðA∪BÞ, which comes from the
area of a surface which just passes through the horizon to
connect to the other side. By symmetry, this surface is the
union of a surface at y ¼ 0 and a surface at y ¼ L. The total
area, including both sides of the horizon, is given by

Aread−1 ¼
4Vd−2

ld−2

Z
∞

R
dr

rd−2ffiffiffi
f

p : ð13Þ

Upon dividing by 4G we have SðA∪BÞ. Putting these
results together gives us the mutual information for the
interval of width L:

3Reference [16] also considered Casimir energy corrections to
this equation, which are nonzero for k ¼ 1 as well. Those
energies are independent of the mass and charge, so we could
likewise absorb them into μ0.
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IðLÞ ¼ Vd−2

Gld−2

�Z
∞

rmin

dr
rd−2ffiffiffi
f

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðrmin=rÞ2d−2

p
−
Z

∞

R
dr

rd−2ffiffiffi
f

p
�
; ð14Þ

provided the term in brackets is positive, and IðLÞ ¼ 0
otherwise. Notice that there is a cancellation of terms over
the ranges r ≫ rmin. That is because the A and A∪B
surfaces approximately coincide at large r. This can also
be seen by noticing that y0 ≈ 0 when r ≫ rmin.
Since we are most interested in where IðLÞ vanishes, we

will approximate Eq. (14) in the limit rmin ≈ R. In that
case the difference in areas of the two extremal surfaces
comes from the difference in area between a segment which
hugs the horizon (with area proportional to L) and a piece
which stretches across the horizon (with area proportional
to the proper distance between the horizon and rmin).
Qualitatively, that sort of behavior should persist to
situations much more general than the surfaces we are
considering. The segment which crosses the horizon will
have a proper length which depends on the near-horizon
geometry, and especially depends on how close to extremal
the black hole is. Examining the nonextremal and near-
extremal cases separately, we find that IðLÞ → 0 when4

L ∼

8>><
>>:

2
ffiffi
2

p
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd−1Þf0ðRÞR
p ; for Rf″ðRÞ ≪ f0ðRÞ;

2lffiffiffiffiffiffiffiffiffiffiffiffi
f″ðRÞR2

p log

�
Rf″ðRÞ
f0ðRÞ

�
; for Rf″ðRÞ ≫ f0ðRÞ:

ð15Þ

The near-extremal form of this equation was obtained in
Ref. [5] for the case of Reissner-Nordström black holes in
AdS5. In Fig. 1 we plot the value of L for which IðLÞ ¼ 0
for several different black holes, as well as the approxi-
mation given by Eq. (15). Note that for high temperatures,
this critical value of L scales like β. At low temperatures,
the critical value of L is controlled by the extremal black
hole we are approaching. It is interesting to note that
the logarithmic factor in the near-extremal case can be
written as

log
Rf″ðRÞ
f0ðRÞ ∼ log

s
Δs

; ð16Þ

where s is the entropy density of the zero-temperature
extremal black hole and Δs is the difference between the
near-extremal and extremal entropy densities.

IV. THE BUTTERFLY EFFECT

A. Shock-wave geometry

In this section we are interested in perturbing one side of
the geometry by sending in a lightlike pulse of energy from
the boundary. For simplicity, we consider homogeneous
pulses that shift the energy density, ϵ → ϵþ δϵ with δϵ
small, at fixed q.5 Our first task is to construct the shock-
wave geometry which accounts for the backreaction of
these pulses. We begin with the metric

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ
r2

l2
dΣ2

d−1; ð17Þ

which describes some nonextremal black hole. We define
the tortoise coordinate so that dr� ¼ dr=f and Kruskal
coordinates

uv ¼ −ef0ðRÞr� ; u=v ¼ −e−f0ðRÞt; ð18Þ

in terms of which the metric is

ds2 ¼ 4fðu; vÞ
f0ðRÞ2

dudv
uv

þ rðu; vÞ2
l2

dΣ2
d−1: ð19Þ

The left exterior region is covered by u > 0 and the right
exterior region by v > 0. The AdS boundary is located at
uv ¼ −const, and we can choose this constant to be equal
to one by a suitable additive shift in r� (so r� ¼ 0 on the
boundary).

