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We investigate the consequences of space-time being curved on space-based quantum communication
protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement
distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find
that gravity affects the propagation of photons, therefore adding additional noise to the channel for the
transmission of information. The effects could be measured with current technology.
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I. INTRODUCTION

The past century can be regarded as the beginning of
the information era. Information science has played a
key role in many fields of science, in the development
of new technologies and within almost every other human
endeavor. At its core, information science aims at under-
standing how to efficiently encode, transmit, store, manipu-
late and retrieve information [1]. Although great progress in
this field was made considering classical physics alone, in
the last decades it was shown that quantum mechanics can
bring the game to the next level [2,3]. With the develop-
ment of quantum information science, a new wealth of
protocols and devices have been proposed and it has been
shown that fundamental limits valid within the realm of
classical physics can now be surpassed [4,5]. Quantum
information science has now been developed up to the
point where commercial applications are available. For
example, quantum key distribution (QKD) aims at sharing
a secret key among two legitimate users, which can be used
to achieve secure transfer of information. In this work we
will analyze quantum communication protocols where the
consequences of space-time being curved play an impor-
tant role.
With the turn of the century, several space agencies have

shown interest in developing and implementing quantum
communication networks based on technologies such as
quantum relays [6]. Several proposals for quantum com-
munications within low Earth orbits (LEOs) have been
made, such as the SPACEQUEST and QEYSSAt projects
[7–9]. Most proposed systems have been studied using
quantum optics, with little attention given to the theory of
relativity, which describes phenomena that occur at large

scales in the presence of gravitational fields [8–10]. It is
therefore of practical as well as fundamental importance [9]
to study such effects on communication protocols when the
parties involved (e.g., satellites) are located at great dis-
tances within curved space-times.
The novel field of relativistic quantum information aims

at understanding how relativity affects quantum informa-
tion tasks [11,12]. Hitherto, most research has focused on
modeling and employing localized systems for quantum
information processing [13–15], while only recently some
attention has been drawn towards understanding the influ-
ence of gravity on quantum protocols. For example, the
recent work in Ref. [14] shows that when two users employ
the modes of quantum fields contained within cavities to
perform a teleportation protocol, the motion of one cavity
affects the final fidelity of teleportation. In Ref. [16] it was
shown how curvature could effect a large-scale photonic
interferometer.
In this work we show how gravity affects quantum

communication protocols and that the effects can be
measured with current technology. In particular, we are
interested in the effects of the Earth’s gravitational field on
quantum communications between ground and space links.
The main framework that naturally allows one to inves-
tigate phenomena lying at the intersection of quantum
mechanics and relativity is quantum field theory (QFT)
[17]. We develop the necessary techniques that allow us to
revisit communication protocols between users Alice and
Bob located at different heights in a (nonuniform) static
gravitational potential. In particular, we investigate photon
propagation in Schwarzschild space-time, which well
approximates the space-time outside nonrotating spherical
planets. We will use quantum optical models for commu-
nication generalized to the relativistic QFT scenario like
those developed in Ref. [18]. However, contrary to the
work in Ref. [18], where the main result depended on two

*Present address: Racah Institute of Physics and Quantum
Information Science Centre, the Hebrew University of Jerusalem,
Givat Ram, 91904 Jerusalem, Israel.

PHYSICAL REVIEW D 90, 045041 (2014)

1550-7998=2014=90(4)=045041(13) 045041-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.045041
http://dx.doi.org/10.1103/PhysRevD.90.045041
http://dx.doi.org/10.1103/PhysRevD.90.045041
http://dx.doi.org/10.1103/PhysRevD.90.045041


observers disagreeing on the notion of a particle (math-
ematically implemented by nontrivial Bogoliubov trans-
formations), in our work, different observers agree on the
particle content of a quantum state. For example, a photon
created by Alice reaches Bob intact as a single photon.
However, we will study how single-photon wave packets
exchanged by users are affected by the gravitational poten-
tial, and how this effect impacts protocols such as entangle-
ment distribution, swapping, or QKD [6]. We show that an
Earth-to-space QKD system that relies on the entanglement
distribution using photons could have an additional con-
tribution to its quantum bit error rate (QBER) of as high as
0.7% as a consequence of space-time curvature. This effect
would be observable with current technologies.
We suggest that it is possible to correct for the effects of

gravity by employing extra resources. For example, we
show that Alice and Bob might use an extra reference beam
(a local oscillator) during their communication with
Gaussian states. Such extra resources cannot be local but
Alice and Bob need to exchange extra information in order
to apply the desired corrections. This can, in principle, have
a substantial impact on the complexity and performance of
any quantum communication protocols.
This work is organized as follows. In Sec. II we

introduce the tools necessary to address the effects of
gravity on quantum communication protocols. In Sec. III
we model the creation and propagation of photons on a
curved background, and the reception of single photons. In
Sec. IV we quantify the effects of curvature on propagating
photons. In Sec. V we apply the tools developed in the
previous sections to analyze two different quantum
communication protocols. Finally, in Sec. VI we quantify
the effects for realistic configurations. Throughout the
paper we take the conventions ℏ ¼ c ¼ 1. We use the
Einstein summation convention i.e. contracted indices are
summed over.

II. BACKGROUND TOOLS

In order to study the effects of gravity on quantum
communication protocols we will employ tools from QFT
and general relativity. On the one hand, QFT provides the
description of quantum systems that propagate on a curved
but otherwise classical background space-time. On the
other hand, general relativity describes the background
space-time itself. This standard, but largely experimentally
untested approach is referred to as QFT on a curved
background [19]. In this section we will provide a the
model for the space-time outside a nonrotating planet and
the single photons that propagate from the surface to
outer space.

