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We construct exact solutions with the bubble of nothing in the Dvali-Gabadadze-Porrati braneworld
model. The configuration with a single brane can be constructed, unlike in the Randall-Sundrum
braneworld model. The geometry on the single brane looks like the Einstein-Rosen bridge. We also discuss
the junction of multibranes. Surprisingly, even without any artificial matter fields on the branes such as
three-dimensional tension of the codimension-two objects, two branes can be connected in certain
configurations. We investigate solutions of multibranes too. The presence of solutions may indicate the
semiclassical instability of the models.
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I. INTRODUCTION

The Dvali-Gabadadze-Porrati (DGP) braneworld is a
model that may be able to explain the current acceleration
of the Universe without introducing the cosmological con-
stant [1]. Therein the four-dimensional universe is treated as
a membrane with the induced gravity. The braneworld model
is one of natural pictures of our Universe inspired by string
theory, and the induced gravity is expected via the quantum
correction into the matter fields on the brane [2]. In the DGP
models we often have the two type cosmological solutions
[3,4], that is, the normal branch and the self-accelerating
branch. The latter was expected to explain the current
acceleration of the Universe. But, it was shown that the
self-accelerating branch of the single brane model in the
DGP braneworld is not compatible with observations [5]
and also suffers from ghost instability1 [8,9] (see Ref. [10]
for a review). However, there are still rooms for two branes
models, which may realize the nonlinear massive gravity
theory [11] and/or the bigravity theory [12] (see Ref. [13] for
a review) as an effective one [14], and the normal branch for
a single brane model.
In general, the spacetime with compact extra dimensions

is semiclassically unstable if there is no fundamental
fermion and/or supersymmetry. The spacetime decays to
so-called Kaluza-Klein (KK) bubble-type spacetimes [15].
The bubble of nothing is nucleated via the quantum gravity
effect. For the four-dimensional observers, the spacetime is
incomplete at the surface on the bubble, and the surface will
expand with almost light velocity. The transition rate from
the KK vacuum to the bubble depends on the size of the
initial bubble. When the size is larger than the Planck scale,
it is exponentially suppressed.

For the Randall-Sundrum braneworld model [16], the
similar feature was reported [17]. In this paper, we discuss
the same issue in the DGP braneworld context and focus
on the construction of the braneworld model with the
bubble of nothing. We will consider the normal branch on
the brane although one may be interested in the self-
accelerating branch. See Refs. [18,19] for the related work
(therein another decay channel was discussed, not the
bubble of nothing).
The remaining part of this paper is organized as follows.

In Sec. II, we give the setup for the DGP braneworld and the
bulk spacetime. We also have a general remark. In Sec. III,
we derive the junction condition on the brane for the current
concrete case. In Sec. IV, the local embedding of branes in
the bulk spacetime is discussed. In Sec. V, we derive the
condition for connecting branes. In Sec. VI, we construct the
spacetime globally for the single and multibranes cases.
Finally we give the summary and discussion in Sec. VII.

II. SETUP

For simplicity, we consider the original DGP models
described by the action2 [1]

S ¼ 2M3

Z
bulk

d5x
ffiffiffiffiffiffi
−g

p
R

þ 2M3
X
i

ri

Z
brane i

d4x
ffiffiffiffiffiffiffiffi
−qi

p ð4ÞRðqiÞ

þ
X
i

Sbrane i;matter; ð1Þ

where R and ð4ÞR are the five-dimensional Ricci scalar and
the four-dimensional Ricci scalar of the branes. The index i

1Spontaneous breaking of the local Lorentz symmetry may
save the theory from the ghost disaster [6,7].

2Exactly, say, we have to introduce the York-Gibbons-
Hawking surface term [20,21].
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labels the branes. gμν and qiμν are the metric of the bulk and
the branes. M is the Planck scale in the five dimensions. ri
has a length scale. Contrasted to the conventional higher
dimensional theories, the five-dimensional effect will be
crucial at a larger scale than ri. Sbrane i;matter is the action for
the matters localized on the branes.
Under the Z2 symmetry, the junction condition is [22]

Ki;μν − Kiqi;μν ¼ rið4ÞGμνðqiÞ −
1

2M3
Ti;μν; ð2Þ

where Ki;μν is the extrinsic curvature of the branes,
ð4ÞGμνðqiÞ is the Einstein tensor for the metric qi, and
Ti;μν is the energy-momentum tensor for the matters
localized on the branes. The junction condition gives us
the boundary condition for the bulk gravitational field
equation, that is, the five-dimensional Einstein equation.
The Greek indices fμ; ν;…g stand for the coordinate of
the four-dimensional spacetime. Here, the unit normal
vector nμ required for the definition of the extrinsic
curvature, Ki;μν ≔ qi;μλ∇λnν, is oriented to the bulk.
For simplicity, we consider the vacuum cases, Ti;μν ¼ 0.