0 20 40 60 80 100
R0.00

0.05

0.10

0.15

0.20

0.25

0.30
L crit

FIG. 1 (color online). Values of the width Lcrit of a strip for
which the mutual information vanishes. We show results for black
holes with different values of R for the uncharged case q ¼ 0
(blue circles), and the near-extremal case q ¼ 0.999qext (red
squares). Also shown are the approximations in Eq. (15). The
nonextremal (near-extremal) approximation is given by the solid
(dashed) line. These plots were produced for the specific case
d ¼ 3, k ¼ 1, but similar results hold for other values of d and k.

4The numerical coefficients appearing here are approximate,
but the scaling with f and R is exact in the respective limits.

5Since we are expressing our perturbations in terms of energy
and charge, rather than temperature and chemical potential, we
are not strictly staying within the grand canonical ensemble. This
is not a problem; we know how to add perturbations which carry a
fixed amount of charge and energy using AdS/CFT, and the
resulting state contains the matter associated with the perturbation
in addition to the black hole.
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A lightlike pulse starting at the left asymptotic boundary
follows a constant u trajectory. We will paste together
two black hole geometries along this constant u surface.
The outside geometry, i.e., in the causal future of the pulse,
will be described with coordinates with an L subscript,
while coordinates on the inside will have an R subscript
(see Fig. 2). We can identify rL ¼ rR ¼ r because the
radius of curvature of the transverse space is continuous
across the boundary. Additionally, using time translation
symmetry, we can say that the pulse leaves the left
asymptotic boundary at tR ¼ tL ¼ t0. The pulse is located
at uL ¼ uL0 and uR ¼ uR0 given by

uL0 ¼ e−2πt0=βL ; uR0 ¼ e−2πt0=βR : ð20Þ

Since the r coordinate is continuous, we can use the
following pair of equations to find a relationship between
the vL and vR coordinates along the pulse:

uL0vL ¼ −e4πrL�ðrÞ=βL ; uR0vR ¼ −e4πrR�ðrÞ=βR : ð21Þ

We will only consider geometries where δϵ is small and the
time t0 is large. At fixed v, large t0 means taking u to zero,
which in turn means r� approaches −∞. In other words, we
approach the horizon. Near the horizon of a nonextremal
black hole, r� ≈

β
4π ðCþ logðr − RÞÞ, where C is a constant

that depends on the geometry. Hence we have

uL0vL ≈ −ðr − RLÞeCL; uR0vR ≈ −ðr − RRÞeCR: ð22Þ

In the limit thatRL − RR ≡ δR → 0whilee2πt0=βRδR remains
finite, we have βR ¼ βL ¼ β, CR ¼ CL ¼ C, the Kruskal
coordinate u becomes continuous (and hence we will drop
subscripts on it),while alongu ¼ 0wehave the identification

vL ¼ vR þ eCe2πt0=βδR≡ vR þ α: ð23Þ

Thus the matching condition is given by a shift in the
Kruskal coordinate v. This leaves both the left exterior and
the right exterior individually unaffected, but any spacelike
probewhich crosses from left to right will feel the influence.
In particular, for the probes we consider, we should expect

large deviations compared to the shock-wave-less result
when α ∼ 1, or in other words when t0 ∼ t� where

t� ≡ β

2π
log

e−C

δR
: ð24Þ

We will see this sort of behavior in examples below. A
remaining challenge is to find an expression for C. While in
simple cases analytic expressions can be found, there are
two interesting limits to consider: the high temperature
limit and the low temperature limit at fixed q.
The high temperature limit should be represented by an

uncharged planar black hole, for which we can compute

r�ðrÞ ¼ −l2

Z
∞

r

dr0

r02 − Rd

r0d−2

≈ −
β

4π

�
log dþ log

r − R
R

þ ψð1=dÞ þ γ

�
þOðr − RÞ; ð25Þ

where ψ is the digamma function and γ is the Euler-
Mascheroni constant. The resulting expression for t� is

t� ¼
β

2π
log

e−ψð1=dÞ−γR
dδR

¼ β

2π
log

e−ψð1=dÞ−γϵ
δϵ

: ð26Þ

This matches the high-temperature limit of the exact
calculation in Appendix B for a black hole in d ¼ 4, as
it should. The energy-independent factor in the logarithm
technically only gives a subleading contribution to t�, but
we include it anyway for the purposes of comparison to
other similarly precise calculations.
The low temperature limit corresponds to a near-