A. Space-time outside a planet

The space-time outside a spherical nonrotating body
can be modeled by ð3þ 1Þ-dimensional Schwarzschild

space-time [20,21]. Standard Schwarzschild coordinates xμ

are ðt; r; θ;ϕÞ where t; r represent the proper time and
radius for observers that are (infinitely) far from the origin
r ¼ 0 (also known as the singularity) [20,21]. The spherical
planet responsible for the curvature has mass M, vanishing
angular momentum J and radius rE. The Schwarschild
metric gμν in the vacuum outside the planet is

gμν ¼ diag

�
−fðrÞ; 1

fðrÞ ; r
2; r2 sin θ

�
; ð1Þ

where fðrÞ ≔ 1 − rs
r , rS ≔

2GM
c2 is the Schwarzschild radius

for the planet and G is the gravitational constant. We
assume that the planet’s radius rE is much larger than its
Schwarzschild radius rS, i.e. rE ≫ rS. This is the case, for
example, for the Earth where rS=rE ∼ 1.4 × 10−9. Inside
the planet, the metric depends on the particular model that
describes the planet’s matter and its distribution [20]. Since
we consider communication outside the planet we are not
interested in the space-time for r < rE.
The main effects of gravity for the scenarios of interest in

this work will depend on the Schwarschild radius r. It is
well known that field equations with the metric (1) can be
solved by separating the solution into temporal, radial and
angular parts. The full solution to our problem requires
working with 3þ 1 dimensions and the differential equa-
tion for the radial part yields no analytical solution [21]. In
contrast, 1þ 1-dimensional Schwarzschild space-time con-
tains all of the essential physical properties of its 3þ 1
counterpart, while allowing for simple and analytical
formulas. We can therefore assume that the problem is
essentially 1þ 1 dimensional and that the angular part does
not contribute to the effects of interest. This will be
reasonable provided we only consider radial communica-
tion and the detector and sources are assumed small
compared to r. The Schwarzschild metric gμν in 1þ 1
dimensions reads

gμν ¼ diag

�
−fðrÞ; 1

fðrÞ
�
; ð2Þ

and the line element ds2 in Schwarzschild coordinates is

ds2 ≔ gμνdxμdxν ¼ −fðrÞdt2 þ 1

fðrÞ dx
2: ð3Þ

General relativity predicts that, in the absence of forces, test
particles follow geodesics [20]; in 1þ 1 Schwarzschild
space-time they coincide with test particles free falling
towards the origin r ¼ 0. In order to stay at some constant
distance from the planet (i.e. r ¼ const) an observer needs
to employ some source of acceleration (i.e. a rocket) which
counters the gravitational potential. Such a trajectory with
r ¼ const is not a geodesic. In 3þ 1 Schwarzschild space-
time new geodesics of constant Schwarzschild radius exist,
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i.e. circular orbits. In this case no acceleration is needed but
the observer must have angular momentum. Satellites for
standard communication or the global positioning system
typically follow such orbits. Furthermore, experiments in
LEOs have recently been proposed to test the effects of
gravity on entanglement [22]. In this case, the effects of
special relativity, specifically the relative motion of two
parties, might contribute to the final effect.
An observer at constant distance r0 from the (center of

the) planet employs his or her own clock to measure the
time in his or her rest frame. The proper time τ is related to
the Schwarzschild time coordinate t by

dτ2 ≔
ds2

c2

����
r¼r0

¼ −fðr0Þdt2; ð4Þ

which can be simply integrated to give

τ ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
t: ð5Þ

Equation (5) gives the relation between the proper time τ of
an observer sitting at a constant coordinate r0 and the
proper time t of an observer (infinitely) far from the planet.

B. Modeling quantum optics

In order to study communication protocols that employ
the exchange of pulses of light at the quantum level, the
optical pulses can be modelled by wave packets built of
monochromatic modes (i.e. plane waves) of an uncharged
massless scalar field operator Φðt; xÞ [17]. It is well known
that uncharged scalar fields are a good approximation to the
longitudinal (or transverse) modes of the electromagnetic
field [14,17]. The field Φ obeys the standard massless
Klein-Gordon equation

□Φ ¼ 0; ð6Þ
where the d’Alembertian □ in curved space-times is
defined as □ ≔ 1ffiffiffiffi−gp ∂μ

ffiffiffiffiffiffi−gp ∂μ and g ≔ detðgμνÞ. To solve

the Klein-Gordon equation (6) we first notice that every
1þ 1-dimensional space-time is conformally flat [19,21].
This implies that there always exist coordinates u ¼
uðt; rÞ; v ¼ vðt; rÞ such that the Klein-Gordon equation (6)
takes the form

∂u∂vΦðu; vÞ ¼ 0: ð7Þ
In our case, we employ the Eddington-Finkelstein
advanced and retarded coordinates u; v defined by

u ≔ ct − r�;

v ≔ ctþ r�; ð8Þ
where the tortoise coordinate r� is defined as r� ≔ rþ
rS ln j r

rS
− 1j [20,21]. Solutions to the Klein-Gordon equa-

tion (7) can be expanded in terms of modes of the form

ϕðuÞ
ω ðuÞ ¼ eiωu

2
ffiffiffiffiffiffi
πω

p ;

ϕðvÞ
ω ðvÞ ¼ eiωv

2
ffiffiffiffiffiffi
πω

p ; ð9Þ

which represent outgoing and ingoing waves that follow
geodesics u ¼ const and v ¼ const, respectively. The
frequency ω > 0 is the frequency as measured by an
observer (infinitely) far from the planet with respect to
his proper time t. Furthermore, the mode solutions (9) are
eigenfunctions of the timelike Killing vector i∂t [19] and
therefore satisfy the eigenvalue equation

i∂tϕ
ðuÞ
ω ¼ ωϕðuÞ

ω ;

i∂tϕ
ðvÞ
ω ¼ ωϕðvÞ

ω : ð10Þ

The mode solutions (9) are normalized through the stan-
dard conserved inner product ð·; ·Þ (see Ref. [17]) by

ðϕðuÞ
ω ;ϕðuÞ

ω0 Þ ¼ ðϕðvÞ
ω ;ϕðvÞ

ω0 Þ ¼ δðω − ω0Þ; ð11Þ

while mixed inner products vanish. Finally, the quantum
field Φ can be expanded as

Φ ¼
Z þ∞

0

dω½ϕðuÞ
ω aω þ ϕðvÞ

ω bω þ H.c.�; ð12Þ

where the bosonic annihilation operators aω; bω annihilate
the vacuum state j0i through the standard relation aωj0i ¼
bωj0i ¼ 0 and satisfy the canonical commutation relations

½aω; a†ω0 � ¼ ½bω; b†ω0 � ¼ δðω − ω0Þ; ð13Þ

where mixed commutators vanish.