Using the Gauss equation and the Weyl tensor, we have the
equation on the brane as

ð4ÞGμν ¼ r2i

�
2

3
ð4ÞRð4ÞRμν − ð4ÞRμα

ð4ÞRν
α

þ 1

2
qμν

�
ð4ÞRαβ

ð4ÞRαβ −
1

2
ð4ÞR2

��
− Eμν; ð3Þ

where we have omitted qi. Eμν is the electric part of the
Weyl tensor defined by Eμν ≔ ð5ÞCμανβnαnβ. This is the
DGP version of the gravitational equation on branes for
the Randall-Sundrum model [23]. Since the above is the
quadratic equation with respect to the four-dimensional
Ricci tensor, we can guess that there are two branches for
the solutions. When Eμν ¼ 0 and ð4ÞRμνðqiÞ ¼ Λiqiμν, we
haveΛið1 − r2iΛi=3Þ ¼ 0, and then Λi ¼ 0 (normal branch)
or Λi ¼ 3=r2i (self-accelerating branch).
The bulk spacetime follows the five-dimensional vacuum

Einstein equation. As the simplest case, the bulk spacetime is
just the five-dimensional Minkowski spacetime. In the
canonical coordinate, the metric is η5 ¼ dy2 þ η4, where
η4 is the metric of the four-dimensional Minkowski space-
time. The brane can be located at y ¼ const. Indeed, this is a
rather trivial case. This corresponds to the normal branch.
Here we identify it with the DGP vacuum. The bulk metric
is also written as the spherical Rindler coordinate η5 ¼
dz2 þ z2γ4, where γ4 is the four-dimensional de Sitter
solution with the positive cosmological constant of 3=r2i .
This belongs to the self-accelerating branch.
In this paper we suppose that the bulk spacetime is

locally identical with the KK bubble spacetimes [15]

ds2 ¼ fðrÞdχ2 þ fðrÞ−1dr2 þ r2γabdxadxb; ð4Þ

where fðrÞ ¼ 1∓ðr0=rÞ2 and γab is the metric of the three-
dimensional unit de Sitter spacetime. This spacetime is
obtained through the double Wick rotation of the five-
dimensional Schwarzschild spacetime. fðrÞ with the neg-
ative (positive) sign is corresponding to the Schwarzschild
spacetime with the positive (negative) mass. The Latin
indices stand for the coordinate of the three-dimensional de
Sitter spacetime.
For the KK bubble spacetime with the positive mass the

periodicity 2πr0 for the coordinate χ makes the spacetime
regular [15], while in the KK bubble spacetime with the
negative mass singularity always appears at r ¼ 0. For the
moment, however, we do not care about the periodicity
and the singularity, because we will use the KK bubble
spacetime locally.
Here we have a comment on the simplest case; that is, the

brane is located at χ ¼ const. In this case, the extrinsic
curvature of the brane vanishes. Therefore,

ð4ÞGμνðqiÞ ¼
1

2M3ri
Ti;μν ð5Þ

must hold on the branes. The brane metric is

qi ¼ fðrÞ−1dr2 þ r2γabdxadxb

¼ −r2dτ2 þ fðrÞ−1dr2 þ r2ðcosh τÞ2dΩ2
2; ð6Þ

where dΩ2
2 is the metric of the unit sphere. Then, the

Einstein tensor on the brane is computed as

ð4ÞGμ
νðqiÞ ¼ � r20

r4
ð1;−3; 1; 1Þ: ð7Þ

We must put the matter on the brane to be consistent
with Eq. (5). This means that the energy-momentum tensor
of the matter is proportional to the above. Then it is easy to
see that the energy condition is broken. Therefore, if we
suppose that the brane is at χ ¼ const, it is difficult to
construct the physically acceptable braneworld model in
the classical level. But, we may be able to realize it if
one considers the semiclassical treatment. This is beyond
the scope of this paper.

