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We calculate the graviton’s # function in the AdS string-theoretic sigma model, perturbed by vertex
operators for Vasiliev’s higher spin gauge fields in AdSs. The result is given by f3,,,, = R, + 4T, (g, 1)
(with the AdS radius set to 1 and the graviton polarized along the AdSs boundary), with the matter stress-
energy tensor given by that of conformal holographic fluid in d = 4, evaluated at the temperature given by
T = % The stress-energy tensor is given by T, = un + 4tttty, + > NT,%) where u is the vector excitation
satisfying u> = —1 and N is the order of the gradient expansion in the dissipative part of the tensor. We
calculate the contributions up to N = 2. The higher spin excitations contribute to the f function, ensuring the
overall Weyl covariance of the matter stress tensor. We conjecture that the structure of gradient expansion in
d = 4 conformal hydrodynamics at higher orders is controlled by the higher spin operator algebra in AdSs.
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I. INTRODUCTION

AdS/CFT correspondence is known to be an efficient
tool to investigate dynamics of strongly coupled conformal
field theories, such as nonlinear fluid dynamics. For
example, the equations of hydrodynamics can be obtained
by deforming the solutions of gravity with negative
cosmological constant and requiring that the deformations
asymptotically satisfy the Einstein equations. The AdS/
hydrodynamics correspondence particularly was used to
calculate various transport coefficients in holographic
fluid leading to remarkable predictions such as the ratio
of entropy density to sheer viscosity in conformal fluid
[1-13]. The equations of conformal hydrodynamics
can altogether be cast in the form of the “conservation

{3

law””:

v, T = 0 (1)
where
Tmn — Z Tmn(N) (2)
N=0
where
1
Tmn(O) — g6(gmn 4 4umun) (3)

is the ideal fluid part (with € ~ T* being the energy density
satisfying € = 3P where P is the pressure and 7 is the
temperature),

“On leave from Poncelet Laboratory, Institute for Information
Transmission Problems (IITP), Bolshoi Karetnyi per., 19/1
Moscow, Russia.
polyakov@sogang.ac.kr, twistorstring @ gmail.com

1550-7998/2014/90(4)/046008(21)

046008-1

PACS numbers: 04.50.-h, 11.25.Mj

Tmn(l) _ _’,Ipmn _ Cnmnﬁ 0

I = ;,Imn + umy"
2
pmn — Hmpnnqv(puq) _ 5l’Imanpqvaq (4)

being the viscous part (with # and { being the shear and the
bulk viscosities proportional to the third power of the
temperature; bulk term is absent in case of conformal
invariance) and terms with N > 2 representing the dis-
sipative corrections to the Navier-Stokes equation, traceless
and transverse, satisfying 7Ny, = 0, which are of order
N in the derivatives of u and become significant if the mean
free path is comparable to the characteristic wavelength in
the fluid [5-7].

Thus the full stress-energy tensor in hydrodynamics
involves the derivative (gradient) expansion in the velocity
with each expansion order producing new transport coef-
ficients. For example, the second order terms result in five
new transport coefficients in conformal hydrodynamics. At
present, there exist various approaches to generate the
derivative expansion (4) in the dual gravity theories.
Strictly speaking, none of these approaches has complete
control over the expansion (4) and the systematic calculation
of the relative transport coefficients from dual gravity
models is still problematic, especially beyond the second
order hydrodynamics [14,15]. Many gravity models
describing the holographic fluids generally involve the
Gauss-Bonnet terms that are of higher order in the curvature
and the resulting transport coefficients particularly depend
on the Gauss-Bonnet coupling. These theories typically
have issues with unitarity and causality which signals that,
in general, they may not be fundamental but rather effective
theories, with certain physical degrees of freedom, such as
higher spins, integrated out. For this reason, string theory
(which naturally includes higher spin modes) appears to be a
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particularly promising framework to approach the AdS/
hydrodynamics duality and to test the transport coefficients
at higher orders. In this paper we analyze the problem of
AdS/hydrodynamics correspondence from the string theory
side, by computing the graviton’s conformal f function in
the sigma model for AdSs noncritical string theory, with the
graviton polarized along the d =4 AdS boundary. The
string model that we use is the Ramond-Neveu-Schwarz
(RNS) string theory perturbed by vertex operators describ-
ing gravitational perturbations around the AdS5 background
and higher spin gauge fields in Vasiliev’s framelike formal-
ism. The low-energy limit of this model is given by the
MMSW (MacDowell-Mansouri-Stelle-West) gravity [16—
18] coupled to Vasiliev’s higher spin gauge fields [19-22]
and the vacuum solution of the low-energy theory is given
by the AdS geometry [23]. Our main result (checked up to
N =2 level, with higher order checks now being in
progress) is that the beta function of the graviton is given by

ﬂmn = le’l + 4gmn + 4Tmn

o0
Ty = Gn + 4upu, + Z TE,],\:,) (5)
N=1

where T,(n[\,/q) are the terms in the derivative expansion of the
stress-energy tensor in d = 4 hydrodynamics. In other
words, the low-energy equations in the AdS string model
are given by the Einstein equations with cosmological term
and the matter, with the latter described by the hydrody-
namical stress-energy tensor. Here g,, and u,, are the
massless excitations described by spin 2 and 1 vertex
operators in the AdS string model, in closed and open string
sectors accordingly. The spin 1 operators (related to trans-
vection isometry generators in AdS space [23]) serve as
sources of the velocity vector in this model. As for the open
string vertex operators for the massless higher spins, in this
paper, instead of coupling them to generic Vasiliev’s higher
spin gauge fields, we consider the special case of coupling
these operators to polynomial combinations of u,,, con-
structed to satisfy the same linearized on-shell [Becchi-
Rouet-Stora-Tyutin (BRST)-invariance] conditions as the
underlying higher spins. As a result, in the leading order of
«, the structure of the higher order corrections to f,,,
(polynomial in u) is determined by the structure constants of
the operator algebra of the higher spin vertex operators (this
operator algebra, in turn, fully controls the cubic couplings
for generic higher spins). In the leading o' order, only the
three-point correlation functions on the world sheet
|
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contribute to the graviton’s f function. Our main result is
that the matter stress tensor appearing in the f function
reproduces the derivative expansion (4) in the stress tensor of
the conformal fluid at the temperature 7 = % which is
checked up to the order of N = 2. Since the temperature
transforms covariantly under Weyl rescalings, this result
implies that the AdS string theory computation reproduces
the stress tensor of the conformal fluid at a particular
temperature gauge. We find that, at the order of N =2
and higher, the f function receives nontrivial contributions
from higher spin vertex operators. These contributions are
crucial to ensure the conformal covariance of the stress
tensor. In particular, at the N =2 level the graviton’s f
function is contributed by the (2 — 3 — 3) correlator on the
disc, while at higher orders operators of spin 4 and higher
also enter the game, so the holographic derivative expansion
(4)is controlled by operator algebra of higher spin vertices in
the limit of & — 0. The rest of the paper is organized as
follows: In Sec. 2, we explain the basic vertex operator setup
of the sigma model, whose low-energy limit describes the
AdS gravity coupled to higher spins in the framelike
formalism. In Sec. 3, we perform the computations of the
(1 =1—=2) and (1 — 3 — 3) correlators, contributing to the
graviton’s f# function and reproducing the holographic
expansion (4) up to the second order. In the concluding
section, we comment on the structure of the higher order
terms related to higher spin contributions and discuss
physical implication of our results.