extremal black hole. As we show in Appendix C, a
near-extremal black hole satisfies

t� ¼
β

2π
log

4Δϵ
δϵ

: ð27Þ

Here we have used the notation Δϵ ¼ ϵ − ϵext, the energy
density in excess of the extremal energy density. The
universality of this expression is remarkable, as it holds
for charged extremal black holes of any charge as well as
uncharged, hyperbolic black holes. It is interesting that we
are required to use Δϵ rather than ϵ itself. As we discussed
in the introduction, this suggests a division of degrees of
freedom into the extremal degrees of freedom and the
excited degrees of freedom. Here we see that only the
excited degrees of freedom contribute to the butterfly effect.
In the previous section, we saw that the extremal degrees of
freedom did not contribute to the mutual information as we
lower the temperature. We also note that, once again, this
result agrees with the zero-temperature limit of the exact
calculations in Appendix B for d ¼ 4.
Both the high temperature and low temperature limits are

readily expressed in terms of log ϵ=δϵ, as long as we

L

R
t0

FIG. 2 (color online). The construction of the shock-wave
geometry. Two halves (L and R) are glued along the lightlike
shock-wave trajectory. On the right we see the result of the gluing
in the t0 → ∞ limit, where the net effect is a shift in the Kruskal
coordinate by α.
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understand “ϵ” to mean energy above the zero-temperature
state, and we see that there is a temperature-dependent
subleading piece which also depends on the spatial dimen-
sion. We conjecture that the leading term of t� is always
given by β

2π log ϵ=δϵ, though we are unable to prove it.

B. Extremal surfaces

While we expect the parameter α of the shock-wave
geometry to control the disruption of mutual information,
it is useful to show explicitly that this is the case at least in
some simple examples. As a probe of the butterfly effect
we wish to compute the mutual information of a region A on
the left asymptotic boundary and its identical partnerB on the
right asymptotic boundary, at t ¼ 0. The surfaces represent-
ing SðAÞ and SðBÞ are unaffected by the shockwave because
they do not cross the horizon. However, the surface with
boundary A∪B which stretches across the wormhole is
disrupted by the shock wave, and our task in this section
is to compute its new shape and area as a function of α.
We will consider the case where A ⊂ Σ is half of the

space. By symmetry, the minimal surface in the bulk
will always divide the transverse space in half, so the
problem of finding the minimal surface is reduced to a
two-dimensional problem. The area of the minimal surface
is then given by

Aread−1 ¼
Vd−2

ld−2

Z
dtrd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f þ f−1 _r2

q
: ð28Þ

Here we are using Vd−2 to denote the volume of the lower-
dimensional surface which divides the transverse space in
half [i.e., a ðd − 2Þ plane in the k ¼ 0 case or the equator in
the k ¼ 1 case] computed using the dΣ2

d−1 line element.
Treating the area functional as a single-particle action, the
conserved quantity associated to t translation is

γ ¼ −frd−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f þ f−1 _r2

p ¼
ffiffiffiffiffiffiffiffi
−f0

p
rd−20 : ð29Þ

Here we have defined r0 as the radial position where _r ¼ 0,
and f0 ¼ fðr0Þ, which is presumed negative since this
point will be behind the (outer) horizon. In the limit that
r0 → R we have γ → 0, and this should correspond to the
limit α → 0 where the shock wave is absent.
For future reference, we note that the t coordinate as a

function of the radius is given by

tðrÞ ¼
Z

dr

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ−2fr2d−4

p : ð30Þ

Our main objective is to compute the area of the portion
of the minimal surface that starts at t ¼ 0 on the left
asymptotic boundary and ends at v ¼ α=2 on the horizon
(suppressing the L subscript on v). We can double the area
of this half of the surface to get the total area.