III. LOCAL STRUCTURE OF DGP
VACUUM BRANE

In this section, we consider the local properties of the
DGP braneworld such that the bulk spacetimes are locally
given by the KK bubble spacetime of Eq. (4). For
simplicity, we discuss vacuum branes.3 We write down
the junction condition on the brane to have the equation that
determines the location of the brane in the bulk.

3In general, generic matter fields break the symmetry of γab in
Eq. (9). Although we can solve the trajectories of branes in
principle, the analysis becomes rather complicated.
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Let us suppose that the brane is located at

χ ¼ χ̄iðrÞ: ð8Þ

The induced metric of the brane becomes

qi ¼ α−2i dr2 þ r2γabdxadxb; ð9Þ

where

αi ≔ ðχ̄i02f þ f−1Þ−1=2 > 0: ð10Þ

The normal vector to the brane is

ni ¼ αiðdχ − χ̄i
0drÞ; ð11Þ

and then nonzero components of the extrinsic curvature of
the brane are derived as

Kr
r ¼ α3i

�
−
3

2
χ̄i

0 f
0

f
−
1

2
χ̄i

03ff0 − χ̄i
00
�

ð12Þ

and

Ka
b ¼ −δab

χ̄0if
r

: ð13Þ

From the induced metric, the nonzero components of
the Ricci tensor are

ð4ÞRr
r ¼ −3

αiαi
0

r
ð14Þ

and

ð4ÞRa
b ¼

1

r2
½2ð1 − α2i Þ − αiαi

0r�δab: ð15Þ

The Ricci scalar is

ð4ÞR ¼ 6

r2
ð1 − α2i Þ − 6

αiαi
0

r
: ð16Þ

It is ready to consider the junction condition. The ða; bÞ
components give us

χ̄i
0 ¼ −

ri
rfαi

ð1 − α2i Þ: ð17Þ

The ðr; rÞ component implies

α3i

�
3

2
χ̄i

0 f
0

f
þ 1

2
χ̄i

02ff0 þ χ̄i
00
�

¼ ri

�
2
αiαi

0

r
þ 1

r2
ð1 − α2i Þ

�
: ð18Þ

Note that this must be automatically satisfied when Eq. (17)
holds, because they are related through the energy con-
servation law on the brane (for example, see Ref. [24]).
Together with the definition of αi, Eq. (17) gives us two

solutions of α2i as

α2�;i ¼
−1þ 2ðri=rÞ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðr0=rÞ2ðri=rÞ2

p
2ðri=rÞ2

ð19Þ

for the positive mass case and

α2�;i ¼
−1þ 2ðri=rÞ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðr0=rÞ2ðri=rÞ2

p
2ðri=rÞ2

ð20Þ

for the negative mass case. In the limit r → ∞, αþ;i
approaches unity, while α−;i does not have solutions. It
means that the brane with αþ;i has an asymptotically flat
structure and thus the same asymptotic structure as that of
the normal branch for the Minkowski bulk. On the other
hand, the brane with α−;i does not exist in the asymptotic
region (although it could exist within certain finite r).

IV. TRAJECTORIES OF SINGLE BRANE

The number of solutions of αi depends on the ratio of ri
to r0, which stems from requiring the presence of the square
root in Eq. (19) or (20) and the positivity of α2i . Below we
will discuss the four cases (A)–(D), separately. Most of the
trajectories of the brane in the (r; χ) plane of the bulk
terminate with the finite length or hit singularity. Only a
trajectory for r0 > ri with the positive mass bulk goes to
infinity, and thus, it would be geodesically complete. In this
section, however, we do not care about the incompleteness
of the trajectories and the singularities at the “edge“ of
the trajectories. The purpose in this section is deriving all
possibilities of the local embedding of branes in the bulk
spacetime with the metric of Eq. (4).
Hereafter we call the brane satisfying Eq. (19) or (20)

for αþ;i (α−;i) the þð−Þ brane regardless of the positive or
negative mass bulk.

A. r0 > ri in positive mass bulk

The presence of the square root in Eq. (19) implies the
condition r ≥

ffiffiffiffiffiffiffiffiffiffi
2r0ri

p
on the brane. α2þ;i is positive only for

r ≥ r�;i ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ r2i

p
, while α2−;i always becomes negative.

