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We derive covariant equations for a system of two quarks and two antiquarks where the effect of
quark-antiquark annihilation is taken into account. In our approach, only pairwise interactions are retained,
while all possibilities of overcounting are excluded by (i) keeping terms in the kernel that are consistent
with a meson-meson and diquark-antidiquark substructure, and (ii) introducing four-body equations with a
novel structure that specifically avoids the generation of overcounted terms. The resulting tetraquark bound
state equations are given for the case of general two-body interactions, and for the specific case of separable
interactions that lead to a description of the tetraquark in terms of meson-meson and diquark-antidiquark
degrees of freedom where the effects of quark-antiquark annihilation are included. The inclusion of
2q2q̄- and qq̄-channel coupling in our approach enables a wide variety of applications of our equations to
other processes within the 2q2q̄ system, and to other two-particle plus two-antiparticle systems.

DOI: 10.1103/PhysRevD.90.045042 PACS numbers: 12.38.-t, 12.38.Lg, 13.75.Lb, 14.80.-j

I. INTRODUCTION

The present paper is motivated by recent studies by
Heupel, Eichmann, Popovici and Fischer (HEPF) [1,2] of
tetraquark bound states in the framework of covariant
four-body equations based on continuum quantum field
theory (QFT). These authors described the underlying two-
quark two-antiquark (2q2q̄) dynamics in terms of meson,
diquark, and antidiquark degrees of freedom, and for this
purpose used the four-body equations of Khvedelidze and
Kvinikhidze (KK) [3]. The equations of KK are exact in the
pair-interaction approximation, but are valid, strictly speak-
ing, only for systems like 4q where annihilation does not
take place; as such, they can describe the 2q2q̄ system only
if the effect of qq̄ pair annihilation is neglected. The
purpose of the present paper is to derive equations for
the system of two quarks and two antiquarks where qq̄ pair
annihilation is taken into account.
In the context of continuum QFT, the derivation of

covariant equations for few-body systems is an important
but nontrivial task, as one routinely encounters the noto-
rious problem of overcounting of Feynman diagrams. Such
overcounting problems have been solved in the last two
decades for a number of cases [3–8]. One of these is the
case of four-quark equations where even the seemingly
natural task of summing pair-interaction kernels leads to
overcounting [1,3]. Likewise, overcounting provides a
major challenge when formulating 2q2q̄ equations where

qq̄ annihilation is taken into account. In this paper we have
solved the overcounting problem by (i) keeping terms in the
kernel that are consistent with the meson-meson (MM) and
diquark-antidiquark (DD̄) coupled channels approach of
HEPF, and (ii) introducing new coupled channel four-body
equations whose form is explicitly constructed to avoid
overcounting. In this way we have derived 2q2q̄ equations
whose kernels encode the process of qq̄ annihilation.
Although our equations, Eqs. (30), do not depend on the

form of the two-body interaction, the case of separable
interactions corresponding to bound-state mesons,
diquarks, and antidiquarks is of special interest as it
provides a description of the tetraquark in terms MM
and DD̄ degrees of freedom, similar to that of HEPF, yet
where qq̄ annihilation is taken into account through
inclusion of processes like those illustrated in Fig. 1.
Our final equations, Eqs. (42), not only allow one to assess
the contribution of nonexotic qq̄ states to the makeup of
tetraquarks, but they can more generally serve as a tool for
identifying the tetraquark, meson molecule, or hybrid
states; and given the covariant field-theoretical setting,
they can offer better insights into the underlying dynamics
of the strong interaction.
Apart from tetraquarks, our equations can describe the

scattering processes of usual mesons (qq̄ bound states).
They are also suitable for the construction of scattering
amplitudes corresponding to all possible processes in the
system of two nucleons and two antinucleons. The results
of the paper are also useful for detailed studies of the
nonexotic qq̄ bound states [9]; namely, the two-body qq̄
Bethe-Salpeter kernel can be constructed as a solution of
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the 2q2q̄ equations, corresponding to an infinite sum of
physically meaningful Feynman diagrams in the qq̄ kernel.
Analogous studies could also be considered in the system
of two electrons and two positrons.

II. DERIVATION

In this section we present a derivation of four-body
equations for the 2q2q̄ system where quark annihilation is
taken into account. For clarity of presentation, we treat the
quarks as distinguishable, as all the necessary antisymmet-
rization can be performed at the end of the derivation (Green
functions and t matrices need to be summed with respect to
permutations of either initial or final state quark or antiquark
quantum numbers using antisymmetrizing factors of −1).
The four-body Green functionG and the corresponding t

matrix X, defined by

G ¼ G0 þG0XG0; ð1Þ
satisfy Dyson equations which relate them to the four-body
interaction kernel K:

G ¼ G0 þG0KG; ð2aÞ
X ¼ K þ KG0X; ð2bÞ

where G0 is the free four-body Green function. Following
the notation of Ref. [1], we assign labels 1,2 to the quarks
and 3,4 to the antiquarks. The kernel K can be formally
expressed as

K ¼ K2 þ K3; ð3Þ
where K2 consists of only pairwise interactions, and K3

consists of all other contributions, necessarily involving
three- and four-body forces. One can then writeK2 as a sum
of three terms whose structure is illustrated in Fig. 2, and
correspondingly expressed as

K2 ¼
X
aa0

Kaa0 ; ð4Þ

where the index a ∈ f12; 13; 14; 23; 24; 34g enumerates
six possible pairs of particles, and the double index aa0 ∈
fð12; 34Þ; ð13; 24Þ; ð14; 23Þg enumerates three possible
two pairs of particles. Thus Kaa0 describes the part of
the four-body kernel where all interactions are switched off
except those within the pairs a and a0.
In order to express Kaa0 in terms of the two-body kernels

Ka, we make use of the Green function Gaa0 that
corresponds to the sum of all Feynman diagrams where
the pair a is disconnected from the pair a0:

Gaa0 ¼ GaGa0 ; ð5Þ
whereGa is the two-body Green function for particle pair a.
Both Ga and the corresponding two-body t matrix Xa,
defined by

Ga ¼ G0
a þ G0

aXaG0
a; ð6Þ

satisfy Dyson equations which relate them to the two-body
interaction kernel Ka:

Ga ¼ G0
a þ G0

aKaGa; ð7aÞ

Xa ¼ Ka þ KaG0
aXa; ð7bÞ

where G0
a is the free Green function for pair a. Similarly,

both Gaa0 and the corresponding four-body t matrix Xaa0 ,
defined by

Gaa0 ¼ G0 þG0Xaa0G0; ð8Þ
satisfy Dyson equations which relate them to the four-body
interaction kernel Kaa0 :

Gaa0 ¼ G0 þ G0Kaa0Gaa0 ; ð9aÞ

Xaa0 ¼ Kaa0 þ Kaa0G0Xaa0 : ð9bÞ

Then using Eqs. (5), (7a), and (9a) one obtains1FIG. 2. Structure of the four-body kernel K2 where only two-
body forces are included. Each of the summed diagrams
corresponds to the term Kaa0 of Eq. (4), where index a (a0) is
given by the numerical labels of the two top (bottom) quark (q) or
antiquark (q̄) lines. Note that the precise mathematical meaning
of each diagram is given by Eq. (10).