III. PREPARATION, PROPAGATION AND
DETECTION OF PHOTONS

We assume ideal optical sources, and will study the
propagation on a curved background and how they are
affected by such propagation. In particular, we are inter-
ested in finding a transformation between the frequency
distribution of an optical mode as measured locally before
and after propagation.

A. Preparation

In general, a photon can be modeled by a wave packet
with a distribution FðωÞ ∈ C peaked around a central
frequency ω0 [18,23]. The annihilation operator for the
photon which, for an observer (infinitely) far from the
planet, takes the form

aω0
ðtÞ ¼

Z þ∞

0

dωe−iωtFω0
ðωÞaω: ð14Þ
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The photon creation and annihilation operators a†ω0
; aω0

satisfy the canonical equal-time bosonic commutation
relations

½aω0
ðtÞ; a†ω0

ðtÞ� ¼ 1 ð15Þ

if the frequency distribution FðωÞ is normalized, i.e.R
ω>0 dωjFðωÞj2 ¼ 1. Such a distribution naturally arises
if the optical field is described as a spatially and temporally
localized propagating physical system [24] i.e. a pulse.
Let Alice and Bob be two observers sitting at different

constant distances from the surface of the planet. We can
assume that Alice has her laboratory on the surface,
rA ¼ rE, while Bob has his lab on a satellite at constant
distance rB from the surface, rB > rA. Alice and Bob
measure frequencies in their laboratories with respect to
their clocks, i.e. with respect to their proper times τA and τB.
By employing the definition of proper time (5) and the
eigenvalue equation (10), it is simple to show that Eq. (10)
is equivalent to

i∂τKϕ
ðuÞ
ΩK

¼ ΩKϕ
ðuÞ
ΩK
; ð16Þ

where K ¼ A;B labels Alice or Bob and analogous
formulas hold for ϕðvÞ. In Eq. (16), we have introduced
the physical frequency ΩK as measured by the observer at
radius rK as

ΩK ¼ ωffiffiffiffiffiffiffiffiffiffiffiffi
fðrKÞ

p : ð17Þ

Since ωt is observer independent, if Alice prepares a sharp
frequency mode ΩA, Bob will receive the frequency

ΩB ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrAÞ
fðrBÞ

s
ΩA; ð18Þ

which is the well-known formula for gravitational redshifts
[20]. It is immediate to show that the relation between τB
and τA is

τB ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrBÞ
fðrAÞ

s
τA: ð19Þ

In real implementations, special-relativistic effects might
also affect our systems as satellites might not follow
geostationary orbits. In this case, satellites will have a
velocity component with respect to observers on the ground.
It is well known from special relativity that frequencies
emitted and received by two observers in relative (uniform)
motion are Doppler shifted.
A more detailed analysis is needed to compute the exact

impact of motion on the shifts in frequency. This would
require solving the field equations in at least 2þ 1

dimensions (since satellite orbits lie on a plane). As pointed
out before, there are no analytical solutions to the field
equations in more than 1þ 1 dimensions and it is reason-
able to assume that the angular component of the modes
would not significantly contribute to the purely gravita-
tional effects we are interested in. The angular part
contributes mainly to spreading the beam, an effect which
is not of interest here. Nevertheless, we can exactly
compute, in 3þ 1 dimensions, the total relativistic fre-
quency shift between modes emitted by a source and the
ones measured by a receiver.
Suppose, the source, Alice, with four-velocity uμA, in

different dimensions μ, sends an electromagnetic wave to
an observer, Bob, whose four-velocity is vμB. We assume
that Bob and Alice follow a (different) circular orbit. Let wν

be the tangent vector of the null geodesic that the light
follows. Then the emission frequency ΩA and the absorp-
tion frequency ΩB are related by

ΩB

ΩA
¼ vμwμjB

uμwμjA
;

which can be further simplified using the results in
Ref. [25] to obtain

ΩB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rA

1 − 3M
rB

vuut ΩA; ð20Þ

which gives the total frequency shift in the 3þ 1-
dimensional case.

B. Propagation

In order to understand how the propagation of light is
affected by the background space-time, we start by noting
that Alice or Bob will describe the optical mode (14)
through the operator

aΩK;0
ðτKÞ ¼

Z þ∞

0

dΩKe−iΩKτKFðKÞ
ΩK;0

ðΩKÞaΩK
; ð21Þ

where K ¼ A;B labels either Alice or Bob, ΩK are the
physical frequencies as measured in their labs using the
proper times τK and ΩK;0 are the peak frequencies of
the frequency distributions FðKÞ

ΩK;0
. The operators aΩK

must
satisfy the canonical commutation relations

½aΩK
; a†ΩK

0 � ¼ δðΩK −Ω0
KÞ: ð22Þ

Our aim in this section is to find the relation between the

shape of the wave packet FðAÞ
ΩA;0

prepared by Alice at some

time τA and the shape of the wave packet FðBÞ
ΩB;0

received by

Bob at some time τB >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrBÞ=fðrAÞ

p
τA after propagation

through space-time. It is important to notice that Alice’s
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and Bob’s operators (21) can be used to describe the same
optical mode in two different frames before and after
propagation.
We start by noting that outgoing photons follow geo-

desics of the form u ¼ const. If a mode is (sharply)
localized around r0 at t0 ¼ 0, by using Eq. (8) one can
show that at time t > t0 it will be (sharply) localized around
r given implicitly by

r�ðrÞ ¼ r�ðr0Þ þ t: ð23Þ

Equation (23) informs us about the time at which Bob will
detect photons. On the other hand, Eqs. (18) and (19)
inform us of the relation between the frequencies and
proper times measured by Alice and those measured by
Bob. It is now necessary to find the relation between the
operators aΩA

and aΩB
. To do this we employ Eqs. (13),

(18), and (22) and the identity δðfðxÞÞ ¼ P
i
δðx−xiÞ
j∂f∂xjjxi

, where

fðxiÞ ¼ 0∀i, to write

½aω; a†ω0 � ¼ 1ffiffiffiffiffiffiffiffiffi
fðrÞp ½aΩ; a†Ω0 �: ð24Þ

This implies that aΩ ¼ ffiffiffiffiffiffiffiffiffi
fðrÞ4

p
aω. Employing all of these

relations, it is now easy to see that the operator (21) can be
written before and after propagation as a function of
measurable quantities in Alice’s or Bob’s lab (i.e. peak
frequency, bandwidth). Finally, using Eq. (14) as an
intermediate step, we find that the frequency distributions