As a result, only þ branes can exist in the range r ≥ r�;i.
The bulk (and the forbidden region) can be fixed by the

direction of the unit normal vector nμ as commented below
Eq. (2). The unit normal vector nμ is defined in Eq. (11) and
the coefficient of dr is −αiχ̄0i. From the definition of αi, i.e.,
Eq. (10), αi must be smaller than unity. Combining this
result with Eq. (17), it is easy to show the positivity of
−αiχ̄0i. This means that the unit normal vector nμ is pointing
in the direction of increasing r, and thus, the region, where
the coordinate r is smaller than that on the brane with the
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same value of χ, is forbidden and the remaining region
becomes bulk (see Fig. 1). At the brane, the Z2 symmetry is
imposed.
By the integration of Eq. (17) with the boundary

condition χ̄iðr�;iÞ ¼ 0, we can obtain the trajectory of
a þ brane. However, the surface of χ ¼ χ̄iðrÞ, say Bp, is
incomplete at r ¼ r�;i. This can be geodesically complete
by reflecting with respect to the χ ¼ 0 surface. The sum
with the reflected surface Bm of χ ¼ −χ̄iðrÞ, B ¼ Bp∪Bm,
is geodesically complete. The bulk spacetime is the region
of r ≥ r0 removing the gray region as Fig. 1.

B. r0 < ri in positive mass bulk

The presence of the square root in Eq. (19) constrains a
lower limit of r on the brane as r ≥

ffiffiffiffiffiffiffiffiffiffi
2r0ri

p
. The positivity

of α2i implies the upper limit r�;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ r2i

p
only for α−;i.

As a result, theþ brane is embedded in the range
ffiffiffiffiffiffiffiffiffiffi
2r0ri

p
≤

r and the − brane is in the range
ffiffiffiffiffiffiffiffiffiffi
2r0ri

p
≤ r ≤ r�;i. The

argument of choosing the bulk region is the same as that in
the previous case (see Fig. 2).
Unlike in the previous case, the þ brane cannot be

smoothly connected with its reflected image at the mini-
mum value of r,

ffiffiffiffiffiffiffiffiffiffi
2r0ri

p
. On the other hand, we can connect

a − brane with its reflected image at r ¼ r�;i in the same
way of the previous case for þ branes. Then, we have two

possible solutions, on both branes of which geodesics are
incomplete at r ¼ ffiffiffiffiffiffiffiffiffiffi

2r0ri
p

(see Figs. 2 and 3).

C. r0 < ri in negative mass bulk

The square root in Eq. (20) is always positive, and thus,
there are no restrictions for the range of r. The positivity of
α2i gives the upper limit r̄�;i ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i − r20

p
only for the −

brane. The bulk geometry has a singularity at r ¼ 0, and all
single branes touch the singularity. As in the previous case,
only the − brane can be connected with its reflected image
at r ¼ r̄�;i.
The bulk region for the� branes is determined as shown

in Figs. 4 and 5. Here we note that α2þ;i always becomes
larger than unity, which can be directly seen from Eq. (20),
and this makes the sign of ð1 − α2i Þ flipped. Then the
position of bulk (Fig. 4) appears on the opposite side
compared to the − brane case (Fig. 5).

D. r0 > ri in negative mass bulk

For þ branes, the discussion is the same as the previous
one. Meanwhile, α2−;i always becomes negative, and thus,

FIG. 1 (color online). The location of the þ brane in the (χ; r)
plane for r0 > ri and the positive mass bulk: The gray region is
removed. This is only a regular solution with the single brane.

FIG. 2 (color online). The location of the þ brane in the (χ; r)
plane for r0 < ri and the positive mass bulk: The gray region is
removed. The trajectory of the brane cannot be extended beyond
r ¼ ffiffiffiffiffiffiffiffiffiffi

2rir0
p

.

FIG. 3 (color online). The location of the − brane in the (χ; r)
plane for r0 < ri and the positive mass bulk: The gray region is
removed. The trajectory of the brane cannot be extended to the
region of r ≤

ffiffiffiffiffiffiffiffiffiffi
2rir0

p
.

FIG. 4 (color online). The location of the þ brane in the (χ; r)
plane for the negative mass bulk: The gray region is removed.
The trajectory of the brane hits the singularity at r ¼ 0.

FIG. 5 (color online). The location of the − brane in the (χ; r)
plane for the negative mass bulk: The gray region is removed.
The trajectory of the brane hits the singularity at r ¼ 0.
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the − branes configuration does not exist. As a result, we
have only a þ branes configuration (see Fig. 4).