II. ADS STRING 6 MODEL: VERTEX OPERATORS
AND 2d WEYL INVARIANCE

In this section we review the construction of the string-
theoretic sigma model [23] with some modifications that
will be used in our calculation of the graviton’s beta function.
Technically, the sigma model that we use in calculations in
this work is similar but not identical to the one constructed in
our previous works (e.g. see [23]) as it will combine vertex
operators for both Fronsdal-like objects (such as the vertex
operator for a graviton describing perturbations around AdS
vacuum) and those of Vasiliev’s type (describing framelike
higher spin excitations around an AdS vacuum solution of
the low-energy equations of motion).

The AdS string sigma model considered in [23] was
based purely on vertex operators for framelike gauge fields
(rather than those of Fronsdal type) and was described by
the generating functional

Z(eglv w?nbv Q;?’IIUIAFI‘BI“.BI) = / D[Xv v, qQ, j’v ghOStS] exp{_SRNS + e%lFmI:a

_ 1 _
+ o (p) (Fg"La - EFabL'") +c.c.

§>3:,0<1<s5—-1
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where
SrNs = Smatter T Spe + Sﬁy + Stiouville

1 A A - —m
Smatter = _E/ dzz(axmaxm + Wmawm + Wmal// )

V[
Sbc _ﬁ/d Z(b@c + baC)

Spy = i / d*z(pOy + poy)
Stiouville = — ﬁ / d?7(0pdp + OM + A
+ upeB?(AA + F)) (7)
where Spng is the full d-dimensional RNS superstring

action; X" (m = 0, ...d — 1) are the space-time coordinates;
|

F, = —Z/dz{il//m(l —4dcceP) + 2cer? (zaxm — Oy, + qunP,”, - 5

Next,

- <= — | .

[e= / dZe_3¢{/1(3‘2X“ —2020X“ +ip® (532/14——8@82
q

at the minimal negative picture —3 representation and

_ P . loc 1= —_
Li=Ko / dZe¢{/182X“—28/16X”+ip“ <§82/1+58(o8/1—

at the minimal positive picture +1 representation (similarly
for its holomorphic counterpart L“). Here and elsewhere
below the normalizations of vertex operators are chosen so
they lead to standard normalizations of corresponding
kinetic terms in low-energy effective action. Then,

Fpa = Foti + Fina + Fins (13)
where
Fl) = —4gK U, © / dzce™ v,
U2 = {Q - QS’ Cel_qu'l//ml;”aeipx}

i - - .

=3 PP aym = PawaPy Ve (z)  (14)
FE,%Z =Ko /dZWn1WaeipX

= —4{Q, / dzcez)f‘z‘f’eipxu/mwa(z)} (15)

and
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@, A, F are components of super-Liouville field and the
Liouville background charge is

9-d

=B+B ' =
Q=B+ 3

(8)

Next, e, and w? are vielbein and spin connection gauge
fields generated by closed string vertex operators whose
holomorphic and antiholomorphic components are given by

F,=-2Ky o /dlewmeipx(z)

(1)

R :
Uy = e + 57((Pw)Wm = PuPy)em™  (9)

or manifestly

I, .
D (B )ym— PPl ) ) vePX(2). (10)

)}
_%z <8¢)2 +(1+3¢%)2 <3é‘u7bu7b —;—q%)) }e"”x (11)

1
—A

5 <5¢)2+(1+3q2)/—1 (35)1,71,17/’—%52(7))) }e"PX (12)

FSSL), =Ko /dze(/)(l//[mazxa] - 28w[maxa])eipx(z)' (16)

Here the homotopy transform of an operator V KoV is
defined according to

KoV =T+ (;\}!)Nj{j;t(z—w)N:KaNW:(z)
+ i 221z =) VK ())K (Qun U) (17

where w is some arbitrary point on the world sheet, U and
W are the operators defined according to

[Qorsi- V(2)] = 0U(2) + W(2). (18)

K = ce¥% (19)

is the homotopy operator satisfying { Oy, K} = 1 and N is
the leading order of the operator product

K(z1)W(z2) ~ (21 = 22)VY (22) + O((z1 —22)"*"). (20)

The partial homotopy transform 7 — L = Ky oT of an
operator T based on Y is defined according to
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L(w):KToT:T+(_1)N7{ dz (z—=w)N:KOVY:(z) + ! fﬂayw(z—