FðKÞ
ΩK;0

as measured in different reference frames satisfy the
relation

FðBÞ
ΩB;0

ðΩBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrBÞ
fðrAÞ

4

s
FðAÞ
ΩA;0

0
@ ffiffiffiffiffiffiffiffiffiffiffi

fðrBÞ
fðrAÞ

s
ΩB

1
A: ð25Þ

Alice can prepare the wave packet aΩA;0
ðτAÞ in Eq. (21) at

time τA and send it to Bob who receives it as aΩB;0
ðτBÞ at

time τB >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrBÞ=fðrAÞ

p
τA which depends on the user’s

relative distance [i.e. Eq. (23)]. Equation (25) informs us
that, in general, the wave packet received by Bob will have
a different peak frequency and a different shape than the
wave packet prepared by Alice. In particular, for the
scenario of interest where Bob finds himself at higher
altitudes than Alice (rB > rA), the wave-packet frequencies
ΩB as measured by Bob will all be redshifted with respect
to those created by Alice [see Eq. (18)].
Notice that if we wish to take into account the full effects

of gravity and the motion of the satellite, we find the
updated version of Eq. (25) as

FðBÞ
ΩB;0

ðΩBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rA

1 − 3M
rB

4

vuut FðAÞ
ΩA;0

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rA

1 − 3M
rB

vuut ΩB

1
CA: ð26Þ

We emphasize that the effect described by Eq. (25)
cannot be simply corrected by a linear shift of frequencies.
Therefore, it may be challenging to compensate the
transformation induced by the curvature in realistic
implementations.

C. Detection

Before leaving Earth to reach his station at height rB,
Bob agreed with Alice to communicate using light

described by the wave packet FðAÞ
ΩA;0

. Let Alice prepare a
pulse described by the mode operator aΩA;0

ðτAÞ which she
then sends to Bob who receives it as aΩB;0

ðτBÞ. We have

shown that, in general, the wave packet FðBÞ
ΩB;0

will be
different compared to the one Bob was expecting. The
difference can be observed in Eq. (25). Regardless of the
specific model of the detector, if the measuring device is

tuned to click when a photon in the wave packet FðAÞ
ΩA;0

is

received, the probability of the detector to click when FðBÞ
ΩB;0

is received will be affected. Bob therefore will believe that
the channel between him and Alice (i.e. the space-time) is
noisy. He can quantify the “goodness” of the channel by
employing the fidelity F defined as

F ≔ Tr2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
ρ0

ffiffiffi
ρ

pq
�; ð27Þ

for arbitrary input states ρ; ρ0. In the case when the input
states are pure, for example ρ ¼ jψihψ j and ρ0 ¼ jψ 0ihψ 0j,
the fidelity (27) reduces to F ¼ jhψ jψ 0ij2 and the intensity
fidelity gives the probability that the state was ρ given that
ρ0 is obtained in a measurement.

IV. TRANSMISSION AND RECEPTION OF A
SINGLE MODE

Alice and Bob can communicate using a wealth of
protocols [2]. In order to illustrate the techniques developed
in the previous section we start with a few simple examples
before moving on to more realistic communication
schemes. Here we analyze the transmission of a single
photon, then the transmission of a coherent state and finally
the transmission of a mode which is part of a two-mode
squeezed state (the scheme is illustrated in Fig. 1).

A. Single photon

Conceptually, the simplest protocol is when Alice

prepares a single photon in the mode FðAÞ
ΩA;0

and sends it
to Bob. The state jψ s.p.i of the system at time τA ¼ 0 is
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jψ s.p.i ¼ a†ΩA;0
ð0Þj0i: ð28Þ

Bob now receives the photon

jψ s.p.i ¼ a†ΩB;0
ð0Þj0i; ð29Þ

which is characterized by a distribution FðBÞ
ΩB;0

ðΩBÞ different
from the distribution FðAÞ

ΩA;0
ðΩBÞ that Alice promised to send

him. The intensity fidelity F 2 depends on the fidelity F s.p.

of the channel, which in this case is simply the overlap of
the two distributions

F s.p. ¼ jΔj2; ð30Þ

where

Δ ≔
Z þ∞

0

dΩBF
ðBÞ⋆
ΩB;0

ðΩBÞFðAÞ
ΩA;0

ðΩBÞ: ð31Þ

Clearly Δ ¼ 1 for a perfect channel. If the curvature is
strong enough, the distributions in Eq. (31) might have
negligible overlap and the fidelity would be low. In the case
of Earth-to-LEO communication, we will show that the
fidelity (31) is jΔj2 ∼ 1 − 2 × 10−11.

B. Coherent state

Alice now decides to send Bob a laser pulse instead of a
single photon. An initial coherent state jαi prepared by
Alice with displacement α takes the form

jαi ¼ D̂AðαÞj0ijτ0;A¼0; ð32Þ

where the displacement operator is defined as D̂ðαÞðτAÞ ≔
expðαa†ΩA;0

ðτAÞ − α�aΩA;0
ðτAÞÞ. Bob will receive a coherent

state with the same displacement parameter α but defined

for different modes FðBÞ
ΩB;0

. The fidelity F c.s.. in this case
will read

F c.s. ¼ e−2jαj2ð1−ℜðΔÞÞ; ð33Þ

where ℜðΔÞ denotes the real part of Δ.

C. Two-mode squeezed state

As a last case Alice will send Bob one mode of a two-
mode squeezed state jsi. The state jsi takes the form

jsi ¼ ŜAðαÞj0ijτ0;A¼0; ð34Þ

where the squeezing operator is defined as

ŜðsÞðτAÞ ≔ e
s

h
a†ΩA;0

ðτAÞb†Ω0
A;0

ðτAÞ−aΩA;0 ðτAÞbΩ0A;0 ðτAÞ
i

and s is known as the squeezing parameter [23,26]. We
assume that Alice has prepared the mode bΩ0

A;0
ðτAÞwhich is

received as mode b0Ω0
B;0
ðτBÞ by Bob. In this scenario, an

operational definition of fidelity involves comparing the
state jsi that Bob and Alice expect to share with the state
jsi0 they actually share after the propagation of mode bΩ0

A;0
.