V. BRANE JUNCTION

In this section we shall discuss the possible brane
junctions locally. In general, several branes intersect each
other. At the junctions between branes, there is a restriction
from field equations. In this section, we derive the
equations for that.
We perform the integration of the equation for the

vicinity of the junction point and then take the limit such
that the integration domain goes to zero, as in the derivation
of the junction condition for singular surfaces [22]. The
integration of the ða; bÞ component of the five-dimensional
Einstein equation with respect to χ and r gives

2M3

Z
bulk

dχdrGa
b þ 2M3

X
i

ri

Z
branei

drð4ÞGðqiÞab

−
1

2

X
i

Z
branei

drTi;
a
b ¼ 0; ð21Þ

where Ga
b is the five-dimensional Einstein tensor.

We classify the brane junctions into the four cases
(Figs. 6–9). The first three, Figs. 6–8, are brane junctions

in the positive mass bulk or − brane junctions in the
negative mass bulk, where αi is always smaller than unity.
The last one, Fig. 9, describes the junctions of the þ brane
and the − brane in the negative mass bulk. We will look at
them in detail.

A. Contribution from five-dimensional bulk gravity

The first term of Eq. (21) is evaluated through the
contribution from the deficit angle ϕ as [25]Z

dx2Ga
b ¼ −

ϕ

2
δab: ð22Þ

Therefore, what we have to do is only deriving the deficit
angle. Then we compute it for each case.

(i) In case 1 (Fig. 6), both branes go to the direction of
increasing r from the junction point. Since the Z2

symmetry is imposed across the branes, we can
construct the bulk locally as Fig. 10. Then, the
deficit angle is estimated at 2π − 2ϕ1 − 2ϕ2, where
ϕ1 and ϕ2 are defined in Fig. 6 and they are taken to
be a smaller value than π.
Using the bulk metric (4), the angle ϕi can be

written as

ϕi ¼ arctan

���� f1=2f−1=2
dχ
dr

����
r¼rJ

¼ arctan

�
ri
r
1 − α2i
αi

�����
r¼rJ

; ð23Þ

where the branes are connected at r ¼ rJ. Finally,
from Eqs. (22) and (23), we see

FIG. 6 (color online). Case 1: Both branes approach the
junction point r ¼ rJ from larger r.

FIG. 7 (color online). Case 2: Both branes approach the
junction point r ¼ rJ from smaller r.

FIG. 8 (color online). Case 3: One brane approaches the
junction point r ¼ rJ from larger r, while another approaches
the point r ¼ rJ from smaller r.

FIG. 9 (color online). Case 4: The − brane is connected with a
þ brane for negative mass bulk.

FIG. 10 (color online). Gluing the mirror image due to Z2

symmetry: The deficit angle becomes 2π − 2ϕ1 − 2ϕ2.
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Z
dχdrGa

b

¼
X
i¼1;2

�
−
π

2
þ arctan

�
ri
r
1 − α2i
αi

������
r¼rJ

δab: ð24Þ

(ii) For case 2 (Fig. 7), both branes go to the direction of
decreasing r from the junction point. We can see the
deficit angle becomes

2π − 2ð2π − ϕ3 − ϕ4Þ ¼ −2π þ 2ϕ3 þ 2ϕ4: ð25Þ

Then,Z
dχdrGa

b

¼
X
i¼3;4

−
�
−
π

2
þ arctan

�
ri
r
1 − α2i
αi

������
r¼rJ

δab:

ð26Þ
(iii) In case 3 (Fig. 8), the branes go to the opposite

directions from each other with respect to r. In the
same method the deficit angle becomes

2π − 2ðπ þ ϕ5 − ϕ6Þ ¼ −2ϕ5 þ 2ϕ6; ð27Þ
and thenZ

dχdrGa
b

¼
X
i¼5;6

ϵi

�
−
π

2
þ arctan

�
ri
r
1 − α2i
αi

������
r¼rJ

δab;

ð28Þ
where ϵi is unity for ϕ5 and −1 for ϕ6.

(iv) In case 4 (Fig. 9), both branes go to the direction of
increasing both χ and r from the junction point.
Since jχ̄i0j for the − brane is larger than that for theþ
brane, the − brane corresponds to one with the angle
ϕ7 in Fig. 9. The deficit angle is 2π − 2ðϕ7 − ϕ8Þ.
Here note that the sign of ð1 − α2Þ for the þ brane is
different from that in the previous cases, and then we
compute as

ϕ8 ¼ arctan

���� f1=2f−1=2
dχ
dr

����
r¼rJ

¼ − arctan

�
r8
r
1 − α28
α8

�����
r¼rJ

: ð29Þ

For ϕ7, we can use Eq. (23), and then we arrive
at Eq. (24).