N!' | 2ix

where N is the leading order of the operator product
expansion (OPE) of K and 7. Particularly, if
[Qbrst» T] = ¢ T, the partial homotopy transform obviously
coincides with the usual homotopy transform. Finally,
V;’ll.‘.ax_,\b,...b,;o <t<s—1 are the open string vertex
operators for emission of gauge fields of spin s which,
in Vasiliev’s approach, are described (for each s) by a
collection of two-row fields Q511" = Q& @=11Pr-b: "1y thig
approach, only the Q*~'l° field is dynamical while those
with nonzero ¢ values can be expressed in terms of order ¢
derivatives of the dynamical field: Q=!I ~9(Qs-110
through generalized zero torsion constraints (e.g. see
[19-22,24]). In string theory, these constraints are realized
in terms of ghost cohomology conditions on the higher spin
vertex operators [25]. The BRST-invariance constraints
on the higher spin vertex operators (6) lead to linearized
on-shell constraints on the framelike fields while BRST
nontriviality conditions lead to gauge symmetry trans-
formation by these fields; the world sheet correlators of
the appropriate vertex operators multiplied by the corre-
sponding space-time fields are then invariant by construc-
tion [26]. The vertex operators in the generating functional
(6) can be classified in terms of ghost cohomologies
H,~H_, ,;n>0. For example, the spin 2 operators
for vielbein and connection gauge fields are the elements
of Hy ® H, + c.c. (with H and H) referring to holomor-
phic and antiholomorphic parts) while the class of higher
spin operators V, of s >3 that we are considering is
restricted to open string vertex operators at nonzero
cohomologies; typically, V,€ H, with s—2>n2>
2s — 2 (this includes both dynamical and the extra fields
that sit at different cohomologies, with the dynamical field
occupying the lowest order positive cohomology). In the
previous works [25,27] we analyzed the low-energy limit
of the model (6) showing that, in the leading order in e and
w in the absence of the open string excitations (spin 1
and higher spins), its low-energy equations of motion are
given by

dw + wrow —ene =0 (22)

whose vacuum solution is given by AdS geometry (here
and elsewhere, unless specified otherwise we set the AdS
radius PAdS = 1)

All the vertex operators (6) are related to underlying
global symmetries of space-time. In particular, at the limit
of momentum zero, the L operators entering expressions
for vertex operators of vielbein are related to transvection
generators in the isometry algebra of AdS,; while F™"
operators are related to the rotational part of this isometry
algebra. V;"l__vaHl b,..», OPCTALOrs, in turn, are related to the
higher spin currents, or the generators of the higher spin
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n f 2in wNK (2)]K{ Qb U} (21)

|

symmetry algebra which, to put it roughly, is the infinite-
dimensional algebra related to the universal enveloping of
the isometry algebra. The higher spin algebra is thus
realized in superstring theory as the operator algebra of
the appropriate higher spin states, whose structure con-
stants are given by the relevant three-point correlators, or
the leading order contributions to the conformal beta
functions. In the present paper, we investigate the corre-
lators contributing to the f# function of the graviton. Our
interpretation of the spin 1 and the higher spin vertex
operators is, however, different from the one of the previous
papers [23,25]. Instead of interpreting the vertex operators
as the emission vertices for fundamental particles, we
consider them as sources of various polynomials in the
vector field #™ (with the polynomial degree obviously
related to the spin value) with the structure of the poly-
nomials determined by the on-shell conditions on the
corresponding operators. The polynomials in u, constructed
in such a manner, correspond to special configurations of
higher spin fields, solving Pauli-Fierz conditions in the on-
shell limit. In the present paper we restrict ourselves to
these particular solutions although it would certainly be
important to generalize the calculations presented in this
paper to higher spin vertex operators of more general
structure.

The idea is that, in the limit of & — 0, the polynomial
contributions to the f functions and the derivative expan-
sion (2) are controlled by the appropriate structure con-
stants in operator algebra of the higher spin vertex operators
for framelike gauge fields (which, in turn, naturally realize
higher spin algebra in a certain basis).

The constraint u> = —1 particularly follows from the on-
shell conditions, allowing us to interpret ™ as the velocity
vector in some underlying fluid. Then the p-function
equations of the graviton are realized as the FEinstein
equations with the cosmological term and with the matter,
with the matter stress tensor being that of the hydro-
dynamics. Our claim is that the derivative expansion in
holographic d = 4 hydrodynamics is determined, in the
leading order, by the higher spin algebra in AdSs (calcu-
lated in a string theory approach), with the higher order
dissipative terms controlled by the derivative structure of
higher spin correlators.

III. GRAVITON IN THE FRAMELIKE SIGMA
MODEL AND TWO-DIMENSIONAL WEYL
INVARIANCE OF THE OPERATORS

As was explained above, the first building block that we
shall need in our construction is the graviton vertex
operator describing metric perturbations around the AdS
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vacuum, as opposed to operators for vielbeins and spin
connections present in (6). Similarly to the flat space case
(where the graviton operator is an object bilinear in flat
space translation operators), the vertex operator for the
graviton that we are looking for has to be an object bilinear
in AdSs isometry generators (transvections), with the
BRST constraints imposing appropriate on-shell conditions
and gauge transformations. According to (6) there are two
types of such operators—those of L type and those of F
type. **The bilinears of mixed L — F type correspond to
|

V;53®H’3 = Gm”(p)cée‘3‘/"3‘7’{152Xm —2020X"
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vielbeins and connection gauge fields (elements of
[Hy ® H,] cohomology) so the suitable candidates are
either of F — F type in [Hy ® H,] cohomology or L — L
type in [H; ® H;]. The objects of F—F type,
however, clearly do not reproduce proper on-shell con-
ditions and have excessive gauge symmetry; therefore the
appropriate candidate for the graviton operator is the one in
[H, ® H|] ~[H_3 ® H_3], with the explicit expression
given by

+ip™ G %A + la(pm — %l(@(p)z + (14 3¢»)2 <381//,,1//” - 2—1(182(,))) }{Zéaxn —2020X"

1-,-
+ip”<§82/1+

209)? + (1 +3¢%)1 (38¢/qu — %é%p)) }ei”X (23)

at minimal negative picture —3 unintegrated representation and

V =G,(p)KKo / d2ze¢+5>{,'182xm —2010X™

1o 1 1 1 - o
+ip™ (E %4+ — 0Ol — E,1(a<p)2 + (14 3¢*)2 <30y/,,l//” - Zaz(p)) } {/182X” -2010X"

Qi

PI+-0¢

N =
ES T

—‘l_ipll(

at minimal positive picture +1 representation (note that the
operators at positive cohomologies are always integrated).
The antiholomorphic K transformation is defined similarly
to the holomorphic one (17). The transformation G™" —
G™" + pm A" shifts (24) by BRST-exact part. The leading
order contribution to the graviton’s beta function is the
result of the Weyl invariance constraints on the operator
(24). These constraints can be conveniently deduced from
the OPE:

N / i / PWT (2. D) V(w0 ®) (25

by expanding around the midpoint and evaluating the

ztw Z4w

coefficient in front of N% (note that the trace
T . of the stress-energy tensor, generating the Weyl trans-
formation, is nonzero off shell or, equivalently, in the
underlying e expansion). For a usual graviton operator
~Gn(p) [ d®wOX™OX"e'PX (w, W) in the bosonic string
this procedure leads, after simple calculation, to the
standard f-function contribution, quadratic in momentum,

A- %2(5 ?)* + (1+34¢%)2 <3é_?l/7q1j/q - %E)%@)) }el’f’x (24)

|
given by the linearized part of the Ricci tensor plus the
second derivative of the dilaton ~R!» —2p, p,® with
® ~ tr(G,,,). The calculation, leading to the identical
result, is similar in superstring theory. The graviton
operator should then be taken at canonical ghost picture
[unintegrated b — ¢ picture and (—1,—1) f—y ghost
ipX

picture], s0 Vg, = cce ™ Py™y"e’PX and the relevant

terms in the stress tensor are

_ b—c p—v
T=THE + T2+ T2

1 _ _
= E (_aXmaXm - 81//an/"” - ali’mli/m
+ 0600 + Oy Oy — OpOdp). (26)

The OPE of V., with T then contributes the term

~p*G,,, to the graviton’s beta function (which is the gauge-
fixed linearized part of the Ricci tensor, with the gauge
condition ~p"G,,, = 0), while the contribution stemming

from the OPE with 7%:¢ cancels the one from the OPE

with T7.7  since 3050(Z,Z)C5(W,W)~W05(W, w),
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PpOP(z,2) e~ (w, W) ~ \z—]wlz ¢~ (w,w) and & and ¢
terms of 7',- have opposite signs. It is this cancellation that
ensures the absence of ‘“cosmological terms” in the f
function of the graviton with the conventional vertex
operator leading to Einstein gravity around the flat vacuum.

In the case of the vertex operator (24), the OPE of 772"
with V;;3,®H‘3 still results in the appearance of the
linearized Ricci tensor. However, since this operator is
the element of H_; ® H_;, and its canonical ¢-ghost

picture is (—3,—3) [23], the contributions from 7% and
T/;z_ ” no longer cancel each other as

(1-3)Vegz®"

1
(Tt T @ Ve ) ~ 2

(27)

leading to the cosmological term proportional to ~4G,,, in
the f function. Thus the Weyl invariance condition brings
the piece proportional to ~Rlncarized 4 44 — to the p
function (assuming that the dilaton is switched off). The
|
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higher order (quadratic) terms in f,, are given by the
appropriate three-point functions. In the next section we
shall analyze these terms by computing the corresponding
three-point correlators on the disc.

IV. GRAVITON’S g FUNCTION:
QUADRATIC CONTRIBUTIONS

We start with the analysis of (1 — 1 —2) and (3 —3 —2)
correlators on the disc. These correlators give rise to
contributions of zero and second powers in momentum,
particularly producing terms corresponding to the stress
tensor of ideal fluid and second order hydrodynamics (in
this paper we disregard the higher order contributions, such
as those of the quartic order). The first order terms stem
from Weyl invariance constraints on the operators while the
third order is produced by (2 —2 —3) and (2 —2 — 1) disc
correlators. (In this paper, however, we do not consider
the third order terms.) We start with the (1 —1-2)
contribution. The spin 1 vertex operator is the element
of H,, given by

Vi =u,L"(p) =Ko / dze@{wZXa —2020X°

+ ip*® <% 0?1+ éago(% - %A(agg)Z +(1+ 3612)/1 <3allfb1//b _ iaz(p>> }eipX.

To ensure the overall ¢-ghost number balance (-2 on the
disc) it is convenient to take the graviton’s operator unin-
tegrated at (—3,—3) picture representations while trans-
forming both of the integrated spin 1 operators to picture 2.
The full expression for V,_; at picture 2 is complicated;
however we do not need all the terms but only those
contributing to the three-point (2 —1— 1) correlator ac-
cording to ghost number selection rules. The picture 2
operator contains three classes of such terms—those pro-
portional to the e? ghost factor, those proportional to
be3?* and those proportional to ce?, so the nonvanishing
ghost correlators are proportional to the exponential factors
|

) 1

m i 4
Viei(zp) = u"(p) Zm/ﬂh(w— o) e2h+irX pl)

k=1

(N)

where Pa, bay+asy

(28)

|

~{e73730(0) e’ (7,)be’? 7 (1,)) and  ~(e739739(0)x
e*(z,)e*(z,)) where 7, and 7, are the locations of
the s =1 operators. Straightforward evaluation of the
picture-changing transformation of (24), however, shows
that the overall coefficient in front of the terms propor-
tional to be3?+x vanishes, so it is only the second ghost
structure ~(e=3?73¢(0)e*?(z,)e?*#(z,)) that is relevant to
the correlator. Thus we only need the part of V,_; at
picture 2 proportional to e??; straightforward applica-
tion of picture-changing and homotopy transformations
lead to the following expression for the relevant part
of Vi_i:

5—k) ; (k
—2;(—6P(</)—;( )Lfﬂ)(’lv P, X, v, T)

(29)

(a; 23 are numbers) are the conformal dimension N ghost polynomials whose definition and properties

are discussed in [25], the space-time vectors Ls,lf); k=1,...,5 are the conformal dimension k operators consisting of the

matter fields, whose manifest expressions are given by
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W= {(k_l 5 A=y, 1 — = 2)!a<k-2>wma/1(1 )
—ﬁpa N F a1 - 8)a(1 — o5)
+3ip,,(1+30%)A(1 — &) {(k _1 o a<k-1>)?y7—(k_13)!a<k—2>5(alp(1 - 5’5)]
—mpma(k)gv-i-(l—5]1()[—(](_2)!6 pOX,, + Q@”l(p&p}
HU=0) =) |5 L 0K,
+ U)Tm3<p_2)¢((8go)2 +2(1+30%) (81;/1;/——Q<92 ))}
+ipn E/lc : (;]1;)' [ZIQ {6(’{‘2)/18/1 - %3<k—2)/126q0 - %W*W] + 5}(]
- 304300039 - 2+ 30ipa00 - 200%,)
+ 8[54+ 300ma(p00) + 2o, 1202 0| e (30)

Although the expression (29) for the integrated picture 2
V,_; depends on an arbitrary point z on the world sheet,
this dependence is irrelevant in correlation functions since
all the w derivatives of (29) are BRST exact. For this reason,
w can be chosen arbitrarily in the integral (29).