FIG. 1. Examples of terms involving qq̄ annihilation contributing to the tetraquark amplitude within a model involving only meson,
diquark and antidiquark constituents: (a) MM scattering, (b) DD̄ scattering, (c) DD̄←MM transition. Such terms are not taken into
account when the covariant four-body equations of KK [3] are used to describe the 2q2q̄ system.

1In four-body expressions we shall suppress factors of G0−1
a

associated with noninteracting pairs in the a channel. For
example, Eq. (10) is shorthand for Kaa0 ¼ KaG0−1

a0 þ Ka0G0−1
a −

KaKa0
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Kaa0 ¼ Ka þ Ka0 − KaKa0 : ð10Þ

In the case of qq or q̄ q̄ channels (α ¼ 12, 34), Ka is the
sum of two-body irreducible diagrams, all of which
are connected. However, in the case of a qq̄ channel
ðα ¼ 13; 14; 23; 24Þ, Ka also contains a disconnected part
which corresponds to the annihilation (creation) of the qq̄
pairs into (from) vacuum in the initial (final) states. This
disconnected part of Ka can be derived from Eq. (7a) given
that the same disconnectedness is present in Ga in the form
of the product of two single quark Green functions
corresponding to the independent propagation of q and
q̄ in the t channel (this disconnected part of Ga should not
be confused with the free Green function G0

a, which
corresponds to the independent propagation of q and q̄
in the s channel). In other words, the qq̄ t matrix Xa has a
disconnected part Aa which consists of two u-turned quark
lines corresponding to the annihilation (creation) of the qq̄
pairs in the initial (final) state, as illustrated in Fig. 3. Such
disconnected parts are present in the 2q2q̄ system, and are
not taken into account by the four-body equations of
Ref. [3] (these equations were developed to describe
four-body systems like 4q, where there are no annihilation
channels).

A. Exact 2q2q̄ equations

Exact 2q2q̄ equations in the pairwise approximation can
be obtained by analogy with the derivation for the covariant
pion-two-nucleon (πNN) system [4] where inclusion of
pion absorption leads to a corresponding overcounting
problem, as noted above. The procedure is to first expose
two-body qq̄ cuts in the four-body Green function, as was
done in Eq. (31) of Ref. [4] where NN cuts were exposed.
The remaining qq̄ irreducible part of the 2q2q̄ Green
function will then satisfy the 4q equations of Refs. [1,3].
Details of this derivation will be presented elsewhere.

B. Approximate 2q2q̄ equations

Here we derive 2q2q̄ equations by modifying KK’s 4q
equations in such a way that disconnected two-body
kernels Aa are included without any occurrence of over-
counting. Although this way may not be efficient for
derivation of exact 2q2q̄ equations, it suits well the nature
of the approximations used in Ref. [1] where only two-
meson (MM) and diquark-antidiquark (DD̄) states are
exposed in the equations. It is worth noting that the

approach taken here is very different from the one used
in Ref. [4] to derive the πNN equations.
We begin with Eqs. (2)–(10). The difference from the 4q

case is that the qq̄ kernels, Ka, contain disconnected parts
which correspond to the annihilation of qq̄ pairs into
vacuum. Inclusion of these disconnected parts leads to
an important difference between the 2q2q̄ formulation and
the one for the 4q system: the “pair-interaction approxi-
mation” where the full four-body kernel K is equated with
the pairwise kernel K2 of Eq. (4), by itself, does not make
sense in the 2q2q̄ case due to a double-counting problem
in the corresponding Green function. In the exact 2q2q̄
equations described above, three- and four-body force
counterterms need to be included in order to cancel the
double-counted terms generated by iteration of the pair-
interaction kernels—that is why discarding three- and four-
body forces is not allowed in this setting. Here we show
another way of avoiding this double counting: we work out
how to keep only that part of the pair-interaction kernel
which is physically meaningful on the one hand side, and
that does not generate double-counted terms on the other.
We consider the two-body correlations t matrix Xaa0

defined by Eq. (8). Using Eqs. (5), (6), and (8), one can
expressXaa0 in termsof the two-body tmatricesXa andXa0 as

Xaa0 ¼ Xa þ Xa0 þ XaXa0 : ð11Þ

Writing

Xa ¼ Ta þ Aa; ð12Þ

where Ta and Aa are the connected and disconnected parts
of Xa, respectively, we note that it is Ta which corresponds
to the physical two-body scattering amplitude, while the
disconnected part Aa contributes to the physical four-body
amplitude where it describes qq̄ annihilation into vacuum.
The explicit possibilities for Xa are

X12 ¼ T12;

X34 ¼ T34;

X13 ¼ T13 þ A13;

X14 ¼ T14 þ A14;

X23 ¼ T23 þ A23;

X24 ¼ T24 þ A24: ð13Þ

FIG. 3. Disconnected part of the qq̄ t matrix Xa. Left arrows
indicate particles, as labeled, while right arrows indicate the
corresponding antiparticles.