The fidelity computed this way sets a lower bound to the
average fidelity of communication between Alice and Bob.
The state jsi0 takes the form (34) with b0Ω0

A;0
in place of bΩ0

A;0
.

We can compute the fidelity F t.s.. for this scenario as
F t.s. ¼ jhsjsi0j and we obtain

F t:s: ¼
���� 1

cosh2s
1

1 − Δtanh2s

����2: ð35Þ

Note that, no matter how well the modes overlap (i.e. how
small 1 − jΔj is) as long as the overlap is not perfect the
fidelity (35) vanishes for infinite squeezing.

FIG. 1 (color online). Illustration of the setup considered here.
Alice and Bob are located at different heights in a gravitational
potential. Alice prepares and sends photons (in this work a single
photon or a laser beam) to Bob, who uses them to complete a
communication protocol. The photon is created by Alice with
certain characteristics (i.e. peak frequency and bandwidth), which
change once it is received by Bob.
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V. COMMUNICATION BETWEEN DIFFERENT
ALTITUDES (OR COMMUNICATION IN A

GRAVITATIONAL POTENTIAL)

A. Establishing entangled links for communication
protocols

Communication protocols based on discrete variables
often require two users to employ and exchange qubits
and share a maximally entangled state [27–29]. A qubit
can, for example, be physically implemented by the two
polarization states of a photon. There are many protocols
that enable two distant users to share entangled states
[6,30–32], but Alice and Bob may wish to employ a
protocol that requires only local operations. Alice and
Bob can obtain an entangled state between two memories
by entangling them locally with two photons and then
performing a Bell-state measurement on the state of the two
photons. This is the same idea as that used in measurement-
device-independent QKD [31,33,34], where Alice and Bob
use entanglement swapping to share a key. In either case,
this requires at least one of the two photons to travel
through space-time and we have previously demonstrated
that photons will in general be affected.

1. Flat space-time entangling protocol

We briefly describe the ideal flat space-time setup
employed by our users. The scheme that Alice and Bob
will use is depicted in Fig. 2. Alice and Bob each have a
quantum memory and a single-photon source. The single-
photon sources produce one photon each, which travel
through two balanced (for simplicity) beam splitters located

at the respective stations, as shown in Fig. 2. The photons
are either transmitted (modes a0b0) or are reflected and are
then stored in the memory (modes a; b). The state jΨini of
the system at this point of the scheme is

jΨini¼
1

2

2
4j1100|ffl{zffl}

aba0b0

iþ j0110iþ j1001iþ j0011i
3
5: ð36Þ

The modes a0; b0 are then recombined at a second balanced
beam splitter located at Alice’s station and the output
modes ~a; ~b are measured. Here, we assumed the phase
difference between the two paths is fixed and compensated.
Time synchronization is also in place to ensure that
the photons arrive at the same time at the beam splitter
of the measurement module. Note that the overall phase of
the initial single photons does not affect the final state
obtained and no coordination is needed to drive both single-
photon sources coherently.
To understand what is the action of the detection process

we start by writing the transformation between modes a0; b0
and modes ~a; ~b as�

~a
~b

�
¼ 1ffiffiffi

2
p

�
1 1

1 −1

��
a0

b0

�
: ð37Þ

If modes ~a or ~b are detected, i.e. detectors D1 or D2 click,
the state of the memories is projected respectively into

ρ� ¼ 1

2
P� þ 1

2
Pvac; ð38Þ

where P� denote projectors on the maximally entangled
states

jΨ�i ¼
1ffiffiffi
2

p ½j 10|{z}
ab

i � j01i�; ð39Þ

while Pvac. denotes the projection on the vacuum state.
In case number resolving photodetectors are employed,
we can exclude the cases when two photons arrive at the
same detector and therefore ideally jΨouti ¼ jΨ�i, with
jϕiþðjϕi−Þ heralded by a click at D1 (D2). Note that there
is still a chance that one of the two photons is lost along the
way, therefore degrading the state. For the sake of our
argument, in this work we are not interested in any source
of loss or imperfection and from now on we will assume
that detectors are ideal and photons always reach their
destination.

2. Curved space-time entangling protocol

The scheme described above works when Alice and Bob
are in a flat space-time. Let Alice and Bob now be in curved
Schwarzschild space-time in the same setup as described in
the previous section and depicted in Fig. 2. We assume for

FIG. 2 (Color online) (color online). Schematic diagram for the
entanglement distribution between two quantum memories
(QMs) located at Alice’s and Bob’s locations. Single-photon
sources (SPSs), memories and detectors are represented by
circles, squares and half-circles, respectively. Vertical bars denote
beam splitters. In this protocol, the detection of a single photon
after a beam splitter ideally projects the two memories onto an
entangled state.
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simplicity that Alice’s modes act as reference modes, since
it is much more feasible that all operations of interest occur
at her station. The results would be qualitatively the same
whether the operations were performed between Alice and
Bob or at Bob’s station. Bob will generate a photon in mode
b0 which will enter the beam splitter on Earth as a different
mode b̄0 than the expected one. Therefore, we can decom-
pose the mode b̄0 that reaches Earth as

b̄0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
b0 þ ffiffiffi

q
p

c0; ð40Þ

where q ≤ 1. Equation (40) states that when Bob’s mode
reaches the Earth, it will have a contribution from mode b0
(which matches Alice’s mode a0) and a contribution from
the orthogonal mode c0, i.e. ½a0; c0†� ¼ 0. Such a decom-
position is always possible [35].
The parameter q is directly related to the fidelity of

single-photon transmission as defined in Eq. (31). In fact,

Δ ¼ h0jb̄0b0†j0i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
; ð41Þ

which implies

q ¼ 1 − Δ2: ð42Þ

We can assume without loss of generality that Δ ∈ R. It is
straightforward to generalize all of the following results to
the case of complex Δ.
The balanced beam splitter will mix mode a0 with mode

