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Oscillating strings and non-Abelian 7-dual Klebanov-Witten background
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We study oscillating string solutions in the Klebanov-Witten and its non-Abelian 7-dual background
dualized along an SU(2) isometry. We find the string energy as the function of the oscillation number and
angular momentum. We show that for a particular set of 7-dual coordinates both the backgrounds have
equal string states. We also study the string states where the strings are expanding and contracting in the
T-dual coordinate direction. We expect the presence of the superconformal field theory dual operators
whose anomalous dimensions depend on the 7-dual coordinate.
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I. INTRODUCTION

Research on string dualities has added much of our
understanding to string theory. Establishing the duality
between seemingly different theories has been a major
research area since the inception of string theory. This has
given many interesting and useful results, from which a few
are mentioned below. First, it has taught us how to relate
various string theories in different regimes of validity and
compactifications. It also has led us to the discovery of
higher dimensional objects, such as D-branes and mem-
branes. Moreover, it has given us new insights to the
nonperturbative regime of the theory. The discovery of the
D-brane and its world volume gauge theory has prompted
the proposal of an example of gauge or gravity duality
[1-3], which relates the type IIB string theory in the
AdSs x §° background to the N =4 supersymmetric
SU(N) Yang-Mills gauge theory in four dimensions.
This duality maps the anomalous dimensions of gauge-
invariant operators in the gauge theory to the energy
spectrum of the string-theory states. This equivalence
beyond the Bogomol’nyi-Prasad-Sommertfield limit relies
on the fact that on the string-theory side the quantum
corrections of strings are suppressed by the large quantum
number, while on the field-theory side the anomalous
dimension matrices of the dual composite operators are
related to the Hamiltonian of the integrable spin chain. The
idea of the operators with large quantum number was first
proposed in [4] and further explored in [5], which has
prompted the research on the semiclassical analysis of the
rigidly rotating string and its implications in the AdS/CFT
correspondence. The duality has been generalized to
different models with less-supersymmetric backgrounds
with or without conformal invariance [6,7]. In the semi-
classical limit, both the rotating and oscillating strings have
been studied in both AdS and non-AdS, supersymmetric
and less-supersymmetric backgrounds [8-25]. Though
the oscillating strings have more stability [26] than the
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nonoscillating one, they are less explored compared to
rotating strings.

The T duality is a symmetry transformation that relates
different string backgrounds with some isometries. The idea
of generalizing T duality to include non-Abelian isometry
groups has been worked out in [27]. When isometry
groups are non-Abelian, we reached a non-Abelian T
duality which is a proven technique to construct super-
gravity duals of strongly coupled field theories [28—34], and
interestingly these backgrounds retain supersymmetry
[34,35]. Klebanov-Witten background is a good example
of it where dualizing along SU(2) isometries provides us a
type IIA supergravity o-model background. In non-Abelian
transformation the isometry is partially destroyed which can
be recovered as nonlocal symmetry in the ¢ model, and the
corresponding ¢ models are canonically equivalent [36].
The semiclassical analysis of strings in Klebanov-Witten
background has been studies in [37-42]. Our study is
motivated by the recent paper [43], where the rotating
string solutions have been worked out in Klebanov-Witten
and its non-Abelian 7-dual background. It has been shown
that both backgrounds enjoy an equivalent subsector of
states depending on the values of the 7-dual coordinates.
Here we wish to study oscillating strings in the Klebanov-
Witten and its non-Abelian 7-dual background and compare
the results in different regimes.

The rest of the paper is organized as follows. In Sec. I, we
analyze the oscillating strings in the Klebanov-Witten back-
ground when the oscillation is in AdS and in 7"! separately.
We find the energy and oscillation number dispersion
relation. In Sec. III, we analyze different classes of oscillating
string configurations in non-Abelian 7-dual Klebanov-
Witten background. We also study the case of the oscillating
string when the oscillation is in the 7-dual coordinate
direction. In Sec. IV, we conclude with some discussion.

II. OSCILLATING STRING IN AdSs x T'!

We start with the Klebanov-Witten background which is
the infrared limit of the theory on N coincident D3 branes
placed at the conical singularity of M, x C [44]:
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ds?® = R*(—cosh?pd® + dp* + sinh®p(dy? + sin>yd&} 4 cos’ydE3))

+ R* (4 (07 + 03) + A3(07 + 03) + 4*(03 + cos 6, d¢h, )?), (1)
where R? is the curvature radius of 7', 23 =23 =1, 1> =
o =sinfd¢,, 03 = db,, = dy + cos 0,d¢h,,

o1 = cosy sin O,dgp, — sinyd6,,

and the chosen coordinates
2.6 €10,27],0, € [0,7],¢; €
i =1, 2. Here T"! is the homogenous space

range as p € [0, ],
[0,2x],yw € [0, 4x], and
SU(2)xSU(2)
U(n)
with the diagonal embedding of the U(l) and Einstein
metric to be R;; = 4g;;. This is an N = 1 superconformal
field theory which is dual to the type IIB theory compacti-
fied on AdSs x T"!.