FIG. 4. The amplitude A23 (disconnected part of the qq̄ t matrix
X23). With the initial (final) quark assigned momentum label p2

(k2), and corresponding antiquark assigned momentum−p3 (−k3),
so that p2 − p3 ¼ 0, the expression for A23 is given as in Eq. (14).
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Note that Aa is nonzero only in qq̄ subspace; amplitude
A23, for example, is illustrated in Fig. 4 and explicitly
given by

A23ðk2; k3; p2; p3Þ ¼ −δðp2 − p3ÞS−1ðk2ÞS−1ðp2Þ; ð14Þ

where the momenta are assigned to the quark line direction,
so that p2 ðk2Þ are the momenta of the incoming (outgoing)
quarks, and−p3 ð−k3Þ are themomenta of the corresponding
antiquarks.More specifically, one has the following quantum
field theoretic definitions of the Green function quantities in
the 23 channel:

G23ðk2; k3; p2; p3Þ ¼
Z

eiðk2y2−k3y3−p2x2þp3x3Þh0jTqðy2Þq̄ðy3Þq̄ðx2Þqðx3Þj0idy2dy3dx2dx3
¼ G0

23 þ G0
23ðT23 þ A23ÞG0

23; ð15aÞ

G0
23ðk2; k3; p2; p3Þ ¼

Z
eiðk2y2−p2x2Þh0jTqðy2Þq̄ðx2Þj0idy2dx2

Z
eið−k3y3þp3x3Þh0jTqðx3Þq̄ðy3Þj0idy3dx3

¼ Sðp2Þδðk2 − p2ÞSðp3Þδðk3 − p3Þ; ð15bÞ

½G0
23A23G0

23�ðk2; k3; p2; p3Þ ¼ −
Z

eiðk2y2−k3y3Þh0jTqðy2Þq̄ðy3Þj0idy2dx2
Z

eið−p2x2þp3x3Þh0jTqðx3Þq̄ðx2Þj0idy3dx3
¼ −Sðk2Þδðk2 − k3ÞSðp2Þδðp2 − p3Þ: ð15cÞ

Note that the minus sign in the definition of A23 is due to
the Wick theorem, as can be seen easily from the fact that
A23 can be obtained from G0

23 by switching outgoing quark
ends, thus entailing a sign change.
The covariant equations of KK were derived for

four-body systems, like 4q, where the pair interactions
are described by connected two-body t matrices Ta, that is,
for the case where the disconnected parts Aa are equal
to zero for all two-body channels a. Using the model
where only two-body correlations are included, K ¼ K2

(which obviously has no double-counting problems arising
from disconnected two-body kernels), KK showed that
the resultant four-body t matrix, denoted by T, can be
expressed as

T ¼
X
aa0

T aa0 ; ð16Þ

where

T aa0 ¼ Taa0 þ Taa0G0ðT bb0 þ T cc0 Þ;
aa0 ≠ bb0 ≠ cc0 ≠ aa0:

ð17Þ

In Eq. (17), the amplitude Taa0 is the tmatrix corresponding
to Green function Gaa0 ; that is, Taa0 ≡ Xaa0 for the special
case where all Aa ¼ 0, in which case Eq. (11) is written as

Taa0 ¼ Ta þ Ta0 þ TaTa0 : ð18Þ

In order to derive covariant equations for the four-body
system 2q2q̄ where qq̄ annihilation is included, we shall

start with the KK equations, Eqs. (16)–(18), and examine
the consequence of including the disconnected parts Aa by
simply making the replacements Ta → Xa ¼ Ta þ Aa;
that is, we examine the consequences of writing the full
amplitude X, defined in Eq. (1), as

X ¼
X
aa0

Xaa0 ; ð19Þ

where

Xaa0 ¼ Xaa0 þ Xaa0G0ðXbb0 þ Xcc0 Þ;
aa0 ≠ bb0 ≠ cc0 ≠ aa0;

ð20Þ

with amplitude Xaa0 being given by Eq. (11). For
this purpose it is useful to introduce amplitudes Aaa0

defined by

Xaa0 ¼ Taa0 þ Aaa0 ; ð21Þ
where Taa0 is defined by Eq. (18), so that

Aaa0 ¼ Aa þ Aa0 þ TaAa0 þ AaTa0 þ AaAa0 : ð22Þ
From the outset, we shall discard the product of discon-
nected terms AaAa0 (consisting of A13A24 and A14A23), as
they do not contribute to the physically meaningful part of
the four-body t matrix. Nevertheless, it is apparent (as
demonstrated below) that Eq. (20) is still problematic as it
suffers from double-counting problems. Here we propose
to handle the overcounting problem by making an approxi-
mation that is consistent with the one used in Ref. [1];
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namely, we shall neglect terms in Eqs. (18) and (22) that are
linear in Ta, so that2

Taa0 → TaTa0 ; ð23aÞ

Aaa0 → Aa þ Aa0 : ð23bÞ

In this approximation the two-body correlation t matrices
Xaa0 are modeled as

Xaa0 → TaTa0 þ Aa þ Aa0 ; ð24Þ
or specifically,

X12;34 → T12T34; ð25aÞ

X13;24 → T13T24 þ A13 þ A24; ð25bÞ

X14;23 → T14T23 þ A14 þ A23: ð25cÞ

The approximation of Eq. (23a) was used in Ref. [1], and
is based on the physically motivated assumption of the
tetraquark being mainly a bound state of two mesons or of
diquark-antidiquark pairs. Thus only two qq̄ pair inter-
action t matrices ðT13;24 and T14;23Þ are modified with
respect to the paper of Ref. [1] through the addition of
disconnected parts Aa. Analysis of the double-counting
problem inherent in Eq. (20) provides additional support
for the approximations of Eqs. (25). For example, consider
the term TaAa0 which appears in Eq. (22). Such a term is
illustrated in Fig. 5(a) for the case of T14A23 which would
arise as part of the inhomogeneous term X14;23 of Eq. (20).
Yet already in the second iteration of Eq. (20) there would
be the term X14;23G0X12;34G0X14;23 giving rise to an
amplitude A23T12T34A23, illustrated in Fig. 5(b), which
is already contained T14A23. Thus, instead of introducing
three- and four-body forces to compensate double-counted
terms, as prescribed by the exact approach, the approx-
imations of Eqs. (25) provide an alternative descrip-
tion where these compensating forces are effectively taken
into account without going beyond a pair-interaction
model.
However, even with the approximations of Eqs. (25)

implemented, Eq. (20) still generates double-counted
terms. Namely, the term A13A14 generated in the first
iteration can be obtained from A13 by switching antiquark
labels 3 and 4 in the initial state, as illustrated in Fig. 6; yet
just this switching will be produced by antisymmetrization
of the solution of Eq. (20). Such troublesome double-
counted terms can be avoided by modifying Eq. (20) in
such a way that will not allow the kernels A13 and A14 to

meet through the process of iteration. To this end we split
the component amplitudes Xaa0 into two parts