We are now prepared to analyze the three-point
(2—1—1) amplitude on the disc. The unintegrated
V,_, vertex is convenient to place at the disc’s origin, that
is, at the zero point. The calculation strategy is similar to the
one described in [27]. It is convenient to map a disc to a
half-plane using the conformal transformation:

2— f(z) = 1z +1

2z7—1

(31)

(ky.k2)
Aghost

12 12

XH—3 32

i
——1,
2

i
= ——Tl
2

i

4 i
X |:H(_5);_5;4 (Tl|§’ -,

2

3 i
+12(7; - 72)2H(_5);_5;4 <Tl | 5Ty

where the functions Hg,v,)ma,v (z]zy, ..

i
Pkl = <Ce_3¢ (§> Ce_3¢< 2> PPy Py

)
TZ) H.g s,

and to calculate the three-point correlator on the plane. The
integrals over the disc boundary are then transformed into
integrals over the real line. On the half-plane, it is
convenient to choose w; = w, = % in 7; and 7, integrals
for the open string vertices. Having calculated the half-
plane correlators, we shall further conformally map it
back to the disc and evaluate the integrals (which essen-
tially will become the angular integrals). Under the trans-
formation (31) the left part of the V,_, vertex operator is
mapped to z; = 5 while the right part is mapped to
75 = — 5. The ghost factors of the correlator for each term
in the sum over kq, k, [stemming from the summation over

k in (29)] are given by

P(S ky) 2¢P( ) P(S ka)

() 2¢0—-2y—06" ¢dp—y
i

S5—k, i
)H(-3;—3);2 (Tz| 2’2

27
i i
T2|§,—§,T1
i i
72>H(-35);—5;4 <Tz|§’—_771>}

(Tz)>

a )

: (32)

2 2

.7y) are defined according to
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my+...+my=N N N
1 N 1 a;

(33)

(N)
Hg,! ay(7|7),...T3) = N! §
N|my,...my j=1.m;#0 ijmj! i—1 (Ti — T)ml

Here {m,,...my};m; < m,... < my are the partitions of number N of length N including zeros, P, for m; # 0 are the
multiplicities at which given m; enter the partition; and by definition P, = Py o= =0,Py!=1no matter how many zeros
enter the partition. For example, the partition 10 =0+0+04+0+0+1+1 2 + 3 + 3 would read as my=0;my, =1,
my =2, my =3 with P, =P, =0; P,, =P, =2; P, =P, =1; P, = P;=2. Therefore the overall (2—1-1)
correlator on the half-plane is given by

<V5=2 (é : —é) Vi (%) Vi (é) > = g™ (p)u" (q1)u™(q2)

1

5
XZszZ G5—k)(5-k)!

ki=1ky
® ] kik
X/ dn/ de () () e
” 2 G-7)G—7)
12 . o
5=k L Sk i
H(_3 3)2 <T1| E’TZ)H(—3:—23);2<72|§’_§’71>
4 i I 4 i i
x |:H(_5);_5;4 <T1 | E T 5 ’ T2> H(—5)§—5;4 <T2| 5 s E ) Tl>
3 i i 3 i i
+ 12(11 - TZ)ZH(_S);_5;4 <T1|§’—§”[2)H(_5);_5;4 <12|§,_§,Tl):|

i i
X <Fm, (p;2> F,, (p; —2> L (g7 LY (g2 Tz)>- (34)

The final step is to evaluate the matter part of the correlator in (34), given by (F,, (p:%)F,, (p;—é)L,(f:‘)x
(q1; rl)L,(,2 )(q2,72)> with the expressions for LY given in (30). It is convenient to define the following functions:

5=

a lp m lp m lp m ay,a,,a3,a
R (5](x1. p1)i (x2. p2). (3. p3)) = (=1)(a - 1)![())_1)(1)”4'()) —zxz)“+ _13)0}&(1 24) (21 290110 T)

(v
= (01 A(21)0\%)A(25) 0 A(7,) 0\ A(z,))
_ (=DMs(a +ap)l(as +ag)! | (D) (a) + a3)!(an + ay)!
- (Zl _ ZZ)a1+a2+1(Tl _ 2>a;+a4+1 (Zl _ 1)a1+03+1<Z2 _ 12)a2+a4+1
(=)@*(a; + a3)!(ay + a4)!
(Z] _ Tz)al+a4+1 (Zz _ Tl)az+a3+1

mymyn,ny
S[ayb,c,d] (Zl » 22,715 TZ)

- (_1)a+cl,lm1m2’,ln1n2 (_1)u+hl,lm1n1nm2n2
(21 =) (01 =) (2 = 7)) (2 — )"

(_1)a+b’7m1n2nmzn1

+ . 35
(z1 = Tz)ﬁd(zz -7 )b+c 33)
Then the straightforward computation gives (with z; = 7, = %)
i i 1) o0
<le <P§§)Fm2 <P§—2) n (611»71) 2 (@237 > = ;Zmlm2”1”2(zl’z27rlv ) (36)
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with the explicit expressions for the matter interaction

tensors Zunpg (I =1,...,27) given by (A1)~(A27) in the
Appendix.

This concludes the computation of the (2—1-1)
correlator, contributing to the graviton’s f function.
Next, consider the contributions from spin 3 excitations,
that stem from the (2 — 3 — 3) correlator. The spin 3 vertex
operators are given by

VE;?;) = Hmab (q)ce—3¢wmc’)xaaxbeiq)((z) (37)

at negative unintegrated cohomology H_; representation
and

VD = (@Ko § dzetyroxeoxten(z)  (ss)

at positive H; cohomology representation. The on-shell
conditions on the spin 3 field H,,,, are given by

anmab =0 (39)
”ameah =0 (40)

and
nH,., =0. (41)

As was noted above, instead of considering general
configurations of H,,,,, we are looking for polynomial
combinations of u coupling to the vertex operators
(37), (38) and satisfying the on-shell conditions (39)-
(41) to ensure the BRST properties of the operators.
The only suitable combination satisfying (39)-(41) is
given by

Hops (p) = / &'k / P quun(k + q)itg(k — p)us(q — p)

45 8uttn(P) =5 (Battn(p) + Bunita().
(42)

In order to satisfy (39)-(41) u, must furthermore satisfy
ugu® = —1 with zero vorticity condition py,u,(p) = 0 and
incompressibility p,u®(p) = 0.