1. Surface location

It will be useful to find a relationship between α and γ.
We can do this by splitting the left half of the surface into
three segments, as in Fig. 3. The first segment goes from the
boundary to v ¼ 0 (at some value of u), the second from
v ¼ 0 to r ¼ r0 (at some value of t), and the third from
r ¼ r0 to u ¼ 0.
For the first segment, the minimal surface stretches from

the boundary at ðu; vÞ ¼ ð1;−1Þ to ðu; vÞ ¼ ðu1; 0Þ. Using
Eq. (18) we have

u21 ¼ exp ½f0ðRÞðΔr� − ΔtÞ�

¼ exp

�
−
4π

β

Z
∞

R

dr
f

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ−2fr2d−4

p ��
: ð31Þ

For the second segment, the minimal surface stretches from
ðu; vÞ ¼ ðu1; 0Þ to ðu; vÞ ¼ ðu2; v2Þ. We know that ðu2; v2Þ
lies on the surface r ¼ r0 but we do not know at what value
of t. We do know that

u22
u21

¼ exp

�
−
4π

β

Z
R

r0

dr
−f

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ−2fr2d−4
p − 1

��
: ð32Þ

So we have

u22 ¼ exp

�
−
4π

β

Z
∞

r0

dr
f

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ−2fr2d−4

p ��
: ð33Þ

To find v2, it is simplest to use a reference surface r ¼ r̄ for
which r� ¼ 0 in the black hole interior.6 Then

r
r 0

I II III

2

FIG. 3 (color online). The minimal surface (horizontal, red line)
in the shock-wave geometry. We split the left half of the surface
into three segments, labeled I, II, and III in the figure, to aid in
calculation. The division between I and II occurs at the left future
horizon. The smallest value of r attained by the surface is r ¼ r0,
which marks the division between II and III.

6If there is no such surface lying away from the singularity, we
can use a different reference surface. The precise value of r�
where r ¼ r̄ does not matter.
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v2 ¼
1

u2
exp

�
−
4π

β

Z
r0

r̄

dr
−f

�
: ð34Þ

For the final segment, we have

α2

4v22
¼ exp ½f0ðRÞðΔr� þ ΔtÞ�

¼ exp

�
4π

β

Z
R

r0

dr
−f

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ−2fr2d−4
p − 1

��
¼ u21

u22
:

ð35Þ

Putting all of this together we have

α ¼ 2 expðK1 þ K2 þ K3Þ; ð36Þ

where

K1 ¼ −
4π

β

Z
r0

r̄

dr
−f

; ð37Þ

K2 ¼
2π

β

Z
∞

R

dr
f

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ−2fr2d−4

p �
; ð38Þ

K3 ¼
4π

β

Z
R

r0

dr
−f

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ−2fr2d−4
p − 1

�
: ð39Þ

This is an equation that relates r0 to α. We would like to
identify the limits of r0 in which α vanishes and in which α
becomes large. Either of these behaviors requires one or
more of K1, K2, and K3 to diverge. K1 and K2 diverge as
r0 → R, and (it turns out) this corresponds to α → 0. K3

diverges when r0 → rcrit where

f0ðrcritÞrcrit þ ð2d − 4ÞfðrcritÞ ¼ 0: ð40Þ

This limit corresponds to α → ∞.
Let us first dispense with the case r0=R ≈ 1, which

means that the surface does not go far behind the horizon.
The first integral diverges logarithmically in the usual way
for the tortoise coordinate:

K1 ≈ logðR − r0Þ þ � � � : ð41Þ

The K2 integral is similar. The factor in parentheses in the
K2 integrand cuts off the logarithmically diverging 1=f
factor at the value of r for which fr2d−4 ¼ −fðr0Þr2d−40 .
When r0 ≈ R this corresponds to cutting off the integration
at r ≈ 2R − r0. Then we have

K2 ≈ −
1

2
logðR − r0Þ þ � � � : ð42Þ

The integral K3 remains finite. Thus we see that α ∝ffiffiffiffiffiffiffiffiffiffiffiffiffi
R − r0

p
as R → r0.

The other interesting limit is when r0 ≈ rcrit. HereK1 and
K2 approach finite values, while K3 diverges. This diver-
gence is logarithmic as r0 → rcrit:

K3 ∝ log
1

f0ðr0Þr0 þ ð2d − 4Þfðr0Þ
þ � � � : ð43Þ

We see that Δt diverges as well in this limit using Eq. (30).
That means the minimal surface is hugging the surface
r ¼ rcrit for a large interval of time. This behavior was also
discussed in Ref. [4].