B. Contribution from four-dimensional induced gravity

The second term of Eq. (21) comes from the disconti-
nuity of the first derivative of the induced metric on the

brane. Without loss of generality, we use the Gaussian
normal coordinate r̄ on the brane

dr̄ ¼ dr
αi

: ð30Þ

Then, the induced metric on the brane is written as

qi ¼ dr̄2 þ r2ðr̄Þγabdxadxb: ð31Þ

On the brane, the extrinsic curvature Hab of the r̄ ¼ const
surfaces is given by

Hab ≔
1

2

∂
∂r̄ ðr

2ðr̄ÞγabÞ

¼ αi
rðr̄Þ r

2ðr̄Þγab: ð32Þ

Since ð4ÞGa
b ¼ −∂ r̄Ha

b þ ∂ r̄Hc
cδ

a
b þ � � �, the integration

of the four-dimensional gravity term becomes

X
i

ri

Z
branei

drð4ÞGðqiÞab ¼
X
i

2ϵi
ri
r
αi

����
r¼rJ

δab; ð33Þ

where ϵi ¼ 1 if the brane goes from the junction point to the
direction of increasing r (e.g. both branes in Fig. 6) and
ϵi ¼ −1 with the opposite direction.

C. Condition for brane junction

Now we are ready to derive the explicit form of the
condition Eq. (21). Since the first and second terms in
Eq. (21) are proportional to δab, the energy-momentum
tensor of matter Ti;

a
b, if it exists, should be so. Thus, we

introduce only three-dimensional tension:

Ti;
a
b ¼ −μiδab: ð34Þ

Summing up all, finally we obtain the junction condition,

X
i

�
ϵihiðrJÞ þ

μi
4M3

�
¼ 0; ð35Þ

with

hiðrÞ ≔ −
π

2
þ arctan

�
ri
r
1 − α2i
αi

�
þ 2

ri
r
αi: ð36Þ

VI. GLOBAL SOLUTIONS

In this section, we construct the global solutions that
are asymptotically flat on the branes. The simplest one is the
single brane configuration discussed in Sec. IVA. Moreover,
if we consider the junction of two or multibranes, we can
construct many nontrivial configurations. For instance, by
considering the junction of two þ branes, we can construct
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the configurations where the induced metric on the branes
approaches flatness at both asymptotic regions (see Fig. 11).
Another asymptotically flat brane configuration is achieved
by connecting two þ branes with − branes as shown in
Fig. 12. At each junction, Eq. (35) must be satisfied.
Generically we need the three-dimensional tension, i.e.,
the energy momentum tensor of the domain wall on the
branes. For certain configurations, however, the three-
dimensional tension is absent. This happens when the
contribution from the five-dimensional gravity to the deficit
angle is balanced with that from the four-dimensional
gravity. This is a significant difference from the Randall-
Sundrum model where the balance does not work.

A. Single brane case

The simplest global solution accommodated with the
asymptotically flat condition is that with a single brane
discussed in Sec. IVA. The condition r0 > ri is required for
the guarantee of the existence of the global solution. This
means that the bulk spacetime contains a large bubble of
nothing. Note that the minimum size of the bubble is r�;i,
which is larger than r0.
We shall discuss the geometry on the brane shortly.

Introducing the null coordinates u� defined by
du� ¼ dτ � dr=ðrαiÞ, the induced metric is written as