(Note, however, that the zero vorticity and incompress-
ibility conditions must only be imposed in the on-shell
limit; in the full § function of the graviton these conditions
are not satisfied as the # function is the object which is
essentially off shell.)

On the other hand, the u* = —1 constraint can also be
obtained from the vanishing on the f function for the spin 1

PHYSICAL REVIEW D 90, 046008 (2014)

operator (29) which, in the leading order, can be computed
to give B4 ~ uy(g* + u'u®).

So as the g function is the object that must be calculated
off shell, in the calculations below we shall keep the terms
that are both nontransverse and have nonzero vorticities, as
they only vanish in the on-shell limit.

As in the (2 — 1 — 1) computation, it is convenient to
take the graviton’s operator unintegrated at canonical
(=3, -3) picture, locating it at the disc’s origin (accord-
ingly, at z = é on the half-plane). As for spin 3 operators,
located at the boundary of the disc (accordingly, on the real
line after the transformation to the half-plane) they both
should therefore be taken integrated at picture +2. Instead
transforming the operator (38) to picture 2 by picture-
changing transform, it is more convenient to consider the
operator

VZ\I — 2wzla2‘bvn (p)

aya,|b

VZqu\b(p) =Ko fezrﬁ(_zawml//bax(ulazxuz)
— 20y Oy ,0X , 0X
+ y" Py, 0X, 0X,, )e'rX (43)

with V2! being a vertex operator for the spin 3 extra field
@*!! in Vasiliev’s framelike formalism [25]. This extra field
is related to the dynamical metriclike field 0** = H,,,;, of
(38) up to BRST-exact terms through the cohomology
constraint [25] given by

wi"(p) = 2p°H® (p) — p*HY (p) — pPHEC (p).  (44)

In addition, it is straightforward to check that the Weyl
invariance of V2I! also requires

0 =0 (45)

which can also be seen directly from the primary field
constraint on V2I' at the dual —4 picture. In particular, this
implies that the graviton’s f function can be shifted
according to

B — B 4 const x w!™¢ (46)
since such a shift corresponds to the same on-shell limit
and, in this limit, does not violate the conformal invariance

on the world sheet. Next, given (42) and (44), the vanishing
0! condition (45) leads to

prattn + / o / & qu (k4 q) ity (k= p)ity(q = p) =0

(47)
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or, in the position space, ab\c R Oetta — % 119 (9,u°)
Oattp) + u(, (1 O)upy = 0. (48)
which is nothing but the first-derivative dissipative term in
Note that, with the u> = —1 constraint the left-hand side ~ the hydrodynamical stress tensor.
of (48) can be cast as the traceless tensor, transverse with The straightforward calculation of the (2 —3 — 3) cor-
respect to u“: relator then gives

(29

= g""(p) (245 HY" ™ (q,) — ¢ HY ™ (q1) — ¢ H9™ (1)
X (2¢5HYP™ (qy) — g5 HP™ (q,) — g5 H ™ (q,))

j 2-q192 2-q19>
/ drl/ d72<——71> <2+12>

6— 9192 6— 9192 _4 (4) (4)
X E—Tz 2+71 (1) — 1) [H_s;_5;4(71|Zl’ZZ’TZ)H—S;—5;4(72|ZDZ2’71)

12

3 3
+ mH(—g;—M(TI |21, 22, Tz)H(_s);_5;4(Tz|Z1’ 22, Tl)}

x Z (82, = 20,1) (62, — 26,0) (=48, 8 &)1 6 — 48871 57" 5)" + 25 54 57'57')

ap,ay=1
(A0S — oS+ 208 )
(_1>a2+ﬂ1+}’1+/11 (4’ —ay — a2> % '7nln2’7c1c2 (ﬁl + ﬂZ) '(yl + }’2)' - ’7n1c2’7n2c1
(Zl _ Z2)5—(1|—az (Tl _ Tz)ﬂ1+ﬂg+}’1+yz+2
« |:77m|a177m2az’1b bz(al +p1 - ]) (a2 +pr— 1) (’11 +j’2 - 1)‘
(z1 = 7)1 (23 = 1) 2722y — )1

Ny Tmyay Moy by (@1 + P2 = 1) + py = 1A + 4, = 1)!
(21 = 1) (2 — 71 )72 () — 7)1t

X

_|_

(49)

This concludes the computation of the integrand of the 2 — 3 — 3 correlator contributing to the graviton’s f function. The
next step is to perform the integrations of the lengthy expressions (A1)—(A27) and (49) in 7; and 7,. All the integrals
entering the (2 — 1 — 1) and (2 — 3 — 3) amplitudes (A1)~(A27), (49) have the form

oy, o3 By, Brsvi L) 1~ 22) / dTl/ dry (1) — 2)% (1) = )% (02 = 21/ (1, = )2 (11 = 7))" (50)
with the powers in the integrands given by

a1n = —2q19, + M,
Bir=-2q192+ N,

where L, M|, M,, Ny, N,, P are various combinations of the integer numbers following from the manifest expressions
(A1)—(A27), (49), so the overall (2—1—1) and (2 — 3 — 3) amplitudes are given by the appropriate summations

(2=s5=5)z13~ Z I(ay, ax; by, by;c;d). (52)
L.M,,M;,N,,N,,P
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The contributions of these sums to the AdS graviton’s j
function in the limit & — O are then determined by the
coefficients in front of the simple pole ~(g,¢,)~" produced
by the integrations. Although the integral (50) looks like a
complicated one of the hypergeometric type, things sim-
plify drastically if we use the overall conformal invariance
of the amplitudes (34), (49) allowing us to map the half-
plane expressions back to the disc. The integrals over 7,
and 7, are then conformally mapped to the double angular
integral over ¢, ¢, with the angular variable 0 < ¢ <27

parametrizing the boundary of the disc. With the conformal
|

I(ay, ;1. osvs L) = (=

PHYSICAL REVIEW D 90, 046008 (2014)

transformation (31), it is easy to check that the relation
between ¢ and 7 is

_ gm(g Z) (53)