A. Oscillating in AdS

Here we wish to study a class of string solutions which is
oscillating in the radial p direction of the AdS and at the
same time rotating along the y direction of the 7! with an
angular momentum. So we chose our ansatz as follows:

x=¢&=0, t=1(1),

0r=¢; =0, w=y(),

Now putting the above ansatz in Eq. (1), we get the relevant
background as

ds® = R? |-
g { 6 9

1 1
cosh pdt® + dp? + — do* + —dwz] .3

For the above background the Polyakov action is written as

RZ
S

1 1
P dadr[—cosh2pt2+p ——m? 4~ l,t/] (4)
T

6 9

where the “dot” denotes the derivative with respect to 7. We
can write the equations of motion for ¢ and p:

i+ 2tanhppt =0,
p + cosh psinh pt? = 0. (5)
Now from Virasoro constraint we get

. 1 1
2 — cosh2pi2 — ~m2 — — 2. 6
p* = cosh?p gm —g¥ (6)

From the Polyakov action we get the conserved charges

0, = siny sin 6,d¢, + cosydo,,
|

E = R*€ = R’cosh?pt,
2

R

Now Egq. (6) changes to

&

~ cosh?p

-, (8)

where k> = tm? + 972 The oscillation number for the
string is

9 R?

N =RN =— ¢ dpp. 9
N = }{ PP ( )
By putting x = sinh?p in the above equation, we get

N = / \VE 2(1 + x?) (10)
1—|—x

&2—i?

where a = =< and & is E2>k*>0. In order to

compute the oscillation number we take the partial deriva-
tive of the above equation with respect to m as prescribed in
Ref. [15]:

8___ﬂ/“ dx
om 6rJo /& —k*(1 +x?)
L (11)

12 12, im? 4972

For large £, integrating the above equation over m,

N = NO—%\/ém +972, (12)

where the integration constant N'o(€, J) can be computed
from the integral (10) for m = O:
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/ VE= )

1+ x?
5 37). (13)

where b =

9 jz Puttlng the above value in Eq. (12),

we get the energy as the function of the oscillation number
and angular momentum as

mz
5:2N+3J—\/F+9J2. (14)

The last term in the above equation can be expanded
according to the angular momentum. When m? < 5472,

L m—4+o[’"_6”. (15)

£=2N - 3‘7{1O8j2 23328 7* J°

When m? > 5472,

- m J* 72974 Jo
5_2N+3j—%[1+27W—TW+(9{—”.

B. Oscillating in 7!

In this subsection, we study another class of string
solutions where the string is oscillating in the € direction
of the T"'. We chose the ansatz as

t=1(7), p =0, 0, =0,
0 =0=10(r), b

¢ =0,

= ¢ = mo, w = 0. (17)

Now the metric in Eq. (1) changes to

1 1 1
2 2 2 2 2 2
ds* =R { dt +6d6’ +<9+18s1n Q)dqb] (18)

We write the Polyakov action for the fundamental string in
this background:

R? P 1 1
Sp = E/dadr[—tz —i-gé - <§+1—Ssm26’> 2}.
The equation of motion for 6 is

9+§m2 sinfcos 6 = 0. (20)

But from Virasoro constraint we get
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2 1
0> = 6&2 — <§ + §sin2¢9> m?, (21)

where E = R is the energy. Now the oscillation number
is

1 .
N = o j[d@@
——]{dﬁ\/&‘fz

Putting sin @ = x in the above equation, we get

_1 2(1 12 201 _ 42
\/651 x? 3 3 )m(l x*).