qi ¼ −r2duþdu− þR2ðuþ; u−ÞdΩ2
2; ð37Þ

where R ¼ r cosh τ. The expansion of null is given by

θ� ¼ ∂ lnR
∂u� ¼ 1

2
ð�αi þ tanh τÞ: ð38Þ

We see that θþ or θ− vanishes at

r2ðτÞ ¼ r2c
cosh2τ

þ r20cosh
2τ: ð39Þ

Since the right-hand side of the above equation is larger
than or equal to r2�;i for r0 > rc, the solution to the above
always exists. Moreover, it is easy to show that the
hypersurface H specified by the above is timelike.
Along the hypersurface, θþ ¼ 0; θ− ¼ tanh τ ≤ 0 for τ ≤
0 and θþ ¼ tanh τ ≥ 0; θ− ¼ 0 for τ ≥ 0. Note that θ� ¼ 0
at τ ¼ 0. Therefore,H is like the apparent horizon for τ < 0
and the cosmological horizon for τ > 0. The brane has two
asymptotically flat regions, and then we see that the
geometry is like the Einstein-Rosen bridge and is similar
with that in the Randall-Sundrum models with a bubble of
nothing [17].4 Since we consider the vacuum brane in the
DGP braneworld model, all of the dominant, null, and weak
energy conditions are trivially satisfied. Meanwhile, one
may want to regard the right-hand side of Eq. (3) as the
effective energy-momentum tensor. It is easy to see that it
does not satisfy all of the energy conditions.

B. Multibranes case

We investigate the possibility to connect branes with and
without tension terms of codimension-two object. For
simplicity, we consider the cases where all branes have
the same ri, say rc. Here, we concentrate on the three cases:
(a) twoþ branes (Fig. 11), (b) twoþ branes with a single −
brane (Fig. 12), and (c) two þ branes with multibranes
(Fig. 13). We call hi with αþ;i (α−;i) hþ (h−).
For later convenience, we note that hiðrÞ is a monoton-

ically decreasing function with respect to r. Using Eqs. (19)
and (20), indeed, we can derive

dhiðrÞ
dr

¼−
ri½α2i fr2ð1þα2i Þþ2r2i ð1−α2i Þ2gþ r2ð1−α2i Þ2�

r2αiðr2α2i þ r2i ð1−α2i Þ2Þ
< 0: ð40Þ

1. Two þ branes

This configuration is possible only for a positive mass
bulk. From the definition it is easy to see that hþðrÞ
approaches −π=2 in the limit r → ∞.
For r0 > rc, the possible minimum value of rJ is

r� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ r20

p
, and hþðr�Þ becomes zero. At the point

rJ satisfying hþðrJÞ ¼ 0, we see from Eq. (35) that two
branes can be connected without introducing tension μi.
However, the connection at r ¼ r� becomes regular, and it
is nothing but a single brane given in Sec. IVA. For
rJ > r�, hþðrJÞ becomes negative because of its mono-
tonically decreasing feature, and thus, we need to introduce

FIG. 11 (color online). Global configuration composed of
two þ branes.

FIG. 12 (color online). Global configuration composed of two
þ branes with a single − brane: Twoþ branes are connected with
a − brane at r ¼ rJ . In the local aspect of the junctions, this case
belongs to case 1 in Sec. V.

4Solutions in which the bulk geometry is like a wormhole have
been discussed in Ref. [26,27].
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codimension-two object with positive tensions to be con-
sistent with Eq. (35).
Next, we consider the cases of r0 < rc. We will ask if

there is a case such that we can construct nontrivial
configurations without introducing the codimension-two
object with tension. To do so we will examine the existence
of rt such that hðrtÞ ¼ 0. We first evaluate hþðrÞ at r ¼ r�,

hþðr�Þ ¼ −
π

2
þ arctan

�
r20ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4c − r40

p �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − r20
r2c þ r20

s
: ð41Þ

We can show the positivity of this. Introducing the
parameter y defined by

r20 ¼ r2c − y2; ð0 < y < rcÞ ð42Þ

and regarding hþðr�Þ as the function of y, FðyÞ, we see

dFðyÞ
dy

¼ 2ðcos θyÞ2r4c
ð2r2c − y2Þ52 > 0; ð43Þ

where

θy ≔ arctan

�
r20 − y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4c − r40

p �
: ð44Þ

Since Fð0Þ ¼ 0, the above tells us the positivity of FðyÞ,
that is, hþðr�Þ > 0. Because in the asymptotic region
(i.e., large r) hþðrÞ become negative, there is the point
r ¼ rt > r� such that hþðrtÞ ¼ 0. At r ¼ rt, therefore, we
can connect two þ branes without tension terms. If the
junction point rJ is rJ > rt, we need positive tension terms
to connect two þ branes, while negative tension terms are
needed if

ffiffiffiffiffiffiffiffiffiffiffi
2r0rc

p
< rJ < rt.