2. Surface area

The area of the minimal surface is given by

Aread−1 ¼
Vd−2

ld−2

Z
drrd−2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2r4−2d þ f

p : ð44Þ

We can compute the area for each segment define above
and multiply the answer by two to get the total area. The
second and third segments (R to r0 and back to R)
manifestly have the same area. Hence the total area is
given by the twice the area of the first segment plus 4 times
the area of the second segment. The first segment contains a
divergent α-independent contribution which must be
subtracted.
The α-dependent part of the area at large α comes from

the long part of the surface near r ≈ rcrit. In that limit, the
area functional becomes proportional to the K3 integral we
encountered above, and so we find

Aread−1 ≈
4Vd−2

ld−2
β

4π
rd−2crit

ffiffiffiffiffiffiffiffiffiffiffi
−fcrit

p
log αþ � � � : ð45Þ

As promised, the area increases as a function of α. The area
depends on α logarithmically, which means it depends
linearly on the shock-wave time t0.

V. DISCUSSION

We have examined in detail two ways in which the
mutual information between local regions of two entangled
CFTs may be disrupted. On the AdS side, the mutual
information between localized regions is roughly dual to
the length of the wormhole. Disrupting the mutual infor-
mation leads to a long wormhole, and in the limit of an
infinitely long wormhole we can interpret the spacetimes as
being disconnected. This is an intermediate case between
the classical wormhole and the fully quantum wormhole of
Maldacena and Susskind, which does not have any clas-
sically geometric properties.
The first way in which the mutual information is

disrupted is simply through lowering the temperature. At
zero temperature, an extremal black hole has an infinitely
long wormhole, and we consider it an open question
whether or not this should be considered a classical
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wormhole. If we examine the extremal solution directly,
then a two-sided extremal black hole actually consists of
two disconnected spacetimes. Then it is difficult to regard
the interior geometry as arising from the entanglement of
the two exterior regions, as one does for a nonextremal
black hole. The situation may be more like the Poincaré
patch of vacuum AdS, where the region behind the horizon
exists but does not arise from degrees of freedom in a
second, independent, CFT.7 However, we note that the
interior of an extremal black hole is very subtle, as the
extremal limit of near-extremal black holes does not
coincide with the extremal black hole itself [17]. One
should regard the extremal limit of near-extremal black
holes as the physical solution, and we leave a careful
analysis of its properties for future work.
Our second method of disrupting mutual information was

to make use of the butterfly effect [12]. A single shock wave
leads to a lengthening of the wormhole connecting the two
exterior regions after a time t� ∼

β
2π logE=δE. Multiple shock

waves will add to this effect. The analysis of Ref. [18] for
multiple shocks can be carried out again in our more general
setting, leading to very long wormholes. An open question is
how well these multiple shock geometries capture the
properties of a typical state in the ensemble. It may be
the case that a typical state contains a smooth wormhole,
albeit a very long one. However, another possibility is that a
typical state contains a firewall behind the horizon, with no
classical wormhole connecting the two sides.
We conclude by commenting on the butterfly effect in

the vacuum.8 Notice that the special case k ¼ −1, μ ¼ 0 of
our setup is the hyperbolic slicing of empty AdS space. In
this case the two-sided “black hole” is just the Rindler
decomposition of the AdS vacuum, analogous to what is
usually done in flat space. Our analysis of the butterfly
effect here seems to show that chaotic dynamics is
important even for the vacuum state. This statement is a
bit strange, given that the near-vacuum dynamics ofN ¼ 4
super Yang-Mills theory at large N is integrable, for
example. There are two caveats that need to be mentioned
which explain this behavior. First is that our perturbations
are homogeneous in the hyperbolic slicing, which means
that they have infinite energy in the global slicing. This can
be alleviated by considering finite-volume perturbations in
the hyperbolic slicing, and even though this makes the
analysis technically more challenging, there is no reason to
expect the conclusions to drastically change. Second, and
most importantly, is that the shock-wave limit t0 → ∞ in
the hyperbolic slicing represents an infinite boost in the

global slicing. In other words, a small perturbation of
Rindler energy δE released at t0 has global energy
δE expðt0Þ, and for t0 ∼ t� this corresponds to an energy
of order N2, enough to make a big black hole.
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APPENDIX A: REISSNER-NORDSTRÖM ADS
THERMODYNAMICS

In this Appendix we review the thermodynamics of
Reissner-Nordström AdS black holes [11,19,20]. The
metric takes the form