Xaa0 ¼ T aa0 þAaa0 ð26Þ

and introduce the following coupled equations that replace
those of Eq. (20):

Aaa0 ¼ Aaa0 þ Aaa0G0ðT bb0 þ T cc0 Þ; ð27aÞ

T aa0 ¼ Taa0 þ Taa0G0ðXbb0 þ X cc0 Þ; ð27bÞ

where aa0 ≠ bb0 ≠ cc0 ≠ aa0. Equations (27) provide the
sought-after description of the covariant 2q2q̄ system
where qq̄ annihilation is taken into account in a way that
is free from overcounting, and that is consistent with the
two-meson and diquark-antidiquark model of Ref. [1].
The corresponding tetraquark bound state equations are

Ψ ¼
X
aa0

Ψaa0 ; ð28Þ

where

Ψaa0 ¼ ΨT
aa0 þΨA

aa0 ð29Þ

and

ΨA
aa0 ¼ G0Aaa0 ðΨT

bb0 þΨT
cc0 Þ; ð30aÞ

ΨT
aa0 ¼ G0Taa0 ðΨbb0 þΨcc0 Þ; ð30bÞ

FIG. 5. Example of overcounting resulting from a replacement
Ta → Xa ¼ Ta þ Aa in the KK equations: (a) amplitude T14A23

contained in the inhomogeneous term X14;23 of Eq. (20), (b) am-
plitude A23T12T34A23 contained in the second iteration term
X14;23G0X12;34G0X13;23. The amplitude in (b) is already contained
in the amplitude in (a).

FIG. 6. Example of overcounting inherent in Eq. (20).
Illustrated is amplitude A13A14, which is generated in the first
iteration of Eq. (20), but that is also obtained from A13 when the
initial state antiquark labels 3 and 4 are interchanged through
antisymmetrization.

2In the Appendix we discuss the overcounting problem from a
broader perspective where we show how more general equations
2q2q̄ can be derived for the case where the linear terms Ta are
retained.

COVARIANT EQUATIONS FOR THE TETRAQUARK AND MORE PHYSICAL REVIEW D 90, 045042 (2014)

045042-5



where aa0 ≠ bb0 ≠ cc0 ≠ aa0. To save on notation, we shall
suppress writing factors of G0. Then from Eqs. (30) one
obtains the following closed-form equation for ΨT

aa0 :

ΨT
aa0 ¼ Taa0 ½ð1þ Acc0 ÞΨT

bb0 þ ð1þ Abb0 ÞΨT
cc0

þ ðAbb0 þ Acc0 ÞΨT
aa0 �: ð31Þ

One should note that the kernels Taa0 are not compact
as they contain singular δ functions corresponding to the
pair aða0Þ total 4-momentum conservation. Similarly, the
kernels Taa0Acc0 are not compact either as they involve δ
functions restricting the total momentum of some qq̄ pairs
to zero. One should therefore iterate Eq. (31) once to cast it
in the form where the kernels are compact. The procedure
of compactification is simpler if one uses the separable
approximation for two-body t matrices:

Ta ¼ −ΓaDaΓ̄a; ð32Þ

where Da is the propagator for the bound particle in
channel a (diquark, antidiquark, or meson), and Γ (Γ̄) is
the vertex function for the particle’s disintegration into
(formation from) its quark or antiquark constituents.3

Showing explicit dependence on momentum variables,
Eq. (32) can be expressed as

Taðp0
1p

0
2; p1p2Þ ¼ −Γaðp0

1p
0
2ÞDaðPÞΓ̄aðp1p2Þ; ð33Þ

where P ¼ p1 þ p2 is the total off-mass-shell momentum
of the bound particle. Substituting into Eq. (31) leads to the
factorization of the 2q2q̄ bound state wave function as

ΨT
aa0 ¼ ΓaDaΓa0Da0Φaa0 ; ð34aÞ

Φaa0 ¼ Γ̄aΓ̄a0 ½ð1þ Acc0 ÞΨT
bb0 þ ð1þ Abb0 ÞΨT

cc0

þ ðAbb0 þ Acc0 ÞΨT
aa0 �; ð34bÞ

where Φaa0 are the components of the 2q2q̄ bound state
vertex function in MM and DD̄ space; i.e., Φ13;24 (Φ12;34)
is the MMθ (DD̄θ) covariant vertex. As functions of
momenta, Eq. (34a) can be written as

ΨT
aa0 ðp; q; q0; PÞ ¼ Γaðq;QÞDaðQÞΓa0

× ðq0; Q0ÞDa0 ðQ0ÞΦaa0 ðp; PÞ; ð35Þ

where P is the 2q2q̄ bound state total momentum, p is the
relative momentum between its respective constituents,
q; q0 are the relative momenta of the (anti)diquarks and
mesons, andQ;Q0 are their off-mass-shell momenta. Using
Eq. (34a) in Eq. (34b) one obtains a closed set of equations
for the bound state vertex functions:

Φaa0 ¼ Γ̄aΓ̄a0 ð1þ Acc0 ÞΓbΓb0DbDb0Φbb0

þ Γ̄aΓ̄a0 ð1þ Abb0 ÞΓcΓc0DcDc0Φcc0

þ Γ̄aΓ̄a0 ðAbb0 þ Acc0 ÞΓaΓa0DaDa0Φaa0 ; ð36Þ

where aa0 ≠ bb0 ≠ cc0 ≠ aa0. Although formally a set of
three coupled equations, consideration of antisymmetry
reduces Eq. (36) to a set of two equations for the two
components,MM and DD̄, of the tetraquark. To show this,
we define the component vertex functions as

ΦD ¼ Φ12;34; ð37aÞ

ΦM ¼ Φ13;24 ¼ −Φ14;23: ð37bÞ

The relation Φ13;24 ¼ −Φ14;23 for the MM component of
the tetraquark follows from the antisymmetry of the
diquark and antidiquark wave functions with respect to
permutation of the quarks’ quantum numbers: Γ12 ¼ −Γ21

and Γ34 ¼ −Γ43. This antisymmetry property relates
MM←DD̄ transition kernels to each other,

Γ̄13Γ̄24ð1þ A14;23ÞΓ12Γ34 ¼ −Γ̄14Γ̄23ð1þ A13;24ÞΓ12Γ34;