2. Two þ branes with a single − brane

This configuration is possible only in the case
with r0 < rc.
Since the − brane can be in the range

ffiffiffiffiffiffiffiffiffiffiffi
2rcr0

p
< r < r�

for the positive mass, branes should be connected in this
region. We can easily obtain h−ðr�Þ ¼ 0 while we saw
hþðr�Þ > 0. Since hiðrÞ is a monotonically decreasing
function of r, hþðrÞ þ h−ðrÞ is always positive forffiffiffiffiffiffiffiffiffiffiffi
2rcr0

p
< r < r�. Therefore, we see from Eq. (35) that

only negative tension terms can make the branes connected.
For the negative mass bulk, the situation is similar to the

positive mass case. First of all, it is easy to see h−ðr̄�Þ ¼ 0

through the direct calculation, where r̄� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − r20

p
. The

value of hþðr̄�Þ is written as

hþðr̄�Þ ¼ −
π

2
þ arctan

�
−r20ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4c − r40

p �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ r20
r2c − r20

s
: ð45Þ

Introducing the parameter y as

r20 ¼ y2 − r2c; with rc < y <
ffiffiffi
2

p
rc; ð46Þ

we regard hþðr̄�Þ as the function of y as

hþðr̄�Þ ¼ FðyÞ: ð47Þ
Here note that FðyÞ is the same as that introduced before.
Since we have already shown the positivity of FðyÞ for
y > 0, hþðr̄�Þ is positive. Then the monotonically decreas-
ing property of hiðrÞ implies the positivity of hþðrÞ þ
h−ðrÞ for 0 < r < r̄�, and Eq. (35) shows us that the
negative tension terms are needed to connect the branes.
As a result, for this configuration of branes, we need a

negative tension term in this configuration. It is probably
unphysical because of the negative energy density.

3. Two þ branes with multibranes

This configuration is possible only for r0 < rc. We can
consider both cases of positive and negative mass bulks.
This configuration always has the junction between two −
branes. Let us look at the details shortly.
h−ðrÞ becomes zero at r ¼ r� for a positive mass bulk

and at r ¼ r̄� for a negative mass bulk. The monotonically
decreasing property of h−ðrÞ leads to the positivity of
h−ðrÞ. As a result, it is impossible to construct physically
interesting solutions without introducing negative tension
terms.

VII. SUMMARY AND DISCUSSION

In this paper we constructed the DGP braneworld with a
bubble of nothing. Surprisingly, we could have the single
brane solutions. This is impressive because we could not
for the Randall-Sundrum braneworld. The solution with a
single brane exists only for r0 > ri, while for r0 < ri
solutions with connected two branes can be constructed

FIG. 13 (color online). Global configuration composed of two
þ branes with multibranes. The junction here belongs to cases 1
and 3 in Sec. V.
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even without any matter fields on branes. Therein, the
contribution of deficit structure on five-dimensional space-
time is balanced with that of a singular surface on the brane,
that is, codimension-two objects in the bulk aspect. As
discussed in Ref. [19], it may be out of applicable range of
the DGP-braneworld description because both contributions
diverge. However, the tensionless solution sets the expect-
ation that even in an UV completion for the DGP model less
matter field is to construct the solution with two branes.
In general, the existence of the configuration founded

here could lead to the semiclassical instability of the DGP
braneworld. If so, this may be fatal to the DGP braneworld
model. But, as stressed in Ref. [15], the supersymmetry
may protect such instability. Moreover, there is a question
for the initial state before the decay; that is, is the DGP
vacuum with the single brane the initial state for the
solution founded here? Since the size of the junction point
is larger than ri, the bubble size is also large. ri is expected
to be a cosmological scale, and then the decay rate of the
DGP vacuum to the bubble is exponentially suppressed.
This is because the decay to spacetimes with large volume
has a tendency to be suppressed as usual. The solutions
constructed in this paper have the same asymptotic struc-
ture as the normal branch solutions on the Minkowski bulk
with compactification to the extra direction. Thus, the

solutions probably describe the spacetime after the decay
of the normal branch. However, if one could have the
solutions for the self-accelerating branch, the suppression
for the decay rate to the single-brane solution might be
relaxed. The detailed analysis based on quantum gravity
will be interesting. There is also a problem that the self-
accelerating brane is copiously nucleated [18].
We emphasize that our solutions themselves could be

worth investigating. The geometry on a single brane is like
the Einstein-Rosen bridge. Since we consider the vacuum
brane, any energy conditions are not violated. This is an
example of wormhole spacetime, which satisfies the energy
conditions. The detailed analysis will be reported in the
near future [28].
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