b0, and mode c0 with a corresponding mode d0. Both
couples are transformed to new outputs ~a; ~b and ~c; ~d,
respectively, by a transformation of the form (37). Notice
that since all operations occur at Alice’s station, the mode
d0 is always in its ground state. The initial state jΨini of the
whole system before modes a0; b0; c0; d0 enter the beam
splitter on Earth is

jΨini ¼
1

2

2
4j110000|fflfflffl{zfflfflffl}

aba0b0c0d0

i þ j011000i þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
j100100i þ ffiffiffi

q
p j100010i þ ffiffiffi

q
p j001100i þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
j001010i

3
5: ð43Þ

We can now invert the relation between a0; b0 and ~a; ~b
(analogously for the second couple of modes) and express
the state (43) in terms of memory modes a; b and the beam
splitter output modes ~a; ~b; ~c; ~d. The expression involves 15
terms and is not illuminating. The Bell-state measurement
on Earth is completed when the photodetectors absorb the
photons. If detector D1 clicks, modes ~a and ~c have been
detected. The projection operator that implements this
detection is

Dþ ¼ 1a;b ⊗ N̂ ⊗ j0ih0j ⊗ N̂ ⊗ j0ih0j; ð44Þ
where N̂ ≔ 1 − j0ih0j and the order of the modes is
a; b; ~a; ~b; ~c; ~d. If detector D2 clicks, this corresponds to
projecting the initial state jΨini with the operator D− of the
form

D− ¼ 1a;b ⊗ j0ih0j ⊗ N̂ ⊗ j0ih0j ⊗ N̂: ð45Þ
The final states

ρ�ðqÞ ≔
Trphot½D�jΨinihΨinj�
Tr½D�jΨinihΨinj�

ð46Þ

of the memories, after detection and absorption of single
photons by the resolving photodetectors, are, respectively,

ρ� ¼ 1

2
½ð1�

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
ÞPþ þ ð1∓ ffiffiffiffiffiffiffiffiffiffiffi

1 − q
p

ÞP−�: ð47Þ

In Eq. (47), P� represents the projector on the state jΨ�i.
Since ρ�ðqÞ is a mixed state, we can compute the negativity

N which is a measure of entanglement based on the
positivity of the partial transpose (PPT criterion) [36,37].
In order to compute the negativity we first need to find the
partial transpose ρPT� of the state ρ�. This can be obtained
by transposing the subspace of one of the two modes. Then,
we define

N ½ρPT� � ≔ max

�
0;
X
i

jλij − λi
2

�
; ð48Þ

where λi are the eigenvalues of the partial transposed state
ρPT� . In our scenario it is easy to show that

N ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
2

: ð49Þ

The negativity reaches the value N ¼ 1=2 for maximally
entangled states. It is easy to see from Eq. (40) that
when q ¼ 0 the mode sent by Bob reaches Alice intact
(i.e. the center and shape of the frequency distribution is
unchanged) and therefore the memories are projected into a
maximally entangled state as expected [see Eq. (47)].

B. A simple continuous-variable QKD protocol

As an instructive counterexample we now consider a
type of quantum communication protocol whose perfor-
mance is not affected by curvature. While some protocols
require the users to perform only local operations and
exchange quantum systems, other protocols require the
users to exchange additional systems, such as local oscil-
lators. The latter systems might naturally incorporate the
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means for the compensation of the effects due to space-time
curvature. Here, we will use the techniques developed
above to analyze one such example of a continuous-
variable QKD protocol similar to that investigated in
Ref. [18]. Alice employs two coherent states originating
from the same source (i.e. a laser) with strong power. The
source is then split up into one strong beam which is used
as a reference [the local oscillator (LO)] and one weak
beam used as a signal. Bob collects the two beams, mixes
them at a balanced beam splitter and measures the photo-
currents of the two output modes. In this section we will
show that by using extra resources (i.e. the local oscillator)
Bob will be able to compensate for the effects of the
curvature of space-time.
Let Alice prepare the signal and the LO initially in two

different coherent states jαi and jβi of modes aS;A, aL;A
with displacement parameters that satisfy β ≫ jαj. Since
the modes come from the same source, they have the same
frequency distribution (FΩL;A

¼ FΩS;A
¼ FΩ0;A

). A coher-
ent state is obtained by acting with the displacement
operator D̂ðγÞ ¼ expðγâ† − γ�âÞ on the vacuum state j0i.
The initial state for this kind of protocol is therefore

jψ ii ¼ D̂S;AðαÞD̂L;AðβÞj0ijτ0;A¼0; ð50Þ

where the subscripts S; L denote the signal or the local
oscillator and subscripts A;B the user that prepares and/or

receives it. The modes aS;A and aL;A propagate and reach
Bob, who mixes them at a balanced beam splitter described
by the transformation (37). We know that the modes
received by Bob are different from the modes sent by
Alice, i.e., the peak frequency and the width of the
distributions are different as measured by Alice and Bob.
Bob will perform a measurement, i.e. count incident
photons, for some time much longer than the bandwidths
considered in this problem (see Ref. [18]). Therefore, he
will integrate the input signals of his detectors over an
infinite (proper) time. The operator that describes the
outcomes of balanced homodyne detection at Bob’s satel-
lite (and with respect to his reference frame) is [18,23,26]

Ô ≔
Z þ∞

−∞
dτB½â†S;BðτBÞâL;BðτBÞ þ H.c.�: ð51Þ

Bob will compute the expectation value of such an operator
using the state jψ ii he receives. We are interested in the
final expectation value X ≔ hψ ijÔjψ ii. In order to compute
the observable X we follow Ref. [18] and assume that the
detector is well localized in space and time. This implies
that it responds with the same strength to a very broad range
of frequencies; therefore, âL;BðτBÞ and âS;BðτBÞ are broad-
band. We can commute the displacement operators through
the mode operators as expressed in Bob’s coordinates to
give the following relations at Bob’s site [18]:

D̂†
L;BðβÞâL;BðτBÞD̂L;BðβÞ ¼

	
âL;BðτBÞ þ

βffiffiffiffiffiffiffiffiffiffiffi
2πΩ0

p
Z þ∞

0

dΩBe−iΩBτBFΩ0;B
ðΩBÞ



;