ð38Þ

which in turn can be used in Eq. (36) to show
Φ13;24 ¼ −Φ14;23.
The two equations for ΦM and ΦD, mentioned above,

consist of two lines of Eq. (36), one corresponding to
aa0 ¼ 13; 24, bb0 ¼ 12; 34, and cc0 ¼ 14; 23 (for which
Abb0 ¼ 0), and another corresponding to aa0 ¼ 12; 34,
bb0 ¼ 13; 24, and cc0 ¼ 14; 23:

ΦM ¼ ðΓ̄13Γ̄24A14;23Γ13Γ24 − Γ̄13Γ̄24Γ14Γ23ÞMMΦM

þ Γ̄13Γ̄24ð1þ A14;23ÞΓ12Γ34DD̄ΦD; ð39aÞ

ΦD ¼ 2Γ̄12Γ̄34ð1þ A14;23ÞΓ13Γ24MMΦM

þ 4Γ̄12Γ̄34A23Γ12Γ34DD̄ΦD; ð39bÞ

where we have used A14;23 ¼ A14 þ A23 and the following
relations analogous to Eq. (38):

Γ̄12Γ̄34ð1þ A14;23ÞΓ13Γ24 − Γ̄12Γ̄34ð1þ A13;24ÞΓ14Γ23

¼ 2Γ̄12Γ̄34ð1þ A14;23ÞΓ13Γ24; ð40aÞ

Γ̄12Γ̄34ðA13;24þA14;23ÞΓ12Γ34¼2Γ̄12Γ̄34A13;24Γ12Γ34

¼4Γ̄12Γ̄34A23Γ12Γ34: ð40bÞ
With respect to meson quantum numbers, Eqs. (39) admit
both symmetric and antisymmetric solutions because the
kernels of Eqs. (39) do not change when the meson
quantum numbers are swapped in initial and final states

3Note that our definitions of Γ and Γ̄ are the ones often used for
separable potentials, but differ from the ones used in Ref. [1].
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simultaneously. To exclude the antisymmetric solutions,
Eqs. (39) should be symmetrized with respect to meson
quantum numbers. Such symmetrization and the replace-
ments (renormalization)

Γ12 →
1ffiffiffi
2

p Γ12; Γ̄12 →
1ffiffiffi
2

p Γ̄12; Γ34 →
1ffiffiffi
2

p Γ34;

Γ̄34 →
1ffiffiffi
2

p Γ̄34; ΦD → 2ΦD ð41Þ

cast Eqs. (39) into a form where the symmetry with respect
to the indistinguishable meson legs is manifest:

ΦM ¼
X
P

ðΓ̄13Γ̄24A14;23Γ13Γ24 − Γ̄13Γ̄24Γ14Γ23Þ
MM
2

ΦM

þ Γ̄13Γ̄24ð1þ A14;23ÞΓ12Γ34DD̄ΦD; ð42aÞ

ΦD ¼ Γ̄12Γ̄34ð1þ A14;23ÞΓ13Γ24

MM
2

ΦM

þ Γ̄12Γ̄34A23Γ12Γ34DD̄ΦD; ð42bÞ

where
P

P stands for the sum over meson legs’ permutation
in either the initial or final state. Note the combinatorial
normalization factor 1=2 at each intermediate state of two
indistinguishable mesons. To understand the renormaliza-
tion in Eq. (41), we note that the symmetric Eqs. (42) could
be obtained in the above derivation if one would renorm-
alize the ansatz Eq. (33) for qq and q̄ q̄ amplitudes by factor
1=2; for example, in the qq case

T12ðp0
1p

0
2; p1p2Þ ¼ −

1

2
Γ12ðp0

1p
0
2ÞDðPÞΓ̄12ðp1p2Þ: ð43Þ

The Γ12 extracted from Eq. (43), owing to the factor 1=2, is
the correctly normalized vertex function of a diquark
composed of indistinguishable quarks, in that 2T12 contains
all diagrams of scattering of indistinguishable quarks; for
example, in the one gluon exchange approximation, 2T12

corresponds to the symmetric sum of two single gluon
exchange diagrams. If, instead, the ansatz of Eq. (33) and
the corresponding Eqs. (39) are slightly more convenient
(as mentioned above), it is only because, for example, in the
one gluon exchange approximation kernel, the vertex Γqq is
related to Γqq̄ only by the substitution of an antiquark with a
quark leg without a factor. The reason is that the quark-
quark and quark-antiquark scattering amplitudes T12 and
T13 satisfy the same equation, T ¼ K þ KT, where K
corresponds to a single diagram of one gluon exchange.

C. Double-counting problem

Although the physically transparent form of our final
equations for the vertex functions ΦM and ΦD, Eqs. (42),
should dispel any concerns that some important parts may
still be missing or some parts still overcounted, there exists

a rigorous way to check this. To formulate exact QFT
equations for few-body systems like πNN and 2q2q̄ where
some particles can be absorbed by others (e.g. π by N), or
pairs of particles can undergo annihilation (e.g. qq̄), one
starts with the general structure of the full few-body Green
function that, in the case of the 2q2q̄ system, is manifested
by the relation

Gð4Þ ¼ Gð4Þ
ir þ Gð4−2Þ

ir Gð2Þ−1
0 Gð2ÞGð2Þ−1

0 Gð2−4Þ
ir ; ð44Þ

whereGð2Þ is the full two-body qq̄Green function, andGð4Þ
ir

is the qq̄ irreducible part of the full 2q2q̄ Green function

Gð4Þ; further,Gð2−4Þ
ir (Gð4−2Þ

ir ) is the sum of all qq̄ irreducible
diagrams of the Green function corresponding to the
transition qq̄←2q2q̄ (2q2q̄←qq̄). The main task is then

to express Gð2−4Þ
ir and Gð4−2Þ

ir in terms of Gð4Þ
ir . To be

consistent with the problem setting (which is to derive
equations coupling the qq̄ and 2q2q̄ channels), Gð2Þ also
should be expressed in terms of Gð4Þ

ir (thereby exposing the

2q2q̄ intermediate states in Gð2Þ). For Gð2−4Þ
ir , this would

normally be accomplished by isolating the last possible

2q2q̄ cut inGð2−4Þ
ir , thereby splitting this amplitude into two

parts:Gð4Þ
ir to the right of the cut, and a qq̄←2q2q̄ amplitude

that is both qq̄ and 2q2q̄ irreducible to the left of the cut. The
problem is that such a “last 2q2q̄ cut” is not unique, and
special procedures need to be implemented to avoid con-
sequent overcounting. In just this way, QFT few-body
equations were derived for the πNN problem in Ref. [4].
We now show that our final equations, Eqs. (42), can be

cast into the form specified by Eq. (44). To begin, we
rewrite Eqs. (42) in the form