The resulting angular integrals turn out to be remarkably
simpler. Namely, simple computation using the conformal
transformations of (31), (53) and changing the angular
variable according to £ + 7 — ¢ gives

)7 —ay—am—f1—fr—y

X [F(ay + aa|fy + poly) + Flay + oy +2|f) + paly)
+ F(ay + |y + fo +2|y) + Fay + aolpy + faly) (54)

where

g 4]
F(alply) = A do, A dg,tan®p;tan’ g, (tan ¢; — tan @, )" . (55)

Integrating one obtains

SO+ DT (y + 1)

(6, + 65 POT(B+3)(y + 1)

0
Flaply = in 2

TGy +4 (56)

This is precisely the pole structure we are looking for. Using Mathematica, it is now straightforward to simplify the
integrands of (A1)-(A27), (49), to substitute the appropriate values of I(ay, ax; f1, P23 7; ) for each of the integrals we are

using and to compute the coefficient in front of the pole (k;k,)™!

in the field theory limit &' — 0. The final result is that the

contributions of spin 1 and spin 3 excitations to the f function of the graviton are given by

21 1) +ﬂngt33 dA

where

T = 3{60 6050 — 505060

d Jnn
24 32/d4qu'"(q - 1)

1 10
W+ p) =5 T (57)
=1

— Sl + shshish — shisksh + shishrely

x {/d4k/d4q1/d“qzu"(k—p)(ql + @)U (qy + qa)up, (g1 — k = p)(qy — k = p), up, (g2 — k= p)

+/d4k1/d4k2/d4k3/d4ql/d4q2(q1+q2)du“(k1 + ky)u(ky — p)

ul®(ks = ky + p)u") (qy + q2)up, (g1 — ks — ky + p) (g2 — ks — ka + )y, up, (92 k3—k2+P)} (58)
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T?—AM“/J%{JWQ POk 4 p) = ol k- p>“%k+m}
20 2 8 mn 4 a b
+ (51200 = o) [ k= ket p)u (k= p)ut (e + p)

+(k p)a(k+ p)yub(q— p)u(k - p)]

/d4k/d4ql/d4qZM (k= p)u"(q, + q2)

X [(g2 =k =p) (g1 = k= p),u(q —k—p)u’(g, —k = p)
+ (g2 —k=p) (g1 — k= p)uy(q, — k= p)u’ (g, — k = p)]

Tgnn _32/d4k(k—p) (k p) mn\c(k_'_p)

" =96 / d“k/ d*q, /d“qz(k = D)a(a1 + q2)yu™ (k= p)u"(q; + g2)u(q; — k = p)ub (g — k — p)

- 32" / d*k / d*q, / d*qy(k = p),(q1 + q2)pu,(k — p)uP(q, + g2)u(q, — k — p)ub(g — k — p)

- 16r]m"/d4k1/d4k2/d4k3/d4ql/d4q2um(k1 + ky)u"(ky — p)

X (ks = ks + p)o(q1 + q2) 1, (k3 = ky + p)uP (g, + q2)
X u'(qy — ks —ky + p)u’(gs — ks — ky + p)

T?"=4<3Q2—1—Q2>/d4ku”(p Nip+K), (3<p+k) AP+ K)

(4R =+ Ko+ )

Ty = 12/d4k/d4 /d4612{ —k+ p)u"(k+ p)uy(q, + g2)u(q, —k + p)
¢ —k+p)(gy—k+p)"+u"(qy—k+ p)(qy —k+ p)*)} + perm{m<>n}
" = —16/d4k/d46]1 /d4(]2(“m(k+l?)“"(% +qp) +u'(k+ p)u™(q, + q2))
xu(qy —k+ p)u‘(qy —k+p)(qo =k + p),(g2 —k+ p),
Tg" = —16n’""/d4k/d4q1/d4Qzu“(k+p)u”(q1 +q2)
x u(qy =k + pluy(q, =k + p)(q =k + p),(g2 = k+ p).

Tgm —48/d4k]/d4k2/d4k3/d4q1/d4qZ

x {u™(qy + g + k) u" (g1 + 2 — kp)u(p — q1 — ko)u® (p — q1 + k2)
xuP(qy = p—ky)up(qs —p+k3)(q2— P+ k3), (@2 — P+ k), }

T = 16/d4k1/d4k2/d4k3/d4q1/d4qz

x {u" (g1 + g2 + k)u) (p — g1 — ka)u(q1 + g2 = ky)u’(p — g1 + 42)
xuP(qy = p—ki)up(qo —p +k3)(q2 — P+ k3), (2 — p + k3) . }-
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As it is clear from (57)—(67), the overall result for the
function of the graviton, polarized along the d = 4 boun-
dary, generally depends on the value Q of the Liouville
background charge (which in turn can be expressed in
terms of the central charge ¢y o,y = 1 + 30Q?). Therefore in
general, the trace of the S function is nonzero.
Transforming (58)—(67) to the position space and using
the u?> = —1 condition it is straightforward to check that the
overall trace of (57)—(67) vanishes for Q = /2 which
precisely is the case for d + 1 = 5, where the trace of spin 1
contributions is canceled by that of spin 3. In this case the
answer has a natural interpretation in terms of holographic
fluid. This concludes the computation of the graviton’s f
function in the AdS string sigma model, up to terms
quadratic in momentum. Combining (57)—(67) and (27)
one finds that vanishing of the beta function (57) leads to
low-energy equations of motion in space-time, equivalent
to equations of gravity with the matter, described by the
stress-energy tensor of four-dimensional conformal fluid.
To see the relevance of this matter stress tensor to holo-
graphic hydrodynamics, one has to shift " according to

pr = B = 4 16ia)" (68)

with a)',’,m‘p given by (42), (44). As was explained above,
such a shift does not change the on-shell limit of the theory
due to the Weyl invariance constraint (45) on the spin 3
vertex operator. The resulting stress-energy tensor for the
matter then simply describes the conformally invariant
second order hydrodynamics at the temperature 7 = 7~
with five extra transport coefficients in the second order.
The relative values of the transport coefficients are becom-
ing remarkably close to those obtained in the AdSs gravity
computations [5], with less then 10% discrepancy, albeit at
a specific temperature in string theory calculations per-
formed in this work. Note that in conformal second order
hydrodynamics both the stress-energy tensor and the
temperature transform covariantly under the 4d Weyl
rescalings: g, = €’gn, according to T — e=3T™"
and T — ¢2T so the temperature can always be fixed
by appropriate Weyl transformation. In other words, the
holographic second order hydrodynamics appears in a
particular gauge which, in a sense, is not surprising, as
it is generally the case in string theory calculations. In the
next concluding section we shall discuss the implications of
the main result (57) and particularly outline the calculations
that still need to be done.