D̂†
S;BðαÞâS;BðτBÞD̂S;BðαÞ ¼

	
âS;BðτBÞ þ

αffiffiffiffiffiffiffiffiffiffiffi
2πΩ0

p
Z þ∞

0

dΩBe−iΩBτBFΩ0;B
ðΩBÞ



; ð52Þ

where the signal/local oscillator modes he receives have the
same frequency distribution FΩ0;B

as previously discussed.
Using the relations (52) we obtain X

X ¼ β½α� þ α�: ð53Þ

Another quantity of interest is the variance V of this
expectation value defined as [18,23,26] V ≔ hψ ijÔ2jψ ii−
ðhψ ijÔjψ iiÞ2. We can compute the variance V and find

V ¼ 2ðjβj2 þ jαj2Þ ∼ 2jβj2 ð54Þ

since β ≫ jαj.
The result of the homodyne detection (53) and its

variance (54) are not affected by the space-time curvature.
One way to understand this conclusion is that Alice sends
Bob a signal, which will change its frequency distribution
profile, and a LO, which will be affected in the same way.
Bob will use the LO as a reference beam for matching and
detection of the input signal. Therefore, the effects of the

change in the frequency profile are compensated. We
conclude that the key rate of any protocol using such
quantum communication scheme will not be affected.

VI. ESTIMATION OF EFFECTS OF SPACE-TIME
CURVATURE ON EARTH-TO-LEO QUANTUM

COMMUNICATION IMPLEMENTATIONS

There has been extensive research on expanding the
distances of quantum communications and QKD. For
ground-based systems, the hard limit is optical losses in
fibers and free space, which scales exponentially with
distance [2]. Quantum repeaters are one way to extend
distances on the ground; however, there are still many
fundamental challenges to be researched before they can be
practical [32]. Satellite transmissions solve this problem,
because the transmission losses in empty space scale only
quadratically with the distance. With today’s technologies,
distances of up to 100 000 km are feasible in empty space.
There are several international developments for satellite

systems, all based on single-photon systems using discrete
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variables: the Canadian researchers lead by Thomas
Jennewein embarked on the mission QEYSSat (Quantum
Encryption and Science Satellite) [9]; researchers in the
USAwithin the research group of Richard Hughes and Jane
Nordholt [38]; the European groups headed by Anton
Zeilinger in Vienna (Space-QUEST project) [39,40];
Japanese researchers within the Japanese Space Agency
as well as the National Institution of Information and
Communication Technology (NICT); and the Chinese
Academy of Science, which has announced openly that
it is investigating the possibility of performing quantum
communications in space (launch date of 2016) [41].
The growing interest in developing and implementing

efficient quantum networks in space motivates the estima-
tion of all possible effects that can influence the reliability
of the networks and jeopardize the missions. We have
shown that the entanglement distribution between users at
different heights in a gravitational potential is affected by
the curvature. Here, we numerically look at such effects on
current and future quantum communication technologies. It
turns out that current regimes of operations for proposed
satellites are based on technologies that are weakly affected
by gravity. However, next-generation satellite missions
may implement technologies that are based on narrowband
optical systems which could experience substantial and
measurable effects.
In this section we focus on regimes of operation in

which the impact of space-time curvature on quantum
communication protocols is significant. Suitable candidates
for a single-photon source are cavity-enhanced spontane-
ous parametric down-conversion sources (cavity-enhanced
SPDCs) or atomic-vapor-based single-photon sources
[42–45]. The regime of operation of interest, accessible
by the current technology, is for center wavelengths of
Ω0 ¼ 428 nm or shorter and bandwidths of σ ¼ 1 MHz or
lower, where σ ≪ Ω0. While this wavelength is signifi-
cantly shorter than the typical wavelengths for conventional
optical sources, ranging from 780 nm (384 THz) to
1550 nm (193 THz) [46], it will be favorable for long-
distance free-space transmission due to its low diffraction-
induced loss [47].

A. Gaussian wave packets

Let Alice and Bob employ single-photon sources with
such features. The normalized wave packets at both stations
will have the form

FΩ0
ðΩÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ24
p e−

ðΩ−Ω0Þ2
4σ2 ; ð55Þ

where we have assumed the wave packet is real without loss
of generality. As discussed in the previous section, the
propagation of one photon in the gravitational field from
Alice’s station to Bob’s station (or vice versa) will affect the
shape of the photon’s wave packet. In particular, if the

photon was sent by Bob with a wave packet FðBÞ
ΩB;0

of the
form (55), it will be received by Alice as a photon with a

wave packet FðAÞ
ΩA;0

that differs from the original one and is

related to FðBÞ
ΩB;0

by Eq. (26).
We have shown that the mode overlap Δ quantifies the

effects of gravity on the entanglement distribution, when
photons are sent by one user and processed at a different
location. In the case of the protocol considered in Sec. V,
we need to compute Δ at Alice’s station and express the
negativityN as a function of Δ through Eqs. (49) and (42).
We find

Δ ¼
Z þ∞

−∞
dΩAF

ðAÞ
ΩA;0

ðΩAÞFðBÞ
ΩB;0

ðΩAÞ: ð56Þ

Note that the integral should be performed over strictly
positive frequencies. However, since Ω0 ≫ σ, it is possible
to include negative frequencies without affecting the value
of Δ. Using Eqs. (55) and (26), simple algebra allows us to
conclude that in our case

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� δÞ

1þ ð1� δÞ2
s

e
−

δ2Ω2
B;0

4ð1þð1�δÞ2Þσ2 ; ð57Þ

where we have defined

δ ¼

�������
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rA

1 − 3M
rB

4

vuut − 1

������� ð58Þ

and the signs � occur for rB < rA or rB > rA, respectively.
Notice that δ ¼ 0 occurs either when Alice and Bob are in a
flat space-time [fðrAÞ ¼ fðrBÞ ¼ 1] or Alice and Bob are
at the same height [fðrAÞ ¼ fðrBÞ]. In both cases the
modes perfectly overlap (Δ ¼ 1) as expected and there is
no effect due to gravity.
Combining Eq. (57) with Eq. (49), we can predict how

any protocol that depends explicitly on the mode overlapΔ,
for example the entanglement distribution protocol of
Sec. V, is affected by the space-time channel. We can
use typical values for Earth-to-LEO communication and
set rA ¼ 6371 km and rB ¼ 6771 km (i.e. the Interna-
tional Space Station orbit of about 400 km). Since the
Schwarzschild radius of the Earth is rS ¼ 9 mm, we find
that