ΦM ¼ ðΓ̄13Γ̄24ÞS
�
A23 −

P34

2

�
ðΓ13Γ24ÞS

MM
2

ΦM

þ ðΓ̄13Γ̄24ÞS
�
1

2
þ A23

�
Γ12Γ34DD̄ΦD; ð45aÞ

ΦD ¼ Γ̄12Γ̄34

�
1

2
þ A23

�
ðΓ13Γ24ÞS

MM
2

ΦM

þ Γ̄12Γ̄34A23Γ12Γ34DD̄ΦD; ð45bÞ

where ðΓ̄13Γ̄24ÞS denotes the wave function of two indis-
tinguishable mesons, so that

ðΓ13Γ24ÞS ¼ Γp
13Γk

24 þ Γk
13Γ

p
24; ð46Þ

where p and k are the meson momenta, and P34 stands for
permutation of antiquark legs 3 and 4, so that

P34Γ
p
13Γk

24 ¼ Γp
14Γk

23: ð47Þ

The set of Eqs. (45) can be written in matrix form as
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Φ ¼ VGM
0 Φ; ð48Þ

where

Φðp; kÞ ¼
�
ΦMðp; kÞ
ΦDðp; kÞ

�
; GM

0 ¼
� 1

2
MM 0

0 DD̄

�
; ð49Þ

and V is a 2 × 2 matrix kernel corresponding to all four
transitions betweenMM andDD̄ states. One can express V
as a sum V ¼ Vqq̄ þ V2q2q̄, where Vqq̄ and V2q2q̄ are the
parts of the kernel corresponding to qq̄ and 2q2q̄ s-channel
exchanges, respectively:

Vqq̄ ¼
� ðΓ̄13Γ̄24ÞSA23ðΓ13Γ24ÞS ðΓ̄13Γ̄24ÞSA23Γ12Γ34

Γ̄12Γ̄34A23ðΓ13Γ24ÞS Γ̄12Γ̄34A23Γ12Γ34

�
; ð50aÞ

V2q2q̄ ¼
1

2

�
−ðΓ̄13Γ̄24ÞSG0P34ðΓ13Γ24ÞS ðΓ̄13Γ̄24ÞSG0Γ12Γ34

Γ̄12Γ̄34G0ðΓ13Γ24ÞS 0

�
: ð50bÞ

Note that the propagator for four noninteracting quarks,
G0, is shown explicitly in Eq. (50b) whereas in Eqs. (45) it
is omitted for notational convenience. These kernels are
illustrated diagrammatically in Fig. 7.
The inhomogeneous equation for the MM-DD̄ Green

function G corresponding to the homogeneous Eq. (48) is

G ¼ GM
0 þGM

0 ðVqq̄ þ V2q2q̄ÞG: ð51Þ

It can be written in the form

G ¼ Gir þ GirVqq̄G; ð52Þ

where Gir is the sum of all qq̄ irreducible terms in Green
function G, and itself satisfies the equation

Gir ¼ GM
0 þ GM

0 V2q2q̄Gir: ð53Þ

Using Eq. (15c), which we shall write in the current four-
body context as A23 ¼ −S23G0

14S23, Eq. (50a) can be
written as

Vqq̄ ¼ −
� ðΓ̄13Γ̄24ÞSS23G0

14S23ðΓ13Γ24ÞS ðΓ̄13Γ̄24ÞSS23G0
14S23Γ12Γ34

Γ̄12Γ̄34S23G0
14S23ðΓ13Γ24ÞS Γ̄12Γ̄34S23G0

14S23Γ12Γ34

�
¼ −

�
NMMG0

14N̄MM NMMG0
14N̄DD̄

NDD̄G
0
14N̄MM NDD̄G

0
14N̄DD̄

�
; ð54Þ

where the repeated indices 2 and 3, which stand for
quantum numbers of the second quark and the third
antiquark, are mute; i.e., they are summation indices.
Therefore, for example, the expression

NMM ¼ ðΓ̄13Γ̄24ÞSS23 ð55Þ

is the amplitude of the transition of quark 1 and antiquark 4
to two mesons, and the propagator S23 corresponds to the
internal exchanged quark line. Similarly

NDD̄ ¼ Γ̄12Γ̄34S23 ð56Þ

is the amplitude of the transition of quark 1 and antiquark 4
to a diquark-antidiquark pair. The kernel of Eq. (54) thus
consists of terms of the form Niðp0; k0ÞG0

14N̄jðp; kÞ as
illustrated in Fig. 7(a), where initial and final MM or DD̄
states are separated only by a two-body qq̄ intermediate
state. The matrix of Eq. (54) can be written in a compact
symbolic form as a direct product of column (N) and row
(N̄) matrices:

Vqq̄ ¼ −NG0
qq̄N̄; ð57Þ

where G0
qq̄ ¼ G0

14, and

N ¼
�
NMM

NDD̄

�
¼

� ðΓ̄13Γ̄24ÞSS23
Γ̄12Γ̄34S23

�
; ð58aÞ

N̄¼ðN̄MM N̄DD̄ Þ¼ ðS23ðΓ13Γ24ÞS S23Γ12Γ34 Þ: ð58bÞ
Then from Eqs. (52) and (53) we get

G ¼ Gir þ GirNGqq̄N̄Gir; ð59Þ
where Gqq̄ is the qq̄ Green function which contains all qq̄
intermediate states and is itself determined by equation

Gqq̄ ¼ G0
qq̄ þ G0

qq̄ðN̄GirNÞGqq̄: ð60Þ
Here N̄GirN is the qq̄ interaction potential. In Eq. (59) the
qq̄ cuts (G0

qq̄) are exposed via Green function Gqq̄, as
specified by Eq. (60). With Eq. (59), we have obtained
the realization of Eq. (44) for the particular case of the
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separable approximation of Eq. (33). It is interesting to note
that in this approximate case, we have been able to derive
equations for the 2q2q̄ system where qq̄ annihilation is
included, but without having to face the above mentioned
ambiguity of the last 2q2q̄ cut in Gð2−4Þ. The point is that
the term N̄Gir appearing in Eq. (59) contains within it just
such a last 2q2q̄ cut that is not unique, yet N̄ is determined
unambiguously in Eq. (59). Careful analysis of this
approximate model may thus lead us to the solution of
this well-known problem of the general case; in particular,
it may be possible to deduce a criterion which helps one to
make an unambiguous choice of the very last cut, such that
the double-counting problem is avoided. Finally, we note
that the decomposition of Eq. (59) allows one to see
whether something is overcounted, or what may be miss-
ing, in the initial approximate description provided by
Eqs. (30), and how it may be improved.