(23)

—sm29> . (22)

Differentiating the above equation with respect to m,

— = % % - %XZ dx.
om  2x \/652 (2 + 1x2) 2(1 - x2)
(24)
We put x> = y to compute the integral
N _ / %+ %y o
om 2w \/652 (1-y) = C+1y)m2y(1-y)
(25)

where a, b, and ¢ are the roots of the polynomial of the
denominator of the above integral (25). For large &£, we get
a lower bound to energy as £ as 6£% > m? and chose
a_18€2 —2m? b—l c=0:

ON

a—m:I]‘l—IQ, (26)

where

_m =
h 3n[ \/%(y—a)(y—b)(y—@

:_ﬂ\/i_[}&(l/a)

—= dy

- 6”/ \/ —a)(y=b)(y-¢)

= % \/z[[E(l/a) ~K(1/a)], (27)
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where K and E are the usual complete elliptic integral
of the first and second kind, respectively. We can expand
these elliptic integrals to get the energy as the function of
oscillation number:

%{ zg\/g{[m/a) - (1 +§> [K(l/a)], (28)

ON 5 m® 17 m' 265 m_6+0[g_7]
om — 12v6 € 57616 & 82944+/6 & ’

(29)

Now, integrating the above equation over m from 0 to oo
and setting A/ (c0) = 0, we get

I m_3+ 17w 265 m’
36v6 € 2880v6 & 58060816 &

+O[E7T).
(30)
Inversing the series we get the energy as

£ =0.0567 m>N~' +0.7495 m~' N
—1.789 m™N3 +20.67 mN> + O[N7].  (31)

III. OSCILLATING STRING IN NON-ABELIAN
T-DUAL KLEBANOV-WITTEN BACKGROUND

Here we take the dualized metric which is presented in
[34] where dualization is made with respect to the SU(2)
global isometry defined by the o,’s. As AdSs x T"! is a
block diagonal spacetime, AdS5 comes as a spectator space.
Also two fields 6, and ¢, of T"! come as spectators as the
gauge choices are taken accordingly. As the supersymmetry
in the dual field theory of AdSs x T"! is uncharged under
SU(2) flavor symmetries, it is supposed to persevere after
the T dualization along this SU(2). The resulting dualized
background is the ¢ model on a target space with the
N =1 supersymmetric solution of type IIA:

2 2 20, o B 5,
dSga = dSigs, +41(07 +03) + N

1
-+ A ((x + 232%)dx? + (x5 + 23)dx3

+ 2X1X2d)€1d)€2), (32)

where o5 = dy + cos0ydg;, A = 23x7 + 12(x3 + 23), and
R is taken to be 1 for convenience and otherwise can be
restored by suitable rescaling. For small values of x; and
fixed x, the metric on the internal space behaves as

/12
2263 (33)

dsf;ual = dsf‘dS5 + /1% (0% + a%) + 2 A%
2T 4
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Though geometry is regular, the above metric has a bolt
singularity which can be removed by changing the range of
w to be 27.

A. Oscillating in AdS

Here, we study the solution for a string moving in
the background (33) which is oscillating in AdS along
p and simultaneously rotating along y and localized at a
fixed point in the plane (xj,x,). Our ansatz for this
configuration is

x=%=¢1=0,
X1, X, = fixed. (34)

p=p(7),
0, = mo, v =y(7),

Now Eq. (33) takes the form

)2
ds?,q = —cosh’pdt* + dp? +13d07 + 2 jﬂé‘
24

xidy?.  (35)

We write the Polyakov action for the above background
(35):

1 .
S, = e dodr (—costht2 +p? = m?a?

/1% 2,02
. 36
+x%+/1421xll// ( )

From the Virasoro constraint we get

E? X3+ 23

-2 292

= —moA] —
1 22
A5x1

~ cosh?p

J2, (37)

where E and J are conserved charges and can be computed
as in Sec. I A. We can see that Eqgs. (8) and (37) are
equivalent. So the string states in (2) and (34) are
characterized by the same labels (9)—(16), if we choose
appropriate values for x; and x,. This is possible in the
finite range of ﬁ < x; < 1 for suitable x, values which

range as 0 < x, < @.

B. Oscillating in 7

In this subsection, we study the string which moves in
the non-Abelian T7-dual Klebanov-Witten background
which is oscillating along the 6, direction in 7' and
localized at a fixed point in the plane (x;, x,). Our ansatz is

0, =0=0(c).
X1, Xy = fixed. (38)

The relevant background looks like
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ds?,, = —di* + 12d0?

A
dg?. 39
x%+/1§x cos ] P71 (39)

+ [/I%sinzﬁ +

From Virasoro constraint, we get

., FE? 23
O =5 |1 -5 X1 |sin®0
e 23(x3 4+ 23)

3 20,2

+/l%(x% yr xl} m*. (40)
We can see that Eq. (21) is equivalent to (40) and labels
(22)—(31) are the same for the string states described by
(17) and (38) for the same values of x; and x, as we got in
the above subsection (III A).