−fðrÞdt2 þ fðrÞ−1dr2 þ r2

l2
dΣ2

d−1; ðA1Þ

where Σ is a sphere ðk ¼ 1Þ, a hyperboloid9 ðk ¼ −1Þ, or a
plane ðk ¼ 0Þ, and the metric factor is

fðrÞ ¼ k −
μ

rd−2
þ q2

r2d−4
þ r2

l2
: ðA2Þ

The electric potential is given by

At ¼
qffiffiffiffiffiffiffiffiffi
8πG

p
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

d − 2

r �
1

rd−2
−

1

Rd−2

�

≡ 1ffiffiffiffiffiffiffiffiffi
8πG

p
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

d − 2

r �
q

rd−2
þ ϕ

�
: ðA3Þ

The chemical potential ϕ is the (appropriately rescaled)
potential difference between the horizon and infinity.
The temperature, as usual, is determined by requiring that
the Euclidean geometry be nonsingular at r ¼ R:

4π

β
¼ f0ðRÞ ¼ d

R
l2

þ ðd − 2Þ k
R
− ðd − 2Þ q2

R2d−3

¼ d
R
l2

þ ðd − 2Þ k − ϕ2

R
: ðA4Þ

The free energy is computed by calculating the regularized
Euclidean action,

7We can consider stacking two Poincaré patches on top of each
other and say that the CFT in the boundary of one patch describes
the physics behind the horizon of the other patch. However, in
that case the two CFTs can be related through conjugation by
rotation and time translation in the global picture.

8I thank Stephen Shenker and Douglas Stanford for a
discussion of this point.

9In the k ¼ �1 cases, the radius of curvature of the transverse
space is l.
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SEðβ;ϕÞ ¼ −
1

16πG

Z
ddþ1x

ffiffiffi
g

p �
Rþ dðd − 1Þ

l2

�
−
1

4

Z
ddþ1x

ffiffiffi
g

p
FμνFμν − S0 ðA5Þ

¼ β

16πG

�
ðk − ϕ2ÞRd−2 −

Rd

l2
þ δk;−12ld−2 d − 1

d − 2

�
d − 2

d

�
d=2

�
: ðA6Þ

We should think of this action as being a function of the
thermodynamic variables β and ϕ which are conjugate to
the energy and charge. The subtraction S0 is made to render
the action finite, is independent of the thermodynamic
variables, and sets the zero of the free energy. For k ¼ 1; 0
we use vacuum AdS as our zero point, but for k ¼ −1 we
cannot. This is because the zero point must be a zero-
temperature solution in order to perform the subtraction,
since for technical reasons we require that the Euclidean
time be allowed to have any period. For k ¼ −1 we
will choose the solution with q ¼ 0 and μ ¼ μ0 ≡
− 2ld−2

d−2 ðd−2d Þd=2 as our zero point.
We can compute the thermal averages for charge and

energy by taking derivatives:

hQi≡ 1

β

∂SE
∂ϕ ¼ ðd − 1ÞVolðΣÞ

8πGld−1 q;

hEi≡ ∂SE
∂β − ϕhQi ¼ ðd − 1ÞVolðΣÞ

16πGld−1 ðμ − μ0Þ: ðA7Þ

The entropy is given by the Legendre transform of the
Euclidean action with respect to β and coincides with the
horizon area divided by 4G:

S≡ β
∂SE
∂β − SE ¼ 1

4G

�
R
l

�
d−1

VolðΣÞ: ðA8Þ

It is also useful to make note of the first law of thermo-
dynamics in terms of the black hole parameters μ, q, and R:

0 ¼ βδμþ 2βϕδq − 4πRd−2δR: ðA9Þ

APPENDIX B: EXACT RESULTS IN d ¼ 4

In this Appendix we note closed-form expressions for
the tortoise coordinate and t� at all values of the temper-
ature for black holes in d ¼ 4. The metric is

ds2 ¼ −
�
r2

l2
−

μ

r2
þ k

�
dt2 þ 1

r2

l2 −
μ
r2 þ k

dr2 þ r2

l2
dΣ2

2;

ðB1Þ
and we will consider only the cases k ¼ �1. The k ¼ 0
case can be obtained as a limit of the others. It is also
convenient to treat the case μ > 0 separately from μ < 0
(which is possible only when k ¼ −1). For μ > 0, define