III. DISCUSSION

In this paper we have derived covariant equations for the
2q2q̄ system where qq̄ annihilation is taken into account.
This has been achieved in a model where the kernel consists
only of terms that allow for a description in terms of MM
andDD̄ degrees of freedom in the case where the separable
approximations of Eq. (33) are used for the two-body
interactions. We find it encouraging that the parts of the
kernel that are neglected in this model [namely, Ta, TaAa0 ,
and AaAa0 ; see Eqs. (23)] are just the ones that would cause

overcounting if retained. The parts of the kernel retained in
the model (namely, TaTa0 and Aa) can still cause over-
counting when two disconnected terms, A13 and A14, are
allowed to meet through iteration. To stop this from
happening, we have introduced four-body equations with
a novel structure designed specifically to prevent this type
of overcounting.
For the general case of two-body interactions, our

equations for the tetraquark bound state are given by
Eqs. (30). For two-body separable interactions, as specified
by Eq. (33), our equations are expressed in terms of MM
and DD̄ degrees of freedom, and presented first for
distinguishable particles, Eq. (36). Taking into account
the antisymmetry of identical quarks and antiquarks, but
without reference to the symmetry of the two meson states,
the equations reduce from three coupled equations down to
two, as given by Eqs. (39). Finally, with the mesons
symmetrized, we obtain Eqs. (48).
Our Eqs. (48) reduce to those of Ref. [1] if we eliminate

the effect of qq̄ annihilation by setting Vqq̄ ¼ 0, or
equivalently, by setting Aaa0 ¼ 0 in Eqs. (39). The kernels
involving Aaa0 correspond to quark box diagrams, as in
Fig. 7(a), where two-body qq̄ intermediate states are
incorporated. In this way the two-body qq̄ component
contributions are buried in the kernels of Eqs. (39), even
though they are written in terms of only meson and diquark
degrees of freedom. Adding these box diagrams does not
complicate the tetraquark equations of Ref. [1] in the sense
they are one-loop diagrams, just like the kernels in Ref. [1].

FIG. 7. Diagrammatic representation of the kernels of Eqs. (50): (a) kernels with qq̄ intermediate states, as given explicitly in Eq. (54),
(b) kernels with 2q2q̄ intermediate states, as given explicitly by Eq. (50b).

COVARIANT EQUATIONS FOR THE TETRAQUARK AND MORE PHYSICAL REVIEW D 90, 045042 (2014)

045042-9



The complication is that one gets two equations instead of
one. Also, including the box diagrams makes the model
complete up to the one-loop level since all other effects
involve two and more loops in the kernel.
It is worth pointing out that the MM-DD̄ picture of a

tetraquark follows from the separable approximation for the
input two-body scattering amplitudes, and that the addition
of the box diagrams is not something that is beyond this
approximation: one only adds some disconnected parts in
qq̄ channels to make the equations applicable to the 2q2q̄
system. This addition restores missing topologies and is not
part of the dynamics: all the dynamics is encoded in the
two-body scattering amplitudes Ta.
With our equations, it will be possible to ascertain the

importance of qq̄ annihilation in the description of the
tetraquark, in a quantitative way.
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APPENDIX: OVERCOUNTING IN EQ. (20)

In this Appendix we explain in more detail how the
overcounting problem encountered in Eq. (20) is solved.
The simplest double-counted term appears already in the
first iteration of Eq. (20), resulting in iterated disconnected
terms Aij:

X13;24ðX14;23 þ X12;34Þ ¼ A13A14 þ � � � ðA1Þ

whose double-counting property was illustrated in Fig. 6.
Similarly, we illustrated in Fig. 5 how the second iteration
X14;23X12;34X14;23 generates the term A23T12T34A23 which
is already contained in the amplitude T14A23 which forms
part of the inhomogeneous term X14;23. Terms of the type
TaAa0 were discarded in the approximate kernels of
Eqs. (25) just to avoid such double counting.
However, it is noteworthy that the term A23T12T34A23, by

itself, involves double counting in the case of exact T12 and
T34. This is evident from Fig. 5(b) where the interaction
between quark 1 and antiquark 4 is of the form given in
Fig. 8. Overcounting will occur if the amplitudes T12 and
T34 contain t-channel exchanges of interacting qq̄ pairs. On
the other hand, in the often used rainbow-ladder approxi-
mation for the two-body tmatrices (which is a factorization
assumption for the t matrices in the s channel) no terms are
double counted. Indeed

A23T12T34A23 ¼ A23ðp0
2; p

0
3; p2; p3Þ

Z
ðdkÞSðk02; k03ÞT12ðp0

1k
0
2; p1k2ÞT34ðk03p0

4; k3p4ÞSðk2; k3Þ; ðA2Þ

where Sðk2; k3Þ ¼ δðk2 − k3ÞSðk2Þ is a quark propagator,
the integration over four momenta, ðdkÞ ¼ dk02dk

0
3dk2dk3,

is reduced to a one-loop 4-momentum integral upon
the use of 4-momentum conservation δ functions, includ-
ing one coming from the scattering amplitude, T12ðp0

1k
0
2;

p1k2Þ ¼ T12ðp0
1k

0
2; p1k2Þδðp0

1 þ k02 − p1 − k2Þ. The rain-
bow-ladder approximation implies the factorization
in the s channel:

T12ðp0
1p

0
2; p1p2Þ ¼ −Γðp0

1p
0
2ÞDðPÞΓ̄ðp1p2Þ;

P ¼ p1 þ p2: ðA3Þ

Note that the same factorization approximation for the two-
body t matrices in the t channel,

T12ðp0
1p

0
2; p1p2Þ ¼ −Γðp0

1p1ÞMðp0
1 − p1ÞΓ̄ðp0

2p2Þ;
ðA4Þ

would lead to a double counting in Eq. (A2). Indeed, this
double counting can be seen in the unphysical second-order
pole at ðp0

1 − p1Þ2 ¼ m2
M.