Now, we wish to study another class of oscillating string
solution where the string is fixed at some point x, and
oscillating in the 7-dual coordinate direction x; from a
minimum (x| p;,) to @ maximum (x4, ) value. So, for this
configuration our ansatz is

t= t(T), pP = 0, 91 = 0, ¢1 = mo,

w =0, x; = x(7), x, = fixed. (41)

As x; is no longer fixed, we use the background in Eq. (32),

PHYSICAL REVIEW D 90, 046003 (2014)

)3

1
ds3, = —d* + 2 x2de? + (%H%)dx%. (42)

From the Virasoro constraint we get

= AE? — 2223mx? (43)
T4+ 4243
Now we write the oscillation number
1 /12/12m X2
=—0d —1. 44
2ﬂjg e (44)

Using a similar process to the previous section, we take the
derivative with respect to m and put x3 =y to get

ON m r 3 12/1

om 2z r \/yy+/12/12)(AE2

Wy
(45)

where r, and r; are two positive roots of the polynomial in
the denominator of the above integral (45). r; is the other
root, which is a negative one. The above integral can be
written in terms of the usual complete elliptic integrals and

and we get further expanded where the roots are — 5 7.0, and %
|
ON - -
8-zl (28) w23
om  g\/54(m> = 9E*)(rs — ry) r3 = r3 =
E? 5 4 E*
= —0.04167(1 + 36x2) 5+ 0. 42187(—1 — 24x3 + 432x3) pe
E6
—0.79101(5 + 108x§ — 1296x‘2‘ + 46656xg) " + O[ES], (46)

where m? > 9E?, which gives the upper bound to the energy, and in the E® term x, runs up to x5 and so on. Now this series

can be integrated over m and inverted to get the energy

B N
~ V(0.04167 + 1.5x3)°

+ (0.00082 — 0.11865x3 — 13.526x3

where 7 = m(0.04167 + 1.5x3)?. This is the energy
expression for the short strings which are oscillating in
the 7-dual coordinate direction.

IV. CONCLUSION

In this paper, we have studied various oscillating strings in
the Klebanov-Witten and its non-Abelian 7-dual background.

—358.80x8

N
1 + (—0.07031 — 1.6875x3 + 30.375x5) —
m

2 3
—2306.6x3) NZ +0 <N ﬂ , (47)
m

|
First we have studied the oscillating long stringsin AdS, x S2,
where the string is expanding and contracting in the
radial direction of AdS and simultaneously has an angular
momentum in the 7!, We have found the energy as a linear
function of the oscillation number. Then we have studied
another class of oscillating strings which are oscillating in
R x T'! along the T'-!. The energy for the long string comes
to be a series as a function of the string oscillation number.
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In the last section, we have studied the oscillating strings
in the non-Abelian 7-dual Klebanov-Witten background.
We fixed the T-dual coordinates so that the remaining
directions give a squashed three sphere geometry and a
reduction in the range of the y direction in order to remove
the bolt singularity. In this geometry, the 7-dual coordinate
x; = 0 singularity at fixed 6;, ¢; is a coordinate singularity
of R? in polar coordinates. Here we have found both the
Klebanov-Witten and its 7-dual background give the same
result for a range of 7-dual coordinates, though their field
theory duals are different in principle, because a particular
sector of geometry of T!! is unaffected by the non-Abelian
T duality. As we see, this is not true throughout the space as
it is restricted by the range of 7-dual coordinates.
Furthermore, we have studied some oscillating strings
which are oscillating in the 7-dual coordinate direction
and found its energy expression for the short string
configuration. We have also remarked that, though the R
charge (y) [45] vanishes, there is a nonvanishing 7-dual
coordinate x; and a solution contrary to [43], where
vanishing R charge implies the vanishing of 7-dual
coordinate x; for the rotating strings. The solutions

PHYSICAL REVIEW D 90, 046003 (2014)

presented here are in the AdSsx T"! and its T-dual
background which are dual to the N' = 1 superconformal
field theory with SU(2) x SU(2) flavor symmetry. The
chiral operators analogue to the operators in N = 4 super-
symmetric Yang-Mills are given by Tr(AB)* with R charge
k and in the (§,5) representation of the flavor group
SU(2) x SU(2). Here the two chiral multiplets A and B,
which are elementary degrees of freedom, are correspond-
ingly in the (N, N) and (N,N) representations. We can
notice that the solution presented in Eq. (47) is dependent
upon the 7-dual coordinate x, which prompts us to expect
the existence of a superconformal field theory dual operator
to this string state whose anomalous dimension depends
upon the T-dual coordinate. However, a prediction of the
exact form of the operator for the solution in Eq. (47)
cannot be done on the basis of the work presented here. We
leave this problem for future work.
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