V. CONCLUSIONS AND DISCUSSION

Incaseofd =4, Oy 15 = /2 the two-derivative piece
of the matter stress tensor in the graviton’s f function
becomes traceless and can be interpreted in terms of two-
derivative corrections to conformal hydrodynamics in
d = 4. Transforming to the position space, it is straightfor-
ward to relate the contributions to the graviton’s  function to
corresponding terms in the gradient expansion in conformal

PHYSICAL REVIEW D 90, 046008 (2014)

hydrodynamics. The contributions related to the Weyl
invariance constraints on the graviton’s operator combined
with contributions from the (2 — 1 — 1) correlator of order
zero in momentum result in the ideal conformal fluid terms
in the # function, proportional to ¢"" + 4u™ u". Shifting the
S function by the trace of w?!' spin 3 extra field, Na);,""‘p ,
which vanishing on shell follows from the Weyl invariance
constraints on the spin 3 operator (45), leads to the leading
order dissipative term, containing one derivative due to the
ghost cohomology/zero torsion constraint (A2) relating
extra fields to the dynamical field in Vasiliev’s formalism.
Finally, the contributions (58)-(67) given by 77"(i =
1,...,10) are quadratic in momentum and stem from the
(2 — 3 = 3) correlator combined with the appropriate terms
from the (2 — 1 — 1) correlator. These terms describe the
two-derivative dissipative corrections in the second order
hydrodynamics [5,6,15]. The spin 3 contribution is crucial
to ensure the vanishing trace of the matter tensor. Note
that, at least in the approximation considered in this paper
(up to second order) there are no contributions from the
mixed (2 — 1 — 3) correlator, as all the relevant terms in this
correlator are cubic in A and vanishing for this reason.
Transforming to the position space, it is straightforward to
identify 77" with the corresponding two-derivative struc-
tures in the second order hydrodynamics, related to five new
transport coefficients for the conformal fluid, appearing in
the second order. Namely,

mn bb,bybs .abe(m 1)
T ~ gbb1babs gabe(m Ugly, Op, Uy,

mn

T3 ~3p" = 1" p™ P
Tg’ll’l Npmna u(l

T~ 3(00)u™ (10" — (™ + wu) (i 0)u, (1 0)u
10
> T~ (3Nt T (10) (D up + Oputy)  (69)
i=5

. b
with p"” ~ @ ‘C.

These structures are all well known to appear in the
second order of the gradient expansion of the conformal
fluid. They correspond to 7>, T»;, T, T, and T, terms,
considered in [5].

The correlators considered in this paper, as well as those
related to graviton interactions with operators of higher
spin values, will also contribute the higher derivative
contributions (with three and more derivatives) that were
not addressed in this work. At this stage, many more higher
spin correlators should enter the game, possibly including
those with mixed symmetries and those coming from the
closed string sector. As in the two-derivative case, however,
the conformal symmetry significantly reduces the number
of terms and new transport coefficients at higher orders. It is
not clear at present if higher order corrections to the
gradient expansion in conformal hydrodynamics can be
described in terms of contributions from two-row Vasiliev’s
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framelike fields or if more mixed symmetry degrees of
freedom are needed. The latter almost certainly produce the
structures that are present in the third and higher order
hydrodynamics but violate the 4d conformal symmetry;
however the question is whether the contributions from the
two-row fields are sufficient to describe the conformal limit.
To answer these questions we need to have better under-
standing of the general expansion structure of higher order
hydrodynamics. Our main conjecture, based on the leading
order results of this paper, suggests that, in general, the
gradient expansion in conformal hydrodynamics in d = 4 is
controlled by the higher spin correlators in string theory and,
in the leading o' order, the derivative structure of the gradient
expansion must be holographically related to that of higher
spin vertices and to the structure constants of higher spin
algebra in AdSs, with the orders of the expansion roughly
corresponding to the total spin value carried by the higher
spin vertices. It would be particularly interesting to explore
the relation of the gradient expansion at higher orders to
well-known structures of the cubic and quartic vertices for
higher spins [24,28-37] which presumably should exist in
the limit of & — 0. If the higher spin interpretation of the
gradient expansion in hydrodynamics, investigated in this
paper in the string theory context, is still correct at higher
orders, the higher spin algebra in d = 5 would provide a
powerful tool allowing us to control the transport coeffi-
cients in higher order hydrodynamics. Another important
problem to investigate is the role of ' corrections in this
expansion and their holographic interpretation. This may
lead to new nontrivial and intriguing symmetries relating the
expansion structures and transport coefficients at different

1
Zgnl)mznlnz (Zl »22,T1, 72|pv q1» QZ) =

(_1)a1+a2+b2+k1’7n1n2
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orders and understanding these symmetries in terms of
higher spin quantization. The work on these and other issues
is currently in progress and we hope to be able to present our
results soon in future works.
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APPENDIX CALCULATION OF THE MATTER
INTERACTION TENSORS

In this appendix we present explicit expressions for the
matter interaction tensors zf,in pg(i =1,...,27) entering the
overall expression (36) of the matter part of the (1 — 1 — 2)
correlator contributing to the graviton’s f function. The
straightforward computation of these tensors gives

(6%, —200,)(5%, = 284,)(8), — 65, )(8p, — 65,)

(al +a; — 1)!71m1m2

{(k1 — by — D(ky —

by = 1)(z) = gp)Pripehi=hotl ( (21 —zp)0 7

(2] (22, p); (rl,cm,<rz,qz>>R$f;><zZ|<zl,p>;m,ql),(rz,qm)
(4—a,—ay)!(by + by)!

(2—a; +b)/(2-a, + by)!

X —
(Zl _ Zz)S—u,—uz (Tl _ Tz)b|+b2+l (Zl _ Tl)3—a]—b2 (Zz _ Tz)—ag+b]+3
(2—a1+b2)!(2—a2+b1)! 1 % lq;]
—(1=6)(1=67)—"=——
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