δ ∼ −
1

4

�
rs
rB

−
rs
rA

�
¼ 1.45 × 10−11: ð59Þ

We notice from Eq. (57) that two different scenarios
can occur.
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(i) If δΩB;0

σ ≤ δ ≪ 1 then

Δ ∼ 1 −Oðδ2Þ; ð60Þ

and therefore it is easy to see that q ∼ δ2 ≤ 10−20. In
this case the effects are independent of the peak
frequency and the width of the distribution and are
negligible.

(ii) Surprisingly another scenario is possible, when
δ ≪ ðδΩB;0

σ Þ2 ≪ 1, which occurs for typical commu-
nication where ΩB;0 ¼ 700 THz (corresponding to a
wavelength of about 420 nm) and σ ¼ 1 MHz. For
example, similar peak frequencies and bandwidths
have been achieved by trapped-ion experiments
[48]. Then

Δ ∼ 1 −
δ2Ω2

B;0

8σ2
¼ 1.3 × 10−3; ð61Þ

and therefore q ∼ ðδΩB;0

2σ Þ2 ¼ 2.6 × 10−3. This effect
is much larger than the one in the previous scenario
and very close to the threshold of measurable effects
with current technology. Furthermore, if Bob were
to be very far from Earth [fðrBÞ ¼ 1] then we would
have δ ¼ 3.5 × 10−10. With the same pulse charac-
teristics we would achieve q ∼ ðδΩB;0

2σ Þ2 ¼ 1.5 × 10−2

which would be a 0.7% correction to the ideal
negativity N ¼ 1=2 of flat space-time. This would
produce a measurable effect on the QBER of QKD
protocols [49].
We can evaluate the effects of curvature on the
entanglement distribution for different types of
sources. If Bob employed a Rb vapor-type source
with ΩB;0 ∼ 380 THz and σ ∼ 5 MHz we find
q ∼ 2.52 × 10−4, while for nitrogen-vacancy centers
the effect is even smaller, q ∼ 10−6.

B. Impact on realistic communication protocols

Two users Alice and Bob can employ QKD protocols to
share a secret key. We assume that the users do not need to
trust any node, source or device that is employed (device-
independent QKD). A relevant figure of merit for a QKD
protocol is given by the QBER, defined as the ratio of
exchanged error bits and the total number of sifted key bits.
Using the entanglement distribution scheme of Fig. 2, Alice
and Bob can employ the QKD protocol proposed in Ref. [6]
to share secret keys. Under the same assumptions as in
Sec. VA 1, in the Appendix we show that for such a
protocol the QBER ∼ q

2
which implies

QBER ∼
δ2Ω2

B;0

8σ2
; ð62Þ

which can reach the value ∼0.7% for Ω0 ¼ 480 nm and
σ ¼ 1 MHz. This could be a noticeable effect in realistic

implementations of QKD, which typically operate with
QBERs of a few percent [49].
Equation (62) accounts for effects due to only the

curvature of space-time. The QBER that would be mea-
sured in realistic experiments must take into account other
sources of errors, such as dark counts, channel losses,
detector and source imperfections, and flatness across the
spectrum of all devices (sources, beam splitters, detectors).

VII. CONCLUSIONS

We have introduced mathematical techniques to study
and quantify the effects of gravity on quantum information
and quantum communication protocols. We have shown
that photon propagation is affected by the curvature of
space-time, and may change their frequency distribution in
center, shape and bandwidth. We analyzed two different
protocols: an entanglement distribution protocol and a
continuous-variable QKD protocol. We have shown that
communications between two users that are located at
different heights in the gravitational potential of the Earth
are affected by the curvature of the space-time. Our results
identify additional effects which cannot occur if two parties
are situated at the same height or are in flat space-time.
Therefore, the results of this paper unveil that there exist
effects of gravity on quantum information protocols that
cannot be reproduced and studied in Earth-based labora-
tories. These curvature effects would occur in addition to
those due to special relativity or noise.
As typical predictions of quantum field theory, such as

the dynamical Casimir effect, require enormous acceler-
ations [50], the effects studied in this paper are therefore
relevant for possible space-based implementations of sat-
ellite missions based on current technologies and could
potentially be tested within near-future proposals for
satellite missions. As these effects could in principle be
compensated by the exchange of additional resources (use
of local oscillators, tunable receiving devices, or tunable
sources), they will help us to investigate the overlap
between quantum mechanics and the theory of general
relativity.
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APPENDIX: QBER

We apply our results to a well-known scheme such as the
one described in Ref. [6]. There, Alice and Bob have two
memories each, A; A0 and B;B0, respectively. They use the
scheme in Sec. VA 2 to entangle A with B and A0 with B0.
The modes stored in the memories A; A0 can then be mixed
at a balanced beam splitter, and analogously for the modes
in memories B; B0. If one detector per user clicks the
distribution protocol has been successful. This occurs on
average in 50% of the cases. Alice and Bob assign a bit
value to each detector. Alice and Bob share the same bit if
the state of the memories A; B and the state of the memories

A0; B0 are the same (i.e. both ρþ or ρ−). This occurs on

average with a probability pshare ¼ ð1−
ffiffiffiffiffiffi
1−q

p
Þ2

4
þ ð1þ

ffiffiffiffiffiffi
1−q

p
Þ2

4
.

The probability of Alice and Bob not sharing the same bit is

instead pdiff ¼ 2
ð1þ

ffiffiffiffiffiffi
1−q

p
Þ

2

ð1−
ffiffiffiffiffiffi
1−q

p
Þ

2
.

The QBER is defined as the number of different bits
shared by Alice and Bob over the total bits exchanged,
namely QBER ≔ pdiff

pshareþpdiff
. Substituting for pshare and pdiff

we find

QBER ¼ q
2
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