Because of the overcounting just discussed, we drop
both the AaAa0 and TaAa0 terms from the kernel Aaa0

as defined by Eq. (22); in this way, we specify all the
kernels as

Xaa0 ¼ Taa0 þ Aaa0 ; ðA5aÞ

Taa0 ¼ Ta þ Ta0 þ TaTa0 ; ðA5bÞ

Aaa0 ¼ Aa þ Aa0 : ðA5cÞ

Specifically, the kernels Xaa0 are given in the stated
approximation as

X12;34 ¼ T12 þ T34 þ T12T34; ðA6aÞ

X13;24 ¼ T13 þ T24 þ T13T24 þ A13 þ A24; ðA6bÞ

X14;23 ¼ T14 þ T23 þ T14T23 þ A14 þ A23: ðA6cÞ

These approximate kernels still generate double counting
once they are iterated via Eq. (20). In particular, iteration

FIG. 8. Form of the interaction between quark 1 and antiquark 4
inside the amplitude A23T12T34A23.
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leads to (i) the term A13A14 which can be obtained from
A13 by switching antiquark 3 and 4 legs in the initial state,
but this term will be produced by antisymmetrization of
the solution of Eq. (20), and (ii) the part A23T12A23 of the
second iteration, A23X12;34A23, which leads to an A23 type
term with an overdressed first quark line. Such overcount-
ing can be avoided by modifying Eq. (20) in such a way
that will prevent troublesome pairs of kernels, like A13 and
A14, A23 and T12, etc., ever meeting each other when the
equations are iterated.
To this end we split the kernels Taa0 into two parts,

specified as

Taa0 ¼ T1
aa0 þ T2

aa0 ; ðA7aÞ

T1
aa0 ¼ Ta þ Ta0 ; ðA7bÞ

T2
aa0 ¼ TaTa0 ; ðA7cÞ

and correspondingly, express the amplitude Xaa0 of
Eq. (20) as

Xaa0 ¼ T aa0 þAaa0 ; ðA8aÞ

T aa0 ¼ T 1
aa0 þ T 2

aa0 : ðA8bÞ

With these definitions, the 2q2q̄ amplitude X is given by

X ¼
X
aa0

Xaa0 ; ðA9Þ

where the modified equations for the components Xaa0 are
given by

Aaa0 ¼ Aaa0 þ Aaa0 ðT 2
bb0 þ T 2

cc0 Þ; ðA10aÞ

T 1
aa0 ¼ T1

aa0 þ T1
aa0 ðT bb0 þ T cc0 Þ; ðA10bÞ

T 2
aa0 ¼ T2

aa0 þ T2
aa0 ðXbb0 þ Xcc0 Þ; ðA10cÞ

where aa0 ≠ bb0 ≠ cc0 ≠ aa0. Equations (A10) are
obtained by expressing Eq. (20) symbolically in terms of
the above component amplitudes as

A ¼ Aþ AðT 1 þ T 2 þAÞ; ðA11aÞ

T 1 ¼ T1 þ T1ðT 1 þ T 2 þAÞ; ðA11bÞ

T 2 ¼ T2 þ T2ðT 1 þ T 2 þAÞ ðA11cÞ

and discarding the underlined terms. The term AA is
discarded because it generates the problematic term
A13A14 discussed above. The term AT 1 is discarded
because all the terms it generates in the second iteration
of Eqs. (A11),

AT 1 → AT1ðT 1 þ T 2 þAÞ → AT1ðT1 þ T2 þ AÞ;
ðA12Þ

suffer double counting. For example, the part A23T12A23 of
AT1A is a A23 type term with an overdressed first quark line.
The terms AT1ðT1 þ T2Þ involve subdiagrams with a prod-

uct of two two-body scattering amplitudes, Tð2ÞGð2Þ
0 Tð2Þ,

similar to that of Fig. 8. The term T1A ∼ T14A23 is discarded
because the same term is partially obtained in AT 2 →
AT2A ∼ A23T12T34A23, as discussed above.
Equations for the bound state wave function Ψ, corre-

sponding to Eqs. (A10), are derived by taking the residue of
X at the pole in the energy plane corresponding to the mass
of the tetraquark. Defining the wave function components
corresponding to the amplitudes of Eqs. (A8) as

Ψ ¼
X
aa0

Ψaa0 ; ðA13Þ

where

Ψaa0 ¼ ΨT
aa0 þΨA

aa0 ; ðA14aÞ

ΨT
aa0 ¼ Ψ1

aa0 þΨ2
aa0 ; ðA14bÞ

the bound state equations corresponding to Eqs. (A10) are

ΨA
aa0 ¼ Aaa0 ðΨ2

bb0 þΨ2
cc0 Þ; ðA15aÞ

Ψ1
aa0 ¼ T1

aa0 ðΨT
bb0 þΨT

cc0 Þ; ðA15bÞ

Ψ2
aa0 ¼ T2

aa0 ðΨbb0 þΨcc0 Þ; ðA15cÞ

where aa0 ≠ bb0 ≠ cc0 ≠ aa0.
As we mentioned above, Eq. (A15) will be considered in

full in a later publication, while here we consider a simpler
approximation, corresponding to setting T1

aa0 ¼ 0, in which
case the kernels are given explicitly by Eqs. (25). The
equations for the 2q2q̄ amplitude X are then obtained from
Eqs. (A8)–(A10), by setting T 1

aa0 ¼ 0, and therefore
T 2

aa0 ¼ T aa0 :

X ¼
X
aa0

Xaa0 ; ðA16aÞ

Xaa0 ¼ T aa0 þAaa0 ; ðA16bÞ

where

Aaa0 ¼ Aaa0 þ Aaa0 ðT bb0 þ T cc0 Þ; ðA17aÞ

T aa0 ¼ Taa0 þ Taa0 ðXbb0 þ Xcc0 Þ; ðA17bÞ

and aa0 ≠ bb0 ≠ cc0 ≠ aa0. Similarly, equations for the
bound state wave function are
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Ψ ¼
X
aa0

Ψaa0 ; ðA18aÞ

Ψaa0 ¼ ΨT
aa0 þΨA

aa0 ; ðA18bÞ

where

ΨA
aa0 ¼ Aaa0 ðΨT

bb0 þΨT
cc0 Þ; ðA19aÞ

ΨT
aa0 ¼ Taa0 ðΨbb0 þΨcc0 Þ; ðA19bÞ

and aa0 ≠ bb0 ≠ cc0 ≠ aa0.
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