R2
�

l2
¼ �−k

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4μl−2

q
: ðB2Þ

Here Rþ ¼ R is the horizon, and R− is just an auxiliary
variable. Then we have

r�ðrÞ ¼ −
Z

∞

r

dr0

k − μ
r02 þ r02

l2
¼ −

Z
∞

r

l2r02dr0

ðr02 − R2þÞðr02 þ R2
−Þ

ðB3Þ

¼ −
β

4πRþ

�
2R−tan−1

�
R−

r

�
þ Rþ log

�
rþ Rþ
r − Rþ

��
:

ðB4Þ

From here we can extract

CðβÞ ¼ −2
R−

Rþ
tan−1

R−

Rþ
− log 2Rþ; ðB5Þ

from which we can compute t�. In the large μ limit, which
corresponds to large temperatures, we find CðβÞ ¼ − π

2
−

log 2R and we have

t� ¼
β

2π
log

2eπ=2R
δR

¼ β

2π
log

8eπ=2ϵ
δϵ

: ðB6Þ

The numerical factor within the logarithm is an unim-
portant subleading factor, but it is useful to keep around
both to facilitate detailed comparisons to other limiting
cases and to confirm that the answer matches the exact
calculation of the planar k ¼ 0 case, which it does.
Finally we turn to μ < 0, which is only valid when

k ¼ −1. Now we define

R2
�=l

2 ¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μl−2

q
; ðB7Þ

and here R− is real and corresponds to the inner horizon.
The tortoise coordinate can again be computed exactly:

r� ¼
Z

∞

r

dr

−1 − μ
r2 þ r2

l2
¼

Z
∞

r

l2r2dr
ðr2 − R2þÞðr2 − R2

−Þ
ðB8Þ

¼ β

4πRþ

�
R− log

�
rþ R−

r − R−

�
− Rþ log

�
rþ Rþ
r − Rþ

��
:

ðB9Þ
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The function CðβÞ can be extracted:

CðβÞ ¼ R−

Rþ
log

�
Rþ þ R−

Rþ − R−

�
− log 2Rþ; ðB10Þ

which lets us compute t�. The interesting limit now is the
low temperature limit where μl−2 ≈ −1=4. In that case we
find CðβÞ ¼ − logðπl2=βÞ, and so we get

t� ¼
β

2π
log

πl2

βδR
¼ β

2π
log

4ϵ

δϵ
: ðB11Þ

APPENDIX C: NEAR-EXTREMAL
BLACK HOLES

In this Appendix we will compute the time t� for a near-
extremal black hole. A near-extremal black hole has
f ¼ fext −

Δμ
rd−2

, where Δμ is small and fext has a double
zero at r ¼ Rext.

10 The horizon is at r ¼ R ¼ Rextð1þ κÞ.
To lowest order in Δμ, κ is given by

κ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δμ

f″extðRextÞRd
ext

s
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δμ

f″ðRÞRd

s
: ðC1Þ

The temperature of this black hole is computed from

4π

β
¼ f0ðRÞ ¼ f0extðRÞ þ ðd − 2Þ Δμ

Rd−3

≈ f″extðRextÞRextκ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f″ðRÞΔμ

Rd−2

s
: ðC2Þ

In the near-extremal limit we can compute the total change
in tortoise coordinate from the boundary to the horizon.
This consists of a piece that diverges as we approach the
horizon and a finite piece that diverges as we take Δμ → 0.
Letting λ be some small constant, we have

r� ¼ −
Z

∞

r

dr
f

¼ const −
Z

λR

r−R

dx

f0ðRÞxþ 1
2
f″ðRÞx2 ðC3Þ

≈ constþ 1

λf″ðRÞRþ 1

f0ðRÞ
�
log

f″ðRÞR
f0ðRÞ þ log

r − R
2R

�
:

ðC4Þ

Using this result, we find that

t� ¼
β

2π
log

2f0ðRÞ
f″ðRÞδR ¼ β

2π
log

4Δϵ
δϵ

; ðC5Þ

where Δϵ ¼ ϵ − ϵext is the energy density in excess of the
extremal black hole we are approximating. We are implic-
itly assuming that δϵ ≪ Δϵ. Note that for hyperbolic black
holes of zero charge, as considered in Appendix B, Δϵ ¼ ϵ
because of how we chose the zero point of the